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Abstract. Relative metrizability is defined and connections with other relative properties
are established.
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§1. Introduction

Location properties of a subset in a topological space play an important role in
topology: it is enough to refer to the notions of an open set, closed set, Gδ-subset,
C-embedded subset, and so on. In fact, a great variety of location properties based
on very different approaches is encountered in topology.
The following general idea was introduced in [4]: every topological property

can be naturally transformed (often, in many ways) into a location property of
a subspace Y in a space X . Such properties are called relative properties, or
properties of Y in X . The principal conjecture is that the majority of results of
classical topology remain true for relative properties. This provided a guideline in
[4], where the first steps in investigation of many relative properties were taken.
In particular, different versions of relative normality were studied in [4] to some
depth; also, three versions of relative paracompactness were introduced in [4], and
some relative compactness type properties were considered there.
Clearly, in a systematic approach along these lines relative metrizability has to

play a central role. Interestingly enough, it turned out that to find an appropriate
definition of relative metrizability is not so easy as to define relative normality or
relative paracompactness, where the definitions are obvious. It took some time,
and an important step towards that goal was made in [5], where the notion of
relative symmetrizability was introduced.
In this paper, we continue the study of relative symmetrizability; this pro-

vides us with a basis for introduction of relative metrizability properties and their
systematic study. Let us note that some ideas in the direction of relative metriz-
ability have appeared in papers [9] of H.H. Corson and E.A. Michael and [6], [7] of
C.E. Aull. In the first paper the notion of a subspace Y metrically embedded into
a spaceX was introduced. Our approach to relative metrizability is quite different
from Michael and Corson’s approach. On the other hand, Aull uses the notion of
a relative metric on a pair (Y, X) of spaces, which is a part of our technique as
well; extension operators for open sets, generated by relative metrics, is another
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piece of technique used in both papers. Yet on the whole, Aull’s definitions and
results are also different from ours.
We follow notation and terminology in [10]. No separation axioms are assumed

beforehand.

§2. Relative symmetrics

In what follows Y is a subset of a set X . A symmetric d on (Y, X) is a non-
negative real valued function d defined on X×X which satisfies the following two
conditions for all x in X and y in Y :

s1) d(x, y) = 0 if and only if x = y;

s2) d(x, y) = d(y, x).

Of course, if Y = X , then d is a symmetric on (Y, X) if and only if d is a
symmetric on X in the usual sense [3].

If d is a symmetric on (Y, X), and x ∈ X , A ⊂ X , then the distance d(x, A) is
defined in the usual way: d(x, A) = inf{d(x, y) : y ∈ A}.
Let us now assume that Y is a subspace of a topological space X . The next

definition, in a slightly different form, was introduced in [5]. A symmetric d on
(Y, X) defines Y in X if the next three conditions are satisfied:

o1) for every closed subset P of X , and each y ∈ Y \ P , d(y, P ) > 0;

o2) if A ⊂ Y and d(x, A) > 0, for each x ∈ X \ A, then A is closed in X ; and

o3) for every closed subset P of X , and for each point x in X \P , d(x, P ∩Y ) > 0.

Clearly, if a symmetric d on (Y, X) defines Y in X, and Z is a subspace of Y ,
then d also defines Z in X .
We say that Y is symmetrizable in X , if there is a symmetric d on X , which

defines Y in X . From condition o2) it follows that if Y is symmetrizable in X,
then {y} is closed in X, for each y ∈ Y . The next assertion is obvious.

Proposition 1 [5]. If d is a symmetric on X , generating the topology of X , then
d defines Y in X , for every subspace Y of X .

Note 1. From Proposition 1 it follows that if a symmetric d on (Y, X) defines
Y in X , then the restriction of d to Y need not generate the topology of Y ;
indeed, a subspace of a symmetrizable space need not be symmetrizable, or even,
sequential (see [3], [11]). If, in addition, Y is closed in X, then the restriction of
d to Y generates the topology of Y (see Proposition 3 below). Observe also that
a symmetric d on X defines X in X if and only if d generates the topology of X .

We use throughout the following notation: if ̺ is a symmetric on (Y, X), then
[A]̺ = {x ∈ X : ̺(x, A) = 0}, for each A ⊂ X . The closure of A in X is denoted
by Ā.
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Proposition 2. If ̺ is a symmetric on (Y, X) which defines Y in X , then [A]̺ ⊂
Ā, for each A ⊂ Y .

Proof: This follows from condition o3). �

Proposition 2 implies the next result:

Proposition 3 [5]. If a symmetric d on (Y, X) defines Y in X , then d also defines
Y in the closure Ȳ of Y in X .

The next simple assertion is especially interesting in view of Note 1. It also
trivially follows from Proposition 2.

Proposition 4. Let d be a symmetric on (Y, X) which defines Y in X . Then
the restriction of d to Y generates a topology T (d, Y ) on Y , which contains the
(original) topology of Y .

We write an → b, if the sequence {an : n ∈ ω} converges to b. The next lemma
allows to strengthen considerably Proposition 4 in the important case when X is
a Hausdorff space.

Lemma 1. Assume that X is Hausdorff and d is a symmetric on (Y, X), which
defines Y in X , and let x ∈ X , yn ∈ Y for each n ∈ ω be such that yn → x. Then
d(yn, x)→ 0.

Proof: Indeed, let B be any infinite subset of ω. Obviously, we may assume
that the point x is not in P = {yn : n ∈ ω}. Then the set PB = {yn : n ∈ B} is
not closed in X , since x ∈ PB \ PB . Therefore, by condition o2), there is z ∈ X
such that z ∈ X \ PB and d(z, PB) = 0. Then by Proposition 2, z ∈ PB . Since
X is Hausdorff, and yn → x, there is only one point in X which is in the closure
of PB and not in PB , that is, x. Therefore, x = z and d(x, PB) = 0. Since B was
any infinite subset of ω, it follows, that d(yn, x)→ 0. �

From Lemma 1 and Proposition 4 it follows that if d is a symmetric on (Y, X)
which defines Y in X , then the topology T (d, Y ) generated by the restriction of d
to Y has the same convergent sequences in Y as the original topology of Y . Since
the topology T (d, Y ) is sequential, it is generated by the convergent sequences
(see [3]). Therefore, T (d, Y ) is the sequential coreflection of the topology T of Y ,
that is, the strongest topology on Y with the same convergent sequences as T .
Thus, the following result is established:

Theorem 1. If X is Hausdorff, and d is a symmetric on (Y, X) which defines Y
in X , then the topology T (d, Y ) generated by the restriction of d to Y coincides
with the strongest topology on Y which has the same convergent sequences as the
(original) topology of Y .

