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Strong tightness as a condition
of weak and almost sure convergence

GRZEGORZ KRUPA, WIESLAW ZIEBA

Abstract. A sequence of random elements {X;,j € J} is called strongly tight if for an
arbitrary € > 0 there exists a compact set K such that P (njeJ[Xj € K}) >1-—ce.

For the Polish space valued sequences of random elements we show that almost sure
convergence of {X,} as well as weak convergence of randomly indexed sequence {X;}
assure strong tightness of {Xy,,n € N}. For L! bounded Banach space valued asymptotic
martingales strong tightness also turns out to the sufficient condition of convergence. A
sequence of r.e. {Xn,n € N} is said to converge essentially with respect to law to
r.e. X if for all sets of continuity of measure P o X!, P (limsup,,_,..[Xn € A]) =
P (liminf,, o0 [Xn € A]) = P([z € A]). Conditions under which {X,} is essentially
w.r.t. law convergent and relations to strong tightness are investigated.

Keywords: almost sure convergence, stopping times, tightness
Classification: 60B10, 60G40

1. Notations and definitions

Let (Q,F,P) be a probability space, (S,0) — a Polish space i.e. metric,
complete and separable. A random element (r.e.) is any measurable mapping
X : Q — S. For any sequence {Xp,n € N} of random elements F,, will denote a
smallest o-algebra containing Xi,...,X,. A mapping 7 : 2 — N will be called
a stopping time if [T = n] € Fp. Let T be a collection of all bounded stopping
times i.e. such stopping times that P[r < M| = 1. A generalized sequence ar is a
mapping f : T +— S such that f(7) = ar. A generalized sequence a, converges to
a if for any £ > 0 there exists v € T such that o(ar,a) < € for all 7 > v, a.s.

A sequence { Xy, n > 1} of random elements is randomly convergent in law to a

random element X ( X, D, X ) if for any given £ > 0 there exists 79 € T such that

L(X;,X) < e for every 7 € T, 7 > 79 a.s., where L denotes the Lévy-Prokhorov
metric.

Definition 1.1. A collection {P;,j € J} of probability measures is tight if for
any € > 0 there exists a compact set K C S such that for all j € J

PJ(K) >1—c¢.
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642 G. Krupa, W. Zigba

Definition 1.2. A collection {X;,j € J} of random elements is strongly tight if
for any € > 0 there exists a compact set K C S such that

PlXeK]|>1-e
Jj€J
Obviously if a collection {X;,j € J} is strongly tight then the collection of
probability measures {P o Xj_l,j € J} is tight.

2. Essential with respect to law convergence of random elements

In this section we will consider random elements with values in a Polish space.
Let Cp,, denote a set of continuity of measure Py, i.e.
Cpy, ={A € B:P[X € 0A] =0},
where 0A is a boundary of A.

Definition 2.1. A sequence of random elements { Xy, n € N} is said to converge
essentially w.r.t. law (Xn BD, X) if for all A € Cp,

P (limsup[Xn € A]) —p (liminf[Xn € A]) = P[X € A].
n—00 n—0o0

This type of convergence was investigated in [10]. It seems to be worth men-

tioning that essential w.r.t. law convergence follows from a.s. convergence. On

the other side if X, LN X then there exists a r.e. X’ with the same distribution
as X such that X, =% X'
The following theorem is analogous to Theorem 2.1 of [3].

Theorem 2.1. Let {X,} be a sequence of r.e., and X — a r.e. Then the following
conditions are equivalent:

ED
1. X,, — X, asn — o0,

2. forall A € Cp, P (limsup,_,[Xn € 4]) =limy 00 P (Upe,, [ Xk € 4]) =
P[X e A],
3. for any closed set F limy, .o P (Ure,,[ Xk € F]) < P[X € F],

4. for any open set G limy, o0 P (je, [ Xk € F]) > P[X € G].

