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The ambient homeomorphy of

certain function and sequence spaces

Jan J. Dijkstra, Jerzy Mogilski

Abstract. In this paper we consider a number of sequence and function spaces that are
known to be homeomorphic to the countable product of the linear space σ. The spaces
we are interested in have a canonical imbedding in both a topological Hilbert space and
a Hilbert cube. It turns out that when we consider these spaces as subsets of a Hilbert
cube then there is only one topological type. For imbeddings in the countable product of
lines there are two types depending on whether the space is contained in a σ-compactum
or not.

Keywords: Hilbert space, Hilbert cube, Fσδ-absorber, ambient homeomorphism, func-
tion space, p-summable sequence

Classification: 57N20

1. Introduction

The focus of our investigation are so-called Fσδ-absorbers in topological Hilbert
spaces and Hilbert cubes (Fσδ stands for the class of all absolute Fσδ-sets). Fσδ-
absorbers are the “maximal” elements for that Borel class. The standard example
of an Fσδ-absorber is the subset σN in the product space sN, where s = RN and

σ = {x ∈ s : xi = 0 for all but finitely many i}.

Let X be an arbitrary countable completely regular space that is not discrete.
Let Cp(X) stand for the subset of the product space RX consisting of the con-
tinuous functions from X into R. It was shown by Dobrowolski, Marciszewski
and Mogilski [7], [4] that Cp(X) is a generalized Fσδ-absorber (and hence home-

omorphic to σN) whenever Cp(X) ∈ Fσδ. Jan van Mill proved essentially in [11]

that the pair (RX , Cp(X)) is homeomorphic to (sN, σN) provided that X is a
metrizable space that is not locally compact. This led Dobrowolski and Mogilski

[8, 6.11] to ask the following question: is (s, c0) (or, equivalently, is (R
bN, Cp(N̂)))

homeomorphic to (sN, σN), where

c0 = {x ∈ s : lim
i→∞

xi = 0}

and N̂ is the convergent sequence? The answer to this question is no because σN

contains a copy of Hilbert space that is closed in sN where as c0 is contained in
the σ-compactum Σ consisting of the bounded sequences in s. We investigate the
natural extension of the question to: for which X is (RX , Cp(X)) homeomorphic

to (sN, σN)?
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Theorem 1.1. The pairs (RX , Cp(X)) and (sN, σN) are homeomorphic if and
only if X is not compact and Cp(X) ∈ Fσδ.

If p ∈ (0,∞) let lp be the subset of s consisting of the p-summable sequences.
Put l̃p =

⋂
q>p lq for p ∈ [0,∞). It was shown by Dobrowolski and Mogilski [9],

[4] that every l̃p is homeomorphic to σN but it is easily seen that l̃p is not an
Fσδ-absorber in s. We have the following result:

Theorem 1.2. If X is compact and p ∈ [0,∞) then (RX , Cp(X)) and (s, l̃p) are
homeomorphic to (s, c0).

Consider the canonical compactifications R̂N and R̂X of s and RX , where

R̂ = [−∞,∞]. Throughout this paper the Hilbert cube Q is represented by R̂N

and its pseudointerior s by RN. In the Hilbert cube the distinction between the
two types of imbeddings disappears:

Theorem 1.3. If Cp(X) ∈ Fσδ and if p ∈ [0,∞) then (R̂X , Cp(X)) and (Q, l̃p)

are both homeomorphic to (QN, σN).

2. Absorbing systems

The material in this section has been taken from the papers [5] and [6]. For
background information on infinite-dimensional topology see Bessaga and Pe l-
czyński [2] or van Mill [12].