Corollary 1. If X is Hausdorff and Y is sequential, and a symmetric d on (Y, X)
defines Y in X , then the restriction of d to Y generates the topology of Y .
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Corollary 2. If a sequential space Y is symmetrizable in a Hausdorff space X ,
then Y is symmetrizable (in itself ).

Though Y is not necessarily sequential in itself when Y is symmetrizable in X ,
Y is in this case relatively sequential in X in a certain sense, as we are now going
to show.
Let us say that Y is sequential in X , if for each subset A of Y such that A is

not closed in X there is a sequence {yn : n ∈ ω} ⊂ A converging to a point in
X \ A. Clearly, if X is sequential, then every subspace Y of X is sequential in
X (though it need not be sequential in itself).

Proposition 5. If Y is symmetrizable in X , then Y is sequential in X .

Proof: Let d be a symmetric on (Y, X) defining Y in X , and let A be a subset
of Y which is not closed in X . By condition o2), there is x ∈ X \ A such that
d(x, A) = 0. For each positive n ∈ ω, fix yn ∈ A such that d(x, yn) < 1/n. Let us
show that the sequence {yn : n ∈ ω} converges to x. Assume the contrary. Then
there is an infinite subset B of {yn : n ∈ ω} such that x is not in the closure of B.
Condition o3) now implies that d(x, B) > 0. On the other hand, it is obvious from
the definition of B that d(x, B) = 0. This contradiction completes the proof. �

Studying relative symmetrizability, it is natural to consider when a space Y is
symmetrizable in a larger space X which has better properties than Y — for ex-
ample, is more compact than Y , or is complete in some sense. In particular, when
a metrizable space Y is symmetrizable in a Hausdorff compactification of Y ?
Here is an example, based on Proposition 5.

Example 1. The discrete space ω is not symmetrizable in its Stone-Čech compac-
tification β(ω). Indeed, ω is not closed in β(ω), while no sequence of elements of
ω converges to a point in β(ω) \ω. It remains to apply Proposition 5. Thus, even
an open metrizable dense subspace of a compact space need not be symmetrizable
in this space.

Let us say that the extent of Y in X is countable if every closed in X discrete
subspace of Y is countable (see [5]). Clearly, if the extent of X is countable, then
the extent of Y in X is countable.

Theorem 2. If Y is symmetrizable in X and the extent of Y in X is countable,
then the extent e(Y ) of Y is also countable.

Proof: Let d be a symmetric on (Y, X), which defines Y in X . Take any discrete
subspace Z ofX , and put T = Z̄. Then the restriction of d to T defines Z in T (see
Proposition 3), Z is dense in T , and each point of Z is isolated in T . Therefore,
the set Fz = T \ {z} is closed in T , and by condition o1), εz = d(z, Fz) > 0,
for each z ∈ Z. Let Zn = {z ∈ Z : d(z, Fz) ≥ 1/n}, for positive n ∈ ω. By
condition o2), Zn is closed in T . Since Zn is discrete and the extent of Y in X
is countable, Zn is countable, for each n ∈ ω. Clearly, Z = ∪{Zn : n ∈ ω}.
Therefore, Z is countable, and e(Y ) ≤ ω. �
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Corollary 3. If Y is symmetrizable in X and X is Lindelöf, then the extent of
Y (in itself ) is countable.

Example 2. Let X be a Lindelöf space with an uncountable dense discrete sub-
space Y . Then Y is not symmetrizable in X , by Corollary 3. Observe, that Y is
an open dense metrizable subspace of X . In particular, an uncountable discrete
space is not symmetrizable in any of its compactifications.

§3. Proper relative symmetrics

Theorem 1 and its corollaries can be considerably strengthened if we impose
one more natural condition on a symmetric d on (Y, X).
Let us say that a symmetric d on (Y, X) properly defines Y in X , or that it is

a proper symmetric on (Y, X), if d satisfies conditions o1), o2), o3), and the next
condition o4):

o4) if y ∈ Y and A ⊂ X are such that d(y, A) > 0, then y is not in the closure
of A.

The next assertion is obvious, in view of Proposition 1.

Proposition 6. A symmetric d on X properly defines X in X if and only if
Ā = [A]d, for each A ⊂ X .

From Proposition 6 we immediately get the next result:

Proposition 7. Let d be a symmetric on (Y, X), properly defining Y in X . Then
the original topology of Y is generated by the restriction of d to Y .

If d is a symmetric on (Y, X), x ∈ X , and ε is a positive number, then we
put: B(x, ε) = {y ∈ X : d(x, y) < ε}. Similarly, we define the set B(A, ε) for any
subset A of X . We also denote by O(x, ε) the interior of the set B(x, ε) in X . It
is well known that even if d is a symmetric on X which generates the topology of
X , the set O(x, ε) may be empty ([3]).
In what follows, ̺ is a symmetric on (Y, X), defining Y in X . We are not

assuming that ̺ generates the topology of X . We are going to define a mapping
associating with every open subset of Y an open subset of X ; this mapping in
some important cases will turn out to be an extension operator.
Let V be an open subset of the space Y . For each y ∈ V , put ε(y, V ) = ̺(y, Y \

V ). Since y is not in Y \ V , ε(y, V ) > 0, for each y ∈ V (by the condition o1)).
Finally, put env(V ) = env̺(V ) = ∪{O(y, ε(y, V )/2) : y ∈ V }. We shall call
env̺(V ) an envelope of V (with respect to ̺). Thus, we have defined an envelope
operator which associates with each open subset V of Y an open subset env(V )
of X . This operator is generated by ̺. Clearly, env(V ) is always an open subset
ofX ; yet, env(V ) might be empty for a non-empty open subset V of Y . Of course,
env(∅) = ∅.