PRrROOF: Implication ((1) = (2)) is obvious.
((2) = (1)). Consider condition (2) for a complement A° of the set A € Cp,

lim P ( [j (X € AC]> = P[X € A.

n—00
k=n
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Then, obviously

00 C

Jim P <<U (X}, € AC]> ) = P[X € 4]
k=n

and finally

o
lim P ( (X5 € A]) =P[X € A].
k=n
((2) = (3)). Let F® = {z: o(z,F) < 4}. Then dF° C {z : o(x, F) = §}. For
any closed set F' there exists a sequence 6% | 0 such that the sets F % e C py and
Niz,, F = F. Take a closed set F. Moreover, there exists FO € Cpy such that
Px(F9\ F) <e. Then

[ee) [e.e]
. . §
nlggoP<U[XkeF]> gnleooP<U[XkeF ])
k=n k=n
—P[XeF))<P[X€eF|+e
Since € is an arbitrary positive number

lim P<G[Xk eF]) < P[X € F).

n—00
k=n

((3) = (4)). For an open set G we have

() ()

_1—hmP<CHmeG021—HXG@]

n—oo
k=n
=P[X €G]
The case ((4) = (3)) can be proved in the similar way.

Now we need only (((3) and (4)) = (2)). Let A € Cp, and let Int A denote
interior of A. Then

PX eInt A] < lim P ( ﬁ [Xk € Int A])

n—oo
k=n
[e.e] o0
< nli)néop (kU [X € Int A]) < nh_)néOP (kU X% € A])
=n =n

ghmP<CHQem>§HXem

n—00
k=n
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Since A € Cp,, (2) holds. O

There is a connection between essential w.r.t. law convergence and strong tight-
ness.

Theorem 2.2. If a sequence of random elements {X,,n € N} converges essen-
tially w.r.t. law to a random element X, then it is strongly tight.

PROOF: Since S is separable there exists a countable dense set {z;,7 € N}. Let
K(z;,0) ={z: o(x,x;) < d}. Define

m
Bm(9) = |J K (@:,9).
i=1
For any € > 0 there exists m € N such that
PIX € Bn(6)] > 1— g

By (4) of Theorem 2.1

lim P ( ﬁ (X}, € Bm(é)]> > P[X € Bpn(6)] >1— =

n—oo 2
k=n

and, by the definition of the limit, there exists an ng € N such that

Py 3e
P () Xk € Bu(9)] >1-
k=ng
On the other side, for each random element X; (i = 1,...,ng— 1) there exists m;
such that c
P[X; € Bp,;(8)] >1— TR
Put m(e, §) = max{m, m1,ma,...,mp,—1}. Then
o
P <ﬂ[XZ S Bm(e,é)(a)]> >1—c.
i=1

Define a set

= 1
K: m Bm( € 1)(%),

2k 'k
=1
which is compact (it is closed and contains a finite e-net). Moreover,

(1) P(ﬁ[XieK]>>1—s.

i=1
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Indeed,

P( [XZ-EK]>_1—P X; ¢ K]
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Condition (1) assures strict tightness of the sequence {X;}. O

Essential w.r.t. law convergence of random elements sequence { Xy} is equiv-
alent to the weak convergence of {X;} for all 7 — oo (7 € T'). It is easy to see
that the following theorem holds.

Theorem 2.3. Suppose that for allT — oo (1 € T) X7 D, X, then a collection
of probability measures Px_ = PX_ L s tight.

By the Prokhorov theorem ([3]) if a sequence {Xy,,n > 1} of random elements
converges in law to a random element X, then the sequence of their distributions
is tight, i.e. for any € > 0 there exists a compact K, such that

PX, e K] >1—e.
By the Theorem 2.3 we have

Corollary 2.1. If for any 7 — oo, (1 € T) X, 2, X, then the sequence
{Xn,n > 1} is strongly tight.

3. Strong tightness in Polish spaces

Theorem 3.1. Let (S, g) be a Polish space and let {X,,,n > 1} be a sequence of
S-valued random elements. If X, —>> X as n — oo, for some r.e. X, then the
sequence { Xy} is strongly tight.