Throughout this section let E denote either a topological Hilbert space or
Hilbert cube. Let Γ be a fixed index set. A collection X = (Xγ)γ∈Γ of subsets
of the space E (formally the pair (E,X )) is called a Z-system if

⋃
{Xγ : γ ∈ Γ}

is contained in a σZ-set of E. Let ∆ be a subset of Γ . We say that a Z-system
(E,X ) is ∆-imbeddable in (∆-homeomorphic to) a Z-system (E′,Y) if there exists
a closed imbedding (homeomorphism) f : E → E′ such that f−1(Yγ) = Xγ for
each γ ∈ ∆. The map f is called a ∆-imbedding (∆-homeomorphism). If ∆ = Γ
then we simply say that X is imbeddable in (homeomorphic to) Y. (Maps are
assumed to be continuous.)

A Z-system X is called reflexively universal if for every map f : E → E
that restricts to a Z-imbedding on some closed set K ⊂ E, there exists a Z-
imbedding g : E → E that can be chosen arbitrarily close to f with the properties:
g|K = f |K and g−1(Xγ) \ K = Xγ \ K for every γ ∈ Γ . A Z-system X is
called reflexively universal rel P (a subset of E) if for every map f : E → E
that restricts to a Z-imbedding on some closed set K ⊂ E, there exists a Z-
imbedding g : E → E that can be chosen arbitrarily close to f with the properties:
g|K = f |K, g(E \ K) ⊂ P , and g−1(Xγ) \ K = Xγ \ K for every γ ∈ Γ . In our
applications P is usually the pseudointerior s of Q.

These notions come together in the following result (see [5, Theorem 2.1] and
[6, Theorem 2.1]).
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Theorem 2.1.

(a) Let X and Y be reflexively universal Z-systems in E respectively E′.

If X is ∆-imbeddable in Y and Y is ∆-imbeddable in X then X is ∆-
homeomorphic to Y.

(b) Let X and Y be reflexively universal rel s in Q and assume that
⋃

γ Xγ

and
⋃

γ Yγ are contained in a σ-compact subset of s. If X is∆-imbeddable
in Y and Y is ∆-imbeddable in X then X is ∆-homeomorphic to Y via a
homeomorphism that preserves s.

Proof: We prove part (b). The proof for (a) is essentially the same. Let
⋃

γ Xγ∪⋃
γ Yγ ⊂

⋃
i Ai and let B = Q \ s =

⋃
i Bi, where ∅ = A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ s

and ∅ = B0 ⊂ B1 ⊂ B2 ⊂ · · · are sequences of Z-sets in Q. By induction we shall
construct sequences of homeomorphisms fi : Q → Q and gi = fi ◦ · · · ◦ f0 with
the properties (for each γ ∈ ∆):

Ai ∩ Xγ = Ai ∩ g−1
i (Yγ),

Ai ∩ gi(Xγ) = Ai ∩ Yγ ,

gi(B) = B,

fi| (gi−1(Ai−1 ∪ Bi−1) ∪ Ai−1 ∪ Bi−1) = 1,

where 1 denotes the identity map. Put f0 = 1.
Assume that fi has been constructed. Put K = gi(Ai) ∪ Ai and observe that

gi(Xγ) ∩ K = Yγ ∩ K. Let p : Q → Q be a ∆-imbedding of the system X

into Y. Then the inverse of p ◦ g−1
i is defined on a closed subset of Q and can

therefore be extended to a map r : Q → Q. Since Y is reflexively universal rel
s and K is a subset of s we can approximate r by a Z-imbedding r̃ : Q → s
with the properties r̃−1(Yγ) = Yγ for each γ ∈ ∆ and r̃ coincides with r on

p ◦ g−1
i (K). Let α be the Z-imbedding r̃ ◦ p ◦ g−1

i and note that α fixes K

and that it has the property α−1(Yγ) = gi(Xγ) for each γ ∈ ∆. Observe that
α|gi(Ai+1) ∪ Ai is a homeomorphism between compacta in s and hence it can
be extended to a homeomorphism α̃ of Q. Without loss of generality we may
assume that α̃(gi(B)) = B and α|gi(Bi) ∪Bi = 1. This homeomorphism satisfies
in addition:

α̃−1(Yγ) ∩ gi(Ai+1) = gi(Xγ ∩ Ai+1).