Proposition 8. Let ̺ be a symmetric on (Y, X), properly defining Y in X . Then:

o5) for each y ∈ Y and each ε > 0, y ∈ O(y, ε);
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o6) env(V ) ∩ Y = V , for each V ⊂ Y open in Y ;

o7) for any open subsets U and V of Y such that U ⊂ V , env(U) ⊂ env(V ).

Proof: o5) Put A = X \ B(y, ε). Then ̺(y, A) > 0. Since ̺ properly defines Y
in X , y is not in the closure of A. Then y ∈ X \ Ā ⊂ B(y, ε). As X \ Ā is open
in X , it follows that y ∈ O(y, ε).

o6) Clearly, O(y, ε(y, V )) ∩ Y is contained in V , for each y ∈ V . This, together
with o5) and the definition of env(V ), implies that env(V ) ∩ Y = V .

o7) is obvious from the definition of the envelope operator env. �

Proposition 9. If ̺ is a symmetric on (Y, X), properly defining Y in X , then
the space X is first countable at all points of Y .

Proof: This follows from o1) and Proposition 8 o5). �

We say that Y is properly symmetrizable in X , if there is a symmetric ̺ on
(Y, X) which properly defines Y in X . Of course, a basic question is: when Y is
properly symmetrizable in X?

Indeed, from Propositions 7 and 9 it follows that if Y is not a semi-metrizable
space, then Y is not properly symmetrizable in any larger space. The next exam-
ple helps to clarify the situation further.

Example 3. Let N be the set of all positive integers, and let X be a subset of
the coordinate plane defined as follows: X = A ∪ B ∪ C, where A = {(0, 0)},
B = {(1/n, 0) : n ∈ N}, and C = {(1/n, 1/m) : n, m ∈ N}. Let us define
three symmetrics on X , by the following formulae combined with the axioms s1)
and s2). For a = (0, 0), and any c ∈ C we put: d(a, c) = ̺(a, c) = θ(a, c) = 1.
Further, for bn = (1/n, 0), let d(a, bn) = 1/n, and ̺(a, bn) = θ(a, bn) = 1. Also
d(bn, (1/n, 1/m)) = ̺(bn, (1/n, 1/m)) = θ(bn, (1/n, 1/m)) = 1/m, for each m ∈
N . If x, y are any two different points of B, the distance between x and y is 1, with
respect to each of the three symmetrics on X . We also put d(bn, (1/k, 1/m)) =
̺(bn, (1/k, 1/m)) = θ(bn, (1/k, 1/m)) = 1, whenever k 6= n, k, n ∈ N . The
distance between any two different points of C with respect to d is 1. We also
put ̺((1/n, 1/m), (1/k, 1/l)) = θ((1/n, 1/m), (1/k, 1/l)) = 1, if n 6= k. Now the
only difference between ̺ and θ is here: for m 6= l, ̺((1/n, 1/m), (1/n, 1/l)) =
|1/n− 1/l|, while θ((1/n, 1/m), (1/n, 1/l)) = 1. On the other hand, d and ̺ differ
only in the distances between a and the points of B.
Clearly, d, ̺, and θ are symmetrics on X . Let us endow the set X with the

topology T = Td, generated by d, and let Y = A∪C, with the subspace topology.
Of course, X is just the well known Arens space (see [1], [3]). It is easy to see, that
the spaces X and Y are not first countable at the point a. Proposition 9 implies
that Y is not properly symmetrizable in X . On the other hand, by Proposition 1,
d defines Y in X , and therefore, Y is symmetrizable in X (by d).
It is trivially verified that ̺ and θ also define Y in X , though the topology they

generate on X is different from the topology T generated by d. Note that the
restrictions of d, ̺, and θ to Y are metrics on Y generating the discrete topology



Relative symmetrizability and metrizability 763

on Y which does not coincide with the subspace topology on Y . This perfectly
agrees with Lemma 1, since there are no non-trivial convergent sequences in the
space Y .

Lemma 2. If d is a symmetric on (Y, X) which properly defines Y in X , then
for each subset A of Y , there is a Gδ-subset P of X such that A ⊂ P ⊂ [A]d.

Proof: This trivially follows from condition o4). �

Theorem 3. If Y is properly symmetrizable in X , then every closed in X subset
of Y is a Gδ-set in X .

Proof: It is enough to refer to Lemma 2 and Proposition 2. �

Corollary 4. If Y is closed in X and properly symmetrizable in X , then Y is a
Gδ-set in X .

Note 2. Assume that d and ̺ are two symmetrics on (Y, X) such that d(x, y) =
̺(x, y) for all x in X and y in Y , that is, d and ̺ coincide on the set YX =
(Y × X) ∪ (X × Y ). Then ̺ properly defines (defines) Y in X if and only if
d properly defines (defines) Y in X ; if this is the case, the envelope operators
generated by ̺ and d coincide. This happens because the sets B(y, ε) and O(y, ε)
are the same when y ∈ Y . For the purposes of the argument in this section, we
could identify symmetrics on (Y, X) which take the same values on YX : what
really matters are the values of d or ̺, when at least one point is in Y . The same
holds true for the next section.

§4. Relative metrics and 2-metrics

A symmetric ̺ on (Y, X) is called a metric on (Y, X), if ̺(y, z) ≤ ̺(y, x) +
̺(x, z), for every y, z in Y and x in X . A subspace Y of a space X is metrizable
in X , if there is a symmetric ̺ on (Y, X) which defines Y in X and is a metric on
(Y, X).

Theorem 4. If Y is closed in X and metrizable in itself, then Y is metrizable
in X .