PRrROOF: By the Theorem 2 in [5], X L. X for any 7 € T, such that 7 — oc.
This combined with Corollary 2.1 completes the proof. (I

645
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Some properties of the metric space (S, ) carry over to the space of random
elements Fg with the Lévy-Prokhorov metric L or with the Ky-Fan metric
K(X,Y)=inf{e: P[p(X,Y) > ¢] <e}.
Examples of those properties are separability and completeness (see [3]). Unfor-
tunately, compactness of the space S does not assure compactness of the (Fg, K).
Example 3.1. Let £ be a random variable uniformly distributed on [0, 1]. Let

0,016203 ... be an infinite dyadic representation of £, i.e. £ = 94 g—% + %% + ...
For any integer number n

an—1 .
2(i—1) 2i—1
[5"—0]—U{ on =< on }
=1
221 2
i— i
m=1=U ["5 <e< 3]
=1
Obviously,
220 Tai—1) 211 A1 1
i— i—
Plon = 0] = ZP[ g S¢S o ]: 2 =3
i=1 i=1
Analogously, P[d, = 1] = % Random variable ¢, are also independent. Indeed,
take any finite sequence {i1,ia,...,in} C N. Let m = i, and p(™ = g% +
g% 4+ 4 (;Z be an m-digital dyadic number. (This does not affect the above

assumption of £ having infinite representations.) Let {g;} be a 0-1 sequence.

P ([0;; = €1]N[biy = €2]N---N[d;, = €n))

_plpm 2O 0 0| L
=P n _2i1+2i2+ +2in T om
:P[5i1:51]'P[5i2:52]'---'P[5in:En]-
Consider now the matrix
01 03 Jg
o2 05
04
and random dyadic numbers
01 , 03 | J6
=0,010306- ==+ =+ —=+...
&1 = 0,010306 5ttt
d2 05 09
=0,020509 = =+ =5+ = +...
§2 =0, 020509 5ttt

_ _ 04 08
53—0,5458---—?4-2—24-...
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&, are independent for §; are. Now we will prove that &; are uniformly distributed
on [0,1]. Indeed, for any n

() _ N0
n) k
51 - Z ok
k=1
may take values from the set {0, 2%, 2%, cee 2;;1} with probabilities 2% Asn —

00, §i(n) — &; and the distribution of 52.(n) converges to the uniform distribution.
Let {&,,n > 1} be a sequence of i.i.d. random variables uniformly distributed

on [0,1] defined above. By the Borel-Cantelli Lemma a sequence of i.id. r.v.

converges in law (and, equivalently, in the Ky-Fan metric) to a degenerated r.v.

Indeed, let
0, for z <0,

Fp(z) =< =, for x <1,
1

be the distribution function of &,. Let A, = [§, < z]. Then

S S S 0, for z <0,
S P = 3 P (coom)) = 3 Fula) = {
n=1 n=1 n=1

, for x > 1,

0, for x > 0.

For x < 0, obviously Fy,(z) — 0. If 2 > 0, then, since (72; Ur=,, 5,;1((—oo,x))
is a decreasing sequence,

P (ﬂ U a:l((—oo,x))) = 1im P& ((~00,2) = lim Fy(x) =1
n=1k=n

which equals 1, by the Borel-Cantelli Lemma.

4. Convergence in Banach spaces

Let £ denote a Banach space with the norm || - || and let £* be its dual with
the norm || - |-
We have the following result similar to the one obtained in [1].

Lemma 4.1. Let £ be a separable Banach space. Suppose Y is an integrable
cluster point of the sequence {Xy,n > 1} C £. Then there exists an increasing
sequence of stopping times {r,,n € B} C T, such that

X, =Y as
as n — o0o.

PrOOF: We have to show that for any £ > 0 there exists § > 0 such that for all
m > 1 we can choose 7, > m so that

(4) Plo(X7,,Y) > 6] <e.
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For N > m define a random element
Z =E(Y|FN)

measurable with respect to Fn. Then Plo(Y, Z) < %] > 1— 5, (see Proposition

V-2-6 in [6]), and for all N > 1,2, ... there exists n > N such that o(X,,,Y) < %
Moreover o(Xp, Z) < o(Xp,Y) + o(Y, Z), therefore

é 6
[0(Y,2) < 5] C [o(Xn, 2) < 70 N > NJ.
Thus there exists Ng > N such that

§
P[Q(Xn,Z)<§ for some N§n§N0]>1—%.