By a similar argument we can find a homeomorphism β̃ of Q that fixes the set
α̃ ◦ gi(Ai+1 ∪ Bi+1) ∪ Ai ∪ Bi and that has the properties β̃(B) = α̃ ◦ gi(B) and

β̃−1(α̃ ◦ gi(Xγ)) ∩ Ai+1 = Yγ ∩ Ai+1.

If we put fi+1 = β̃−1 ◦ α̃ then one can easily verify the induction hypothesis for
i+1. Since α̃ and β̃ and hence fi+1 can be chosen arbitrarily close to the identity
we may assume that h = limi→∞ gi is a homeomorphism of Q. The function h
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maps Xγ onto Yγ for each γ ∈ ∆ and it maps the pseudoboundary B onto itself.
�

A subset A is locally homotopy negligible in X if for every map f : M → X
from an absolute neighborhood retract M and for every open cover U of X there
exists a homotopy h : M × [0, 1] → X such that {h({x} × [0, 1])}x∈M refines U ,
h(x, 0) = f(x) and h(M × (0, 1]) ⊂ X \ A. A σZ-set and the complement of a
capset or fd-capset is always locally homotopy negligible.

For a space X and ∗ ∈ X we define the weak cartesian product

W (X, ∗) = {x ∈ XN : xi = ∗ for all but finitely many i}.

The following lemma is essentially [5, Lemma 6.2] and [6, Proposition 3.6].

Lemma 2.2.

(a) Let X = (Xγ)γ∈Γ be a system in E such that E \
⋂

γ∈Γ Xγ is locally

homotopy negligible in E and let ∗ ∈
⋂

γ∈Γ Xγ . Assume that there exists

a homeomorphism Φ : E → EN satisfying

W (Xγ , ∗) ⊂ Φ(Xγ) ⊂ XNγ

for all γ ∈ Γ . Then X is reflexively universal.
(b) Let X = (Xγ)γ∈Γ be a system in Q such that

⋂
γ∈Γ Xγ is a subset

of s whose complement is locally homotopy negligible in Q and let ∗ ∈⋂
γ∈Γ Xγ . Assume that (Q,X ) has a Γ -imbedding into itself whose image

is contained in s. If there exists a homeomorphism Φ : E → EN satisfying
sN ⊂ Φ(s) and

W (Xγ , ∗) ⊂ Φ(Xγ) ⊂ XNγ

for all γ ∈ Γ then X is reflexively universal rel s.

Let Γ be an ordered set and let Mγ be a collection of spaces for each γ ∈ Γ .
Each Mγ is assumed to be topological and closed hereditary. Let M stand for
the whole system (Mγ)γ∈Γ . Let X = (Xγ)γ∈Γ be an order preserving indexed
collection of subsets of a topological Hilbert cube (Hilbert space) E, i.e. Xγ ⊂ Xγ′

if and only if γ ≤ γ′.
The system X is called M-universal if for every order preserving system (Aγ)γ

in E such that Aγ ∈ Mγ for every γ ∈ Γ , there is a closed imbedding f : E → E

with f−1(Xγ) = Aγ . The system X is called strongly M-universal rel P ⊂ E if
for every order preserving system (Aγ)γ in E such that Aγ ∈ Mγ for every γ ∈ Γ ,
and for every map f : E → E that restricts to a Z-imbedding on some compact
set K, there exists a Z-imbedding g : E → E that can be chosen arbitrarily close
to f with the properties: g|K = f |K, g(E \ K) ⊂ P , and g−1(Xγ) \ K = Aγ \ K
for every γ. If X is strongly M-universal rel E in E then it is simply called
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strongly M-universal. Observe that X is strongly M-universal (rel P ) whenever
X is M-universal and reflexively universal (rel P ). If Xγ ∈ Mγ then the converse
is also true.