Proof: Let ̺ be a metric on Y generating the topology of Y . We may assume
that ̺(y, z) ≤ 1, for every y, z in Y . Now we extend ̺ to become a metric ̺∗ on X
by the following rule: if x ∈ X\Y , and y ∈ X , x 6= y, then ̺∗(x, y) = ̺∗(y, x) = 1,
and ̺∗(x, y) = ̺(x, y), if x and y are both in Y . Clearly, ̺∗ is a metric on X ,
and it is routinely verified that ̺∗ defines Y in X (here we rely heavily upon our
assumption that Y is closed in X). �

Example 4. Let X be the Niemytzky plane and Y the discrete line at the bottom
of it. According to Theorem 4, Y is metrizable in X . On the other hand, the
classical argument shows that Y is not normal in X . Thus, metrizability of Y in
a Tychonoff space X does not imply in general that Y is normal in X or that Y
is 2-paracompact in X .
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Example 5. This is a generalization of Example 3. Let Z be a space with exactly
one non-isolated point m, M = Z \ {m}, and T = Z × ω. We put a = (m, 0),
B = {(z, 0) : z ∈ M}, and C = M × (ω \ {0}). We define a symmetric ̺ on
X = {a} ∪ B ∪ C by the following rule and conditions s1), s2). If x ∈ B ∪ C,
then ̺(a, x) = 1. If b1, b2 are two different points of B, then ̺(b1, b2) = 1. Let
b = (z1, 0) ∈ B, and c = (z2, k) ∈ C. If z1 = z2, we put ̺(b, c) = 1/k; in the other
case ̺(b, c) = 1. Similarly, if c1 = (z1, n), c2 = (z2, k) are in C, and z1 = z2,
then ̺(c1, c2) = |1/n− 1/k|; if z1 and z2 are different, then ̺(c1, c2) = 1. The set
A = {a} ∪ B can be naturally identified with the set Z. Let T1 be the topology
induced on A by this identification of A with the space Z. The restriction of ̺ to
B ∪C generates a topology T2 on B ∪C. Let us call a subset U of X open in X ,
if U ∩A belongs to T1, and U ∩ (B ∪C) is in T2. This defines a topology T on X .
Put Y = A ∪ C. It is easy to see that ̺ defines Y in X , and that ̺ is a metric
on X . Therefore, Y is metrizable in X . Note, that a is non-isolated in Y . Let us
assume that the space Z is chosen in such a way that, in addition, all countable
sets in Z are closed (for example, the one-point Lindelöfication of an uncountable
discrete space will do). Then, since the natural projection of X onto Z = A is
continuous and a is the only non-isolated point of Y , all countable subsets of Y
are closed in Y as well. It follows that the tightness of Y is not countable, though
Y is sequential in X , according to Proposition 5. Thus, metrizability of Y in X
does not imply, that the tightness of Y (in itself ) is countable.

We say that Y is properly metrizable in X , if there is a metric ̺ on (Y, X)
properly defining Y in X .

Proposition 10. Let ̺ be a metric on (Y, X), properly defining Y in X . Then:

o8) if U and V are open subsets of Y , and U ∩V = ∅, then env(U)∩env(V ) = ∅.

Proof: Let z ∈ env(U) ∩ env(V ). Then there are y ∈ U and x ∈ V such
that ̺(z, y) < ̺(y, Y \ U)/2 and ̺(z, x) < ̺(x, Y \ V )/2. We may assume that
̺(y, Y \ U) ≤ ̺(x, Y \ V ). Then from the triangle inequality we have: ̺(x, y) <
̺(x, Y \ V ). It follows that y ∈ V — a contradiction with U ∩ V = ∅. Hence,
env(U) ∩ env(V ) = ∅. �

From Proposition 7 we immediately get the next

Proposition 11. If Y is properly metrizable in X (by a metric ̺ on (Y, X)),
then the subspace Y of X is metrizable (by the restriction of ̺ to Y ).

Example 6. Let X , Y , and ̺ be the same as in Example 3. Clearly, ̺ is a metric
on (Y, X), and ̺ defines Y in X . Therefore, Y is metrizable in X . On the other
hand, Y is not first countable, and the topology generated on Y by the restriction
of ̺ to Y is discrete and hence, does not coincide with the topology of Y . It
follows that ̺ does not properly define Y in X ; we can even make a stronger
conclusion: that Y is not properly metrizable in X .

Theorem 5. If Y is properly metrizable in X , then Y is strongly normal in X .
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Proof: Let us fix a metric ̺ on (Y, X), properly defining Y in X . Let A and B
be any two disjoint closed subsets in the space Y . From Proposition 11 it follows
that the space Y is metrizable and hence, normal. Now we can fix disjoint open
subsets U and V in Y such that A ⊂ U and B ⊂ V . Then, by Proposition 10 o8),
env(U) and env(V ) are disjoint open sets in X , containing A and B, respectively.
Thus, Y is strongly normal in X . �

Note 3. The discrete bottom line Y of Niemytzky plane X is not properly metriz-
able in X , though X is first countable, and Y is metrizable in X . Indeed, Y is
not normal in X ; it remains to apply Theorem 5. The next lemma is an obvious
corollary of Proposition 10 o8).

Lemma 3. If ̺ is a metric on (Y, X) properly defining Y in X , and γ is a
locally finite in Y (discrete in Y ) family of open subsets of Y , then the family
{env(U) : U ∈ γ} is locally finite (discrete) at each point of Y .

Now we can easily prove one of our main results:

Theorem 6. If Y is properly metrizable in X , then Y is 2-paracompact in X .

In fact, we shall prove a slightly stronger assertion. Let us recall that Y is
2-paracompact (Aull-paracompact) in X , if for every open covering γ of X (for
every family γ of open subsets of X such that Y ⊂ ∪γ) there is a family µ of
open subsets of X locally finite in X at all points of Y and also satisfying the
following conditions: Y ⊂ ∪µ, and µ refines γ, that is, for each V ∈ µ there is
U ∈ γ such that V ⊂ U . We shall say that Y is strictly Aull-paracompact in X ,
if in the above definition of Aull-paracompactness of Y in X the family µ can be
chosen to satisfy one more condition: µ is σ-discrete in Y , that is, µ is the union
of a countable family of its subfamilies, each of which is discrete at all points of
Y . Clearly, Aull-paracompactness of Y in X implies 2-paracompactness of Y in
X and paracompactness of Y in itself.

Theorem 7. If Y is properly metrizable in X , then Y is strictly Aull-paracom-
pact in X .