Define the set @, = [0(Xn, Z) < g] and a stopping time

m k=0,
Tpr1(w) = inf{n > (w) :we @, for some N <n < No}
No wé .

Now Plo(Xr,,Z) < §] >1—§ and
Plo(Xr,,Z) < 6] >1—e.
O

Uniform boundness of E|| Xy, is one of the conditions that assure almost sure
convergence of real-valued amarts. However this condition is not sufficient in
Banach spaces. It turns out that strong tightness is necessary and sufficient
condition of almost sure convergence of the L! bounded Banach space valued
amarts.

Let us outline the proofs of these facts.

Lemma 4.2. Let £ be a Banach space and let K be a compact subset of £.
There exists a countable sequence {x}} C £* such that for an arbitrary sequence
{zn} C K, xn — x (in the norm) for some x if and only if for all k, x}(vn)
converges ([6]).

Remark 4.1.. In general, even the convergence of {z*(zy,), n € N} for all 2* € £*

does not imply even weak convergence of {z,, n € N}. Consider the following

sequence x, = (1,1,...,1,0,...) in the space cg of all real-valued sequences
—_——

n
converging to zero.
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Lemma 4.3. Suppose {X,, n > 1} is strongly tight sequence of random ele-

ments. Then there exists a countable subset {x}} C £* such that Xy L2 X f
and only if for any k € N the sequence {z}(Xr), n € N} converges for n — oco.

PROOF: If X;, =% X then for any z* € £* 2*(X,) =2 o*(X).
Consider now sufficiency. Take any p € N, then there exists a compact set K1
P

such that
pay 1
P X, e K >1——.
(m[ n ;])

n=1 p

By Lemma 4.2 for any {z,, n € N} C K1, x, converges to some z if and only if

there exists a countable set {xzk(p)} C &* such that xzk(p)(:vn) converges. Let

{}} = {2]", p,leN}.

Suppose that for all k € N the sequence {x} (Xpy)} converges a.s. for n — oco. Let
Qo be a set where {2} (Xn(w)), n € N} converges for any k. Define

[o¢]
Q= ﬂ[XneK%]mQO

n=1

and Q' = J;21 Qp. Obviously, P(Qp) > 1~ % and P(Q) = 1. Take w € Q/, then
*(p)

w €  for some p. The sequence ;" (X, (w)) converges for all [. The limit is

measurable. Thus, by Lemma 4.3, X,,(w) converges, therefore X, converges a.s.
O

4.1 Almost sure convergence of asymptotic martingales

Definition 4.1 ([5]). A sequence {(Xp,An); n > 1} of Pettis integrable r.v.s. is
called an asymptotic martingale (amart) iff X,, is Ay, -measurable for every n € N
and if for every € > 0 there exists 79 € T such that for every 7,v € T 7,v > 79

we have
|IEX; — EX,| <e.

Theorem 4.1. Let {(X,,, An)} be an L'-bounded asymptotic martingale. The
necessary and sufficient condition for a.s. convergence of X, to an integrable
random element X is strong tightness of the sequence {Xp,}.

PROOF: Necessity of the above condition follows from the Theorem 3.1. For suffi-
ciency, assume that {X,} is strictly tight. For any z* € £* the sequence z*(X,,)
is an L!-bounded real-valued asymptotic martingale. Indeed sup,, E|z*(X,)| <
supy, [|z*[|x - B[ Xn| < oo and |Ez*(Xr) — Ez*(Xo)| = [(EX7) — 2™(EX,)| <
|z*||«|| EX; — EXg||. Since {z*(X,)} is an L!-bounded asymptotic martingale
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it converges a.s. ([1]) and, by Lemma 4.3 X,, converges a.s. The limit X of {Xp}
is integrable. Indeed, by Fatou lemma

/XdP:/ lim X, = lim /XndP<oo.
n—00 n—00
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