The system X is called M-absorbing (rel P ) if

(1) Xγ ∈ Mγ for every γ ∈ Γ ,
(2)

⋃
{Xγ : γ ∈ Γ} is a Z-system of E, and

(3) X is strongly M-universal (rel P ).

The following uniqueness result follows immediately from Theorem 2.1.

Theorem 2.3.

(a) If X and Y are both M-absorbing systems in E respectively E′ then

(E,X ) and (E′,Y) are homeomorphic, i.e. there is a homeomorphism h :
E → E′ such that h(Xγ) = Yγ for all γ ∈ Γ . If E = E′ then the map h
can be found arbitrarily close to the identity.

(b) If X and Y are both M-absorbing systems rel s in Q and
⋃

γ(Xγ ∪

Yγ) is contained in a σ-compactum of s, then (Q, s,X ) and (Q, s,Y) are
homeomorphic, i.e. the homeomorphism h maps the pseudointerior onto
itself.

If the absorbing system consists of just one element X then we say that X is
an M-absorber. A capset is an absorber for the class of compacta. The standard
examples of capsets are Σ in s and Q and the pseudoboundary B = Q\s in Q. An
fd-capset is an absorber for the class of finite-dimensional compacta. Standard
examples are σ in s and Q and

lpf = {x ∈ lp : xi = 0 for all but finitely many i}

in the Banach space lp. The examples of Fσδ-absorbers are ΣN and σN in sN

and QN.
We finish this section with a few useful lemmas. The first concerns Z-imbeddings

(see [6, Lemma 3.2]). Let I denote the interval [0, 1].

Lemma 2.4. Let f and g be functions from a space X into the space E. Let
ε : X → I be a map and let d be a metric on E such that f and g are ε-close
(i.e. d(f(x), g(x)) ≤ ε(x) for x ∈ X) and ε(x) ≤ 1

2d
(
f(x), f(ε−1(0))

)
for x ∈ X .

If f is a Z-imbedding and g|ε−1([δ, 1]) is a Z-imbedding for each δ > 0 then g is
a Z-imbedding.

Recall that since maps into E can be approximated by Z-imbeddings we have
that if f : X → E and ε : X → I are continuous maps then there is a g : X → I
that is ε-close to f and with the property g|ε−1([δ, 1]) is a Z-imbedding for each
δ > 0.

Lemma 2.5. If X is anM-absorbing system in the pseudointerior of the Hilbert
cube Q then it is also anM-absorbing system in Q.

Proof: We only need to look at strong M-universality. Let f be a map from Q
to Q, Aγ an order preserving system from M in Q, and let K be a closed subset
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in Q. We may assume that f is a Z-imbedding with the property f(Q \ K) ⊂ s.
Let d be some metric on Q, let d′ be a complete metric on s with d′ ≥ d, and
let ε : Q → I be an arbitrary map that satisfies the conditions ε−1(0) = K and

ε(x) ≤ 1
2d(f(x), f(K)) for each x ∈ Q. Define the compacta Ki = ε([0, 2−i+1])

for i = 0, 1, 2, . . . . We shall construct inductively a sequence gi : Q \ K → s of
Z-imbeddings with induction hypothesis:

g−1
i (Xγ) \ Ki+1 = Aγ \ Ki+1.

Put g0 = f |Q \K and assume that gi has been found. Since we can imbed Q \K
as a closed subset of s and since Aγ \ int(Ki+2) ∈ M the strong universality of
the system in s implies that we can find a Z-imbedding gi+1 : Q \ K → s that is

(ε2−i−1)-close to gi with respect to d′ and with the additional properties:

g−1
i+1(Xγ) \ Ki+2 = Aγ \ Ki+2,

gi+1|Q \ Ki = gi|Q \ Ki.