Proof: First, we fix a metric ̺ on (Y, X), that properly metrizes Y in X . Let γ
be a family of open subsets of X such that Y ⊂ ∪γ. Put ξ = {U ∩ Y : U ∈ γ}.
Then ξ is an open covering of Y . By Proposition 11, the space Y is metrizable, and
therefore, paracompact. By A.H. Stone’s Theorem, there is a σ-discrete locally
finite open covering η of the space Y , refining ξ. For each V ∈ η we fix UV ∈ γ
such that V ⊂ UV . Then the family µ = {env(V ) ∩ UV : V ∈ η} is a family of
open subsets of X , refining γ, covering Y , and, by Lemma 3, locally finite and
σ-discrete at all points of Y . Therefore, Y is strictly Aull-paracompact in X . �

A family B of open subsets of X is called (an outer) base of Y in X ([2]), if for
each y ∈ Y , it contains a base of X at y. For the next theorem, which naturally
generalizes in one direction the well known Bing’s metrization condition, we need
a slightly stronger notion of relative metric. A symmetric ̺ on (Y, X) will be
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called a 2-metric, or an Aull-metric, on (Y, X), if whenever any two out of the
three points in the triangle inequality are in Y , the inequality holds. We shall say
that Y is 2-metrizable, or Aull-metrizable, in X , if there is an Aull-metric ̺ on
(Y, X), which satisfies the conditions o1), o2), and o3). Similarly we define when
Y is properly Aull-metrizable in X , strictly Aull-metrizable in X , and so on.

Theorem 8. If Y is properly Aull-metrizable in X , then there is an (outer) base
of Y in X , which is σ-discrete at all points of Y .

Proof: Again, we fix a 2-metric ̺ on (Y, X) which metrizes Y in X . Since, by
Proposition 11, the space Y is metrizable, there is a σ-discrete base P of Y , that
is, P = ∪{γi : i ∈ ω}, where each γi is a discrete family of open subsets of Y .
Then, by Lemma 3, µi = {env(V ) : V ∈ γi} is a family of open subsets of X
discrete at all points of Y . It remains to show that the family B = ∪{µi : i ∈ ω}
is an (outer) base of Y in X .
To that end, let us fix y ∈ Y and an open neighborhood O(y) of y in X . Then

the set F = X \ O(y) is closed in X , and by 01), δ = ̺(y, F ) > 0. Since the
restriction of ̺ to Y metrizes the space Y , there is V ∈ P such that y ∈ V and
the ̺-diameter of V is less than δ/2. Then env(V ) is contained in B(y, δ), by
the triangle inequality, and therefore, env(V ) ⊂ O(y). Since y ∈ env(V ) ∈ B, it
follows that B is an outer base of Y in X . �

After Theorems 5 and 8, keeping in mind Bing’s metrization criterion, it is
natural to expect that if Y is strongly normal in X , and there is a σ-discrete in
Y outer base of Y in X , then Y is properly metrizable in X . Example 1 shows
that this is not the case, even if Y is dense in X and X is Tychonoff. In fact, it
shows more: that under circumstances, Y need not be metrizable in X . Other
examples of this kind can be obtained on the basis of the next two results which
also seem to be interesting in itself.

Proposition 12. If Y is countably compact in X , and ̺ is a metric on (Y, X),
defining Y in X , then Y is completely bounded in itself with respect to ̺, that
is, for each ε > 0, there is a finite subset K of Y such that ̺(y, K) < ε, for each
y ∈ Y .

Proof: Assume the contrary. Then for some ε > 0, we can find an infinite set
A ⊂ Y such that the ̺-distance between any two different points of A is greater
than ε. Since Y is countably compact inX , there is an infinite subset B of A which
is not closed in X . Then by o2), there is a point x ∈ X such that ̺(x, B) = 0.
Now we can choose y1 and y2 in Y such that ̺(y1, x) < ε/3, ̺(x, y2) < ε/3,
and y1 6= y2. Then, by the triangle inequality, ̺(y1, y2) < ε/3 + ε/3 < ε, — a
contradiction with the choice of A. �

Theorem 9. If the extent of Y in X is countable, and Y is metrizable in X by a
metric ̺ on (Y, X), then the topology T (̺, Y ) generated on Y by the restriction
of ̺ is separable metrizable, and the space Y (with the original topology) has a
countable network.
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Proof: Repeating, with obvious modifications, the argument in the proof of
Proposition 12, we see that (Y, T (̺, Y )) is separable. By Proposition 4, T (̺, Y )
contains the original topology on Y . Therefore, the space Y has a countable
network. �

Corollary 5. If Y is a metrizable non-separable space, and X = b(Y ) is a
compactification of Y , then Y is not metrizable in X .

Let us say that Y satisfies the DCCC in X , if every family γ of disjoint open
sets such that γ is discrete at each point of Y , and U ∩ Y 6= ∅ in X is countable,
for every U ∈ γ, is countable.

§5. Relative 1-metrics

In this section we impose much stronger restrictions on a metric ̺ on (Y, X),
and introduce some other new notions. In what follows we assume that ̺ is a
symmetric on X : for the first time in this paper it will matter that the distance
̺(x, y) is defined even if none of the points x, y is in Y .
A subset A of X is said to be concentrated on Y , if A ⊂ A ∩ Y . A symmetric

d on X strictly defines Y in X , or strictly symmetrizes Y in X , if conditions
o1) and o3) are satisfied, as well as the next condition o♯2), which strengthens
condition o2):

o♯2) if A is a subset of X concentrated on Y such that d(x, A) > 0, for each
x ∈ X \ A, then A is closed in X .

Note 4. In Example 3, symmetric ̺ defines Y in X , while ̺ does not strictly define
Y in X . Indeed, the set P = B ∪C is concentrated on Y , and is not closed in X ,
since a ∈ P̄ \P . On the other hand, a is the only point in P̄ \P , and ̺(a, P ) = 1,
so that P would have been closed in X , if ̺ strictly defined Y in X . Of course,
if Y is closed in X, and ̺ is a symmetric on (Y, X) which defines Y in X, then
̺ strictly defines Y in X. In particular, every symmetric d on X always strictly
defines X in X with respect to the topology on X generated by d. Therefore, the
statement that d strictly defines Y in X does not imply in general that d properly
defines Y in X (see Proposition 9). See also Note 3.
We say that ̺ is a 1-metric on (Y, X), if ̺ is a symmetric on X , and whenever

x, y, z are three points in X , at least one of which belongs to Y , then the triangle
inequality holds: ̺(x, z) ≤ ̺(x, y) + ̺(y, z).

Proposition 13. If ̺ is a 1-metric on (Y, X), and ̺ strictly defines Y in X , then
Ā = [A]̺, for each A ⊂ Y .