Since gi is a Cauchy sequence with respect to d′ we have that g = limi→∞ gi exists.
Obviously, g̃ = g ∪ (f |K) is ε-close to f . Since g̃|Q \ Ki = gi|Q \ Ki we have that
g̃|ε−1([δ, 1]) is a Z-imbedding for every δ > 0. This means that according to
Lemma 2.4 g̃ is a Z-imbedding. One easily verifies that g̃−1(Xγ) \ K = Aγ \ K
for every γ. �

The following lemma is a reformulation of [5, Lemma 6.4] with an identical
proof.

Lemma 2.6. If X is strongly M-universal rel P in Q and Y is a subset of
a compact absolute retract M with a locally homotopy negligible complement,

then (Xγ × Y )γ is stronglyM-universal rel P × Y in Q × M .

3. Function spaces in the topology of pointwise convergence

In this section we prove the Cp(X) parts of the theorems in the introduction.
We first consider spaces with only one accumulation point, which leads us to free
filters on the set N.

Let Fcof stand for the Fréchet filter on N, i.e. Fcof = {A ⊂N : N\A is finite}.
Throughout this section let F stand for an arbitrary filter on N that is free, i.e.
it contains Fcof . Define the following subspaces of s = RN:

cF = {x ∈ RN : lim
F

x = 0}

= {x ∈ RN : ∀ ε > 0 ∃F ∈ F with |xa| ≤ ε for all a ∈ F}

and for n ∈ N,

Xn(F) = {x ∈ RN : ∃F ∈ F such that |xa| ≤ 2−n for all a ∈ F}.

Observe that X = (Xn)n is a decreasing sequence of subsets of RN with the
property that its intersection is cF.
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Proposition 3.1. If F 6= Fcof and cF is absolute Borel then the system X (F) is

Fσ-universal (and hence cF is Fσδ-universal) in R
N.

Proof: We shall use the following fact: if A is an Fσ-absorber in Q and A′ is
a σZ-set then for every σ-compactum C in Q there is an imbedding f : Q → Q
such that f−1(A) = C and f(Q \ C) ∩ A′ = ∅ (cf. [5, Proposition 6.1]).

Since F is not the Fréchet filter we may choose an infinite set N0 ⊂ N whose
complement is in F. According to Lutzer and McCoy [10] there exists a partition
{Pijk : i, j, k ∈ N} of N \ N0 consisting of finite sets such that for every F ∈ F

there is a j ∈ N with
F ∩ Pijk 6= ∅ for all i and k.

Put Ni =
⋃

∞
j,k=1 Pijk and for every i ∈ N define the Hilbert cube Qi =

[−2−i+1, 2−i+1]Ni . For i, j, k ∈ N let πijk be the projection from Qi onto the

finite-dimensional cell Zijk = [−2−i+1, 2−i+1]Pijk . It is easily verified with the
capset characterization theorem in Curtis [3] that

Ci = {x ∈ Qi : ∃ k ∈ N such that |xa| ≤ 2k−a for all a ∈ Ni}

is an Fσ-absorber in Qi. Observe that for every x ∈ Ci we have lima→∞ xa = 0.
Since Pijk is finite the set

Bijk = {x ∈ Zijk : |xa| ≤ 2−i for some a ∈ Pijk}

is compact for every i, j, k ∈ N. By infinite deficiency the compactum⋂
∞
k=1 π−1

ijk(Bijk) is a Z-set in Qi and hence

Di =

∞⋃

j=1

∞⋂

k=1

π−1
ijk(Bijk)

is a σZ-set.
Let A1 ⊃ A2 ⊃ · · · be a sequence of σ-compacta in Q. Let f0 : RN → RN0

be a homeomorphism and let fi : RN → Qi (i ∈ N) be an imbedding such that

f−1
i (Ci) = Ai and fi(Qi \ Ai) does not meet Di. Consider the closed imbedding

f = (fi)
∞
i=0 : RN → RN0 ×

∞∏

i=1

Qi ⊂ R
N.