Proof: By Proposition 2, [A]̺ ⊂ Ā. On the other hand, the set B = [A]̺ is

closed in X , by condition o♯2). Indeed, otherwise there is a point z ∈ X \ B,
such that d(z, B) = 0, which obviously contradicts the triangle inequality in the
definition of a 1-metric on (Y, X), since d(z, A) > 0. �

The next result directly follows from Proposition 13.



768 A.V.Arhangel’skii, I.Ju. Gordienko

Proposition 14. If ̺ is a 1-metric on (Y, X) which strictly defines Y in X , then
the restriction of ̺ to Y generates the topology of Y .

Proposition 15. If ̺ is a 1-metric on (Y, X), and ̺ strictly defines Y in X ,
then:

a) Ȳ = [Y ]̺, and

b) if at least one of the points x, y, z is in Ȳ , then the triangle inequality holds.

Proof: a) follows from Proposition 13, and b) easily follows from a) and the
definition of a 1-metric. �

Proposition 16. If ̺ is a 1-metric on (Y, X), then [[A]̺]̺ = [A]̺, for each
A ⊂ Y . In particular, if ̺ strictly defines Y in X , then ̺(x, Ȳ ) > 0, for every
x ∈ X \ Ȳ .

Proof: The first assertion is obvious, the second follows from Proposition 15.
�

The next result is a direct corollary of Proposition 16.

Proposition 17. If ̺ is a 1-metric on (Y, X), strictly defining Y in X , then the
restriction of ̺ to Ȳ is a 1-metric on (Y, Ȳ ), strictly defining Y in Ȳ .

Proposition 18. If ̺ is a 1-metric on (Y, X), strictly defining Y in X , then
the topology T̺ generated on Ȳ by the restriction of ̺ to Ȳ , is contained in the
original topology of the subspace Ȳ of X .

Proof: In view of Proposition 17, we may assume that Ȳ = X . Let A ⊂ X and
x ∈ X be such that ̺(x, A) = ε > 0. We have to show that then x is not in the
closure of A.
Put M = Y ∩ B(A, ε/3). By Proposition 15 a), A ⊂ [Y ]̺. Since obviously

A ∩ [Y \ M ]̺ = ∅, A ⊂ [M ]̺. On the other hand, ̺(x, M) ≥ ε/3, by the triangle
inequality. Therefore, x is not in [M ]̺. Since [M ]̺ is closed by Proposition 13, it
follows that x is not in the closure of A. �

Note that in the course of the proof of Proposition 18, we have also proved the
following assertion:

Proposition 19. If ̺ is a 1-metric on (Y, X) which strictly defines Y in X , then
for each A ⊂ Ȳ and each ε > 0, A ⊂ [Y ∩ B(A, ε)]̺.

Theorem 10. If X is regular, and ̺ is a 1-metric on (Y, X) strictly defining Y
in X , then ̺ metrizes the subspace Ȳ , that is, the restriction of ̺ to Ȳ generates
the original topology of Ȳ .

Proof: In view of Proposition 18, it would suffice to check that if P is a closed
subset of Ȳ , then ̺(x, P ) > 0, for each x ∈ X \ P . Let us fix such an x. Since X
is regular, we can choose an open set U in X such that P ⊂ U and x /∈ Ū . Put
B = Ū . Then B is closed in X , and x is not in B. Therefore, by condition o3),
̺(x, B ∩ Y ) = ε > 0. On the other hand, P is obviously contained in the closure
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of B ∩Y . Now it follows from Proposition 13, that P ⊂ [B ∩Y ]̺. By the triangle
inequality, ̺(x, [B ∩ Y ]̺) = ̺(x, B ∩ Y ) = ε > 0. Hence, ̺(x, P ) > 0. �

Note 5. Let X , Y , and ̺ be the same as in Example 3. Then ̺ is a 1-metric on
(Y, X), and ̺ defines Y in X . On the other hand, for the set C = {(1/n, 1/m) :
n, m ∈ N} we obviously have: [C]̺ = C ∪ B 6= C̄ = X , since a is not in [C]̺.
This implies that Propositions 13–19 and Theorem 11 stop to be true if we drop
the word “strictly” in their formulations.

Proposition 20. If ̺ is a 1-metric on (Y, X), and ̺ generates the topology of
X , then ̺ properly defines Y in X .

Proof: Let A ⊂ X and y ∈ Y . Because of the triangle inequality, we have:
d(y, A) = d(y, [A]̺). Since iterations of the operator [ ]̺ along all countable
ordinal numbers result in the closure of A in X (see [3], [11]), we conclude that
d(y, Ā) = d(y, A) > 0. Therefore, y is not in Ā. �

If a symmetric d strictly and properly defines Y in X , we say that d perfectly
defines Y in X . Accordingly, Y is perfectly metrizable in X , if there is a metric
̺ on (Y, X) perfectly defining Y in X . Similarly it is defined when Y is strictly,
(properly, perfectly) 1-metrizable in X .
From Proposition 20 we easily get the next

Proposition 21. If ̺ is a 1-metric on (Y, X), and ̺ generates the topology of
X , then ̺ perfectly defines Y in X .

The next result directly follows from Propositions 15 and 21.

Theorem 11. If ̺ is a 1-metric on (Y, X), and ̺ generates the topology of X ,
then ̺ is a metric on (Ȳ , X) and ̺ perfectly defines Ȳ in X . Therefore, Ȳ is
perfectly 1-metrizable in X .

From Theorem 6 and Proposition 20, we get the following corollary:

Corollary 6. If ̺ is a 1-metric on (Y, X) which generates the topology of X ,
then Y is 2-paracompact in X .

It is good to compare the last results and Proposition 9 with the following
general assertion, which is basically known and can be proved by a standard
argument (see [11]).

Proposition 22. If X is Hausdorff and first countable at all points of Y , and
d is a symmetric on X which generates the topology of X and defines Y in X ,
then d properly defines Y in X .