Let x ∈ An. If i > n then we have fi(x) ∈ Qi and hence all components of fi(x)
are in [−2−n, 2−n]. If i ≤ n then we have x ∈ Ai and hence fi(x) ∈ Ci. Note
that only finitely many components of fi(x) are outside [−2−n, 2−n] and hence
|f(x)a| > 2−n for only finitely many a in N \ N0. This means that f(x) is an
element of Xn(F). If x /∈ An then we have fn(x) /∈ Dn. If F is an arbitrary
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element of F then there is a j ∈ N such that F meets Pnjk for every k ∈ N.

Observe that if fn(x) /∈ Dn then fn(x) /∈ π−1
njk(Bnjk) for some k. Consequently,

we have |fn(x)a| > 2−n for all a ∈ Pnjk. Since F and Pnjk have at least one a in

common we find that f(x) /∈ Xn(F). So we may conclude that f−1(Xn(F)) = An.
�

The following observation is essentially due to R. Cauty:

Lemma 3.2. If (Lγ)γ is a system of linear subspaces of a Fréchet space E such
that

⋂
γ Lγ is dense then we have:

(a) The system (Lγ × E)γ is reflexively universal in E × E.
(b) If E is the pseudointerior s then the system (Lγ × Q)γ is reflexively
universal in Q × Q.

Proof: We prove part (a); the proof for (b) is similar. Let f = (f1, f2) : E×E →
E×E be a Z-imbedding and let K be a closed subset of E×E. Select an F-norm
‖·‖ on E and let d be the metric on E×E that corresponds with the max norm. Let
ε : E×E → I be a map such that ε−1(0) = K and ε(x) ≤ d(f(x), f(K))/4. Since⋂

γ Lγ is a dense linear subspace its complement is locally homotopy negligible

(see [2, Proposition VIII.3.2]) and we can find a map f̃1 : E ×E →
⋂

γ Lγ that is

ε-close to f1. Select now a continuous ξ : E × E → I such that ξ−1(0) = K and
‖ξ(x.y)x‖ ≤ ε(x, y) for each (x, y) ∈ E×E. Observe that the map g1 : E×E → E
given by

g1(x, y) = f̃1(x, y) + ξ(x, y)x

is 2ε-close to f1 and has the property g−1
1 (Lγ) \K = (Lγ ×E) \K. Select a map

g2 : E × E → E such that g2 and f2 are ε-close, g2|K = f2|K, and g2|ε
−1([δ, 1])

is a Z-imbedding for each δ > 0. Put g = (g1, g2) and note that this map is a
Z-imbedding according to Lemma 2.4. The map g is 2ε-close to f and it has the
property g−1(Lγ × E) \ K = (Lγ × E) \ K. �

Throughout the remainder of this section let X stand for an arbitrary nondis-
crete, completely regular, countably infinite space.

Proposition 3.3. If X is not compact then Cp(X) is reflexively universal inRX .

Proof: This follows immediately from Lemma 3.2. Choose an infinite closed
discrete subspace A of X . Then Cp(X) is canonically isomorphic in RX to the

product of Cp(A) = RA and Cp(X ; A) = {f ∈ Cp(X) : f |A = 0}: if r : X → A
is a retraction then

α(f) = (f |A, f − (f |A) ◦ r) for f ∈ RX

defines a linear homeomorphism with the required property. �

A similar argument shows that if X is not compact then Cp(X) is also reflex-

ively universal in R̂X . Since we already showed in [5] that Cp(X) is reflexively

universal in R̂X for every metric X we have that Cp(X) is reflexively universal
in the Hilbert cube for every X .
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Proposition 3.4. If X is not compact and Cp(X) ∈ Fσδ then Cp(X) is an

Fσδ-absorber in R
X .