It follows from Proposition 22 and Theorem 5, that if d is a symmetric on
the Niemytzky plane X which generates the topology of X , then d cannot be
a 2-metric on (Y, X), where Y is the discrete bottom line. Note, that X is
symmetrizable by a rather nice symmetric, and Y is metrizable (see [11]).
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Example 7. Let X be Mrowka-Isbell space Ψ (see [10], [11]). Then X = N ∪ Ω,
where N is the set of positive integers and Ω is an uncountable almost disjoint
family of infinite subsets ofN . We define a symmetric d on (N, X) in the following
way. If n,m are inN and n 6= m, then d(n, m) = 1/n+1/m. Let a ∈ Ω and n ∈ N .
If n ∈ a, then d(n, a) = 1/n; if n is not in a, we put d(n, a) = 1. Finally, if a and
b are two different points of Ω, then d(a, b) = 1. We endow X with the topology
generated on X by symmetric d; the space obtained is the classical space Ψ. From
this definition it follows (see Proposition 1 and Note 4) that d strictly (in fact,
perfectly) defines N in X . It is also easy to see that d is a metric on (N, X). Note
that d is not a 2-metric on (N, X). Indeed, take a ∈ Ω, n ∈ a, such that n > 3,
andm ∈ N \a such thatm > 3. Then d(m, a) = 1 > 1/3+1/3 > d(m, n)+d(n, a).
The space X is locally compact and Hausdorff (therefore, it is Tychonoff). Let
Z = X ∪ {b} be the one-point compactification of X , and Y = N ∪ {b}. Then
Z is a compact Hausdorff sequential scattered space, and Y is a countable non-
sequential subspace of X with only one non-isolated point.
Let us extend our symmetric d from X to Z in the following trivial way: define

the distance from b to any other point of Z to be 1. The symmetric ̺ on Z so
obtained does not generate the topology of Z, since X is not closed in Z, while
the distance from b to X is 1, and b is the only point of Z not in X . Nevertheless,
it is easily seen that ̺ properly defines N in Z and defines Y in Z. On the other
hand, ̺ does not strictly define N in Z, and does not strictly define Y in Z. It is
also clear that ̺ is a metric on (N, Z) and on (Y, Z). Thus, we see, that there is a
non-metrizable Hausdorff compactification of the countable discrete space N , in
which N is metrizable.

§6. Relative 1-metrics and relative star normality

An important property of metrizable spaces is that all of them are star-normal.
It is natural to ask, which relative properties of star normality type are generated
by relative metrics.
If y is a point and γ is a family of sets, we put Stγ(y) = ∪{U : y ∈ U ∈ γ}. The

set Stγ(y) is called the star of y with respect to γ. Let γ and µ be two families
of sets, and let y be a point. We say that µ star-refines γ at y, if there is U ∈ γ
such that Stµ(y) ⊂ U .
Let us say that Y is strongly star-normal in X , if for each family γ of open

sets in X covering Y there is a family µ of open subsets of X which covers Y and
star refines γ at each point of ∪µ.

Theorem 12. If Y is properly 1-metrizable in X , then Y is strongly star-normal
in X .

Proof: Let ̺ be a 1-metric on (Y, X) properly defining Y in X , and let γ be a
family of open subsets of X covering Y . For any positive n ∈ ω we denote by En

the family of all open subsets U of X satisfying the next two conditions:
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1) ̺(x1, x2) < 1/n, whenever x1 and x2 are in U , and

2) there exists G ∈ γ such that B(U, 1/n) ⊂ G.

Let us show that the family µ = ∪{En : n ∈ ω \ {0}} covers Y .
Take any y ∈ Y . There is W ∈ γ such that y ∈ W . Since W is open in X and

y ∈ Y , condition o1) implies that ε = ̺(y, X \ U) > 0. There is n ∈ ω such that
1/n < ε/2. Then

V = O1/2n(y) ∈ En ⊂ µ.

Indeed, V is the interior in X of the set B(y, 1/2n), and by the triangle inequality,
we have: B(V, 1/n) ⊂ B(B(y, 1/2n), 1/n) ⊂ B(y, 2/n) ⊂ W . Besides, V is an
open subset of X . Since ̺ properly metrizes Y in X , y belongs to V . Since y
is also in Y , the triangle inequality implies that as soon as x1 and x2 are in V ,
̺(x1, x2) < 1/n. Thus, y ∈ ∪µ.
Now take any z ∈ ∪µ; let us prove that µ star refines γ at z. For each U ∈ µ

we fix a positive number n(U) ∈ ω such that U ∈ En(U) (this is possible by the

definition of µ). Then Nz = {n(U) : z ∈ U ∈ µ} is a non-empty subset of ω \ {0},
since z ∈ ∪µ.
Let m = min(Nz). There is U∗ ∈ µ such that m = n(U∗). Then U∗ ∈ Em and

therefore, there is G∗ ∈ γ such that B(U∗, 1/m) ⊂ G∗.
Take any U ∈ µ such that y ∈ U . Then, from the choice of m, m ≤ n(U). Now

condition 1) implies that

U ⊂ B(z, 1/n(U)) ⊂ B(z, 1/m) ⊂ B(U∗, 1/m) ⊂ G∗.

Therefore, Stµ(z) ⊂ G∗, that is, µ star refines γ at z. �

From Theorems 11 and 12, and Proposition 20 we get the next corollary:

Corollary 7. If ̺ is a 1-metric on (Y, X) generating the topology of X , then
both Y and Ȳ are strongly star-normal in X .

§7. Some remarks and open questions

A routine argument shows that if Y is strongly star-normal in X, then Y is
strongly normal in X. It is also clear that if γ is a family of open sets in X which
covers Y , then star refining γ two or more times, we obtain a covering ν of Y by
open sets in X such that the stars of elements of ν with respect to ν are contained
in some elements of the family γ.
The notion of strong star-normality of Y in X , introduced above, is much

stronger than the following very natural concept of relative star-normality. If for
each open covering γ of X there is a family µ of open subsets of X covering Y
and star refining γ at every point of Y , we say that Y is star-normal in X . If the
above condition holds for every family γ of open subsets of X covering Y , we say
that Y is α-star-normal in X . Finally, we call Y weakly star-normal in X , if for
every open covering γ of the space X there is a covering µ of Y by open subsets
of Y which star refines γ at all points of Y .
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Example 8. The discrete bottom line Y of Niemytzky plane is evidently α-star-
normal in X . On the other hand, Y is not strongly normal in X ([4]). Therefore,
Y is not strongly star-normal in X .

Question 1. Find a first countable compact Hausdorff space X with a countable
dense subspace Y such that Y is not metrizable in X (is not properly metrizable
in X).

Question 2. Let Y be metrizable in X . Is then Y paracompact (in itself)?
Normal (in itself)?

Question 3. Let X be Tychonoff pseudocompact, Y dense in X , and Y metriz-
able in X . Is Y separable? Is Y metrizable? Is the Souslin number of X count-
able?

Question 4. Let Y be properly metrizable (properly Aull-metrizable) in X . Is
then Y strongly star-normal in X? Star-normal in X?

Question 5. Let Y be 1-metrizable in X . Is then Y star-normal (in itself)?
Normal (in itself)?

Question 6. Let Y be properly metrizable in X . Is then true that there exists
an (outer) base of Y in X which is σ-discrete at all points of Y ?

Question 7. Let Y be properly metrizable in X . Is then Y properly Aull-
metrizable in X?

Question 8. Find an example, where X is Tychonoff, Y is weakly star-normal
in X , and Y is not star-normal in X .

Question 9. Is it true that if Y is strongly star-normal in X , then Y is 2-
paracompact in X?

There are some interesting questions, involving very natural notions of potential
metrizability and potential symmetrizability of a given space in a class of spaces,
which we are going to define now.
Let P be a class of topological spaces. We shall say that a space Y is potentially

metrizable in the class P , or P-potentially metrizable, if there is a space X in P
which contains Y as a subspace in such a way that Y is metrizable in X . Similarly,
potential symmetrizability in a class of spaces is defined, as well as other potential
properties. We write that Y is T2-potentially metrizable, if Y is metrizable in the
class of Hausdorff spaces. Similarly, for T3-potentially metrizable, and so on.

General Question 10. Characterize in terms of the topology of Y , when Y
is potentially metrizable in a class P of spaces. What if P is the class of all
Tychonoff spaces? Of all regular spaces? Of all Hausdorff spaces? Of all compact
Hausdorff spaces? If P is the class of all topological spaces, we drop P in the
above notation.

Observe, that a non-metrizable countable Tychonoff space can be metrizable
in a larger Tychonoff space (see Example 5). Note also the next two corollaries
of Theorem 9.
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Corollary 8. Every Lindelöf space, which is potentially metrizable, has a count-
able network.

Corollary 9. If a countably compact space is potentially metrizable, then it has
a countable network (and is, therefore, compact).

Question 11. Is every Tychonoff pseudocompact potentially metrizable (poten-
tially Tychonoff metrizable) space compact and metrizable?

Some information in the direction of Question 10 is provided by the next result,
which follows from Corollary 1.

Theorem 13. A sequential space X is T2-potentially metrizable, if and only if
X is metrizable.

Example 9. Let N be the discrete space of positive integers, and β(N) the Stone-
Čech compactification of N . Take any ξ ∈ β(N) \N , and put Nξ = N ∪ {ξ}. Let
E be the family of all infinite subsets of N , which are not in ξ. Now take any
maximal (with respect to E) almost disjoint subfamily Ω of E . We introduce a
topology T on the set X in the following, rather standard, way. All subsets of N
are open in X . A basic open neighborhood of a point a ∈ Ω consists of the point
a itself and of all but finitely many points of the subset a of N . A basic open
neighborhood of the point ξ in X has the form: ξ ∪ P , where P is any element
of ξ. Clearly, Nξ as a subspace of X has the same topology as Nξ as a subspace
of βN . The space X is, of course, Hausdorff and not regular. Now we introduce a
metric ̺ on X as follows. For any x in X which is different from ξ, ̺(ξ, x) = 1. If
a and b are any two different points of Ω, then again ̺(a, b) = 1. If m, n are two
different points of N , then ̺(m, n) = 1/m+ 1/n. Finally, let n ∈ N , and a ∈ Ω.
Then ̺(n, a) = 1/n, if n ∈ a, and ̺(n, a) = 1 otherwise. It is clear that ̺ is a
metric on (Nξ, X), though ̺ is not a metric on X . A routine verification shows
that ̺ defines Nξ in X . Therefore, Nξ is T2-potentially metrizable. It follows that
Nξ is sequential in X (see Proposition 5). Thus, the space Nξ is T2-potentially
sequential.

Question 12. Is the space Nξ T3-potentially metrizable? Is it T3-potentially
sequential? Is Nξ potentially metrizable (potentially sequential) in the class of
Tychonoff spaces?

Another notion worthy of further investigation. Let d and ̺ be symmetrics on
(Y, X). We shall say that d and ̺ are equivalent (on (Y, X)), if whenever y ∈ Y
and x ∈ X , d(x, y) = ̺(x, y).

Note 6. If symmetrics d and ̺ on (Y, X) are equivalent, and one of them defines
(properly defines) Y in X , then the other one also defines (properly defines) Y in
X . This is obvious from the definitions.

Question 13. Let d be a 2-metric on (Y, X). When is there a 1-metric ̺ on
(Y, X), which is equivalent to d?
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Question 14. Let d be a symmetric (a metric) on (Y, X), which defines Y in X .
When is there a symmetric (a metric) ̺ on (Y, X), which is equivalent to d and
generates the topology of the space X?

A very weak form of relative metrizability can be defined as follows. Let us say
that ̺ is a weak metric on (Y, X), if ̺ is a symmetric on (Y, X) and the restriction
of ̺ to Y is a metric on the set Y . We say that Y is weakly metrizable in X ,
if there is a weak metric ̺ on (Y, X), which defines Y in X . Note, that in the
definitions above, we do not require that the restriction of ̺ to Y generates the
topology given on Y — this need not be the case.
There are a few interesting open questions on the relationship between cardinal

invariants in relatively metrizable spaces.

Question 15. Let Y be metrizable in X . Is then true that the following impli-
cations hold:

a) If c(Y ) ≤ ω, then Y is separable?
b) If Y is separable, then Y is Lindelöf?
c) If Y is Lindelöf then Y has a countable network?

Question 16. What are the answers to questions 15, if we assume only that Y
is weakly metrizable in X?
Clearly, many of the questions formulated above should be considered under

various separation restrictions onX and Y . This is especially true for Questions 15
and 16.
One other direction for investigation could be to combine relative metrizability

with relative dimension invariants.
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