Proof: We use the method of Dobrowolski, Marciszewski and Mogilski [7]. It is
shown in that paper that Cp(X) if it is Borel is contained in a σZ-set. We have
the following two cases:

I. The space X does not contain a clopen subset with precisely one accumula-
tion point. Then X can be written as a topological sum

⊕
∞
i=1 Xi of nondiscrete

spaces and hence Cp(X) =
∏

∞
i=1 Cp(Xi) ([7, Proposition 6.1]). According to

the proof of [7, Lemma 5.4] the pair (s, σ) is imbeddable in each (RXi , Cp(Xi)).

This means that (sN, σN) is imbeddable in (RX , Cp(X)) and hence Cp(X) is

Fσδ-universal in RX .

II. The space X has a clopen subset A with a unique accumulation point a.
Since X is not compact we may select an infinite closed discrete subset C. Put
D = A∪C and note that since A is clopen and C is closed and discrete, there is a
retraction r : X → D. The neighborhoods of a form a free filter F on D̃ = D\{a}
that is not the Fréchet filter. If f ∈ RD̃ then let f̄ : D → R be the extension
of f with f(a) = 0. Then α(f) = f̄ ◦ r defines a closed imbedding of (RD̃, cF)

into (RX , Cp(X)). Since the first pair is Fσδ-universal (Proposition 3.1), so is
the second.

It follows from Proposition 3.3 that Cp(X) is strongly Fσδ-universal (and hence

Fσδ-absorbing) in RX for every non-compact X . Observe that we did not need
the condition Cp(X) ∈ Fσδ to show strong Fσδ-universality, just that Cp(X) is
Borel. �

This proposition implies that the pairs (RX , Cp(X)) and (sN, σN) are home-
omorphic whenever X is not compact and Cp(X) ∈ Fσδ. This is one direction of
Theorem 1.1.

The other direction is easily seen: if X is compact then Cp(X) is contained in

the σ-compactum consisting of the bounded elements of RX . Therefore Cp(X)

cannot contain a copy of Hilbert space that is closed in RX . On the other hand,
σN contains a copy of s that is closed in sN.

If we combine Proposition 3.4 with Lemma 2.5 and the fact that (R̂X , Cp(X))
was shown to be Fσδ-absorbing for metric X in [5] we find:

Proposition 3.5. If Cp(X) ∈ Fσδ then it is an Fσδ-absorber in R̂
X .

This result was found independently by Baars, Gladdines and van Mill [1].
Combining Proposition 3.5 and Theorem 2.3 we find half of Theorem 1.3.

We now turn to the case of compact X .

Proposition 3.6. The space c0 is an Fσδ-absorber rel s in Q.

Proof: According to [5, Theorem 6.3] c0 is an Fσδ-absorber in Q so it suffices
to show that c0 is reflexively universal rel s in Q. We use Lemma 2.2 (b): if
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Φ : Q → QN = R̂N×N is a map that simply rearranges coordinates then it
obviously satisfies the conditions of part (b) of the lemma with ∗ = 0. Also c0

contains σ so it has a locally homotopy negligible complement.

We now define the imbedding α of (Q, c0) into (s, c0). Let π : R̂ → [−1, 1] be
a homeomorphism with π(0) = 0. If we define for every x ∈ Q and n ∈ N,

α(x)2n−1 = π(xn),

α(x)2n = 2−n min

{
2n, max

i=1,...,n
|xi|

}
,

then α is obviously an imbedding of Q into [−1, 1]N.
First, let x /∈ c0. If x ∈ s then limn→∞ α(x)2n−1 = limn→∞ π(xn) 6= 0 and

hence α(x) /∈ c0. If, on the other hand, xi = ±∞ for some i then α(x)2n = 1 for
every n ≥ i and also α(x) /∈ c0.

Now, let x ∈ c0 and note limn→∞ α(x)2n−1 = π(limn→∞ xn) = 0. Define
the finite number M = maxi∈N xi and observe that 0 ≤ α(x)2n ≤ M2−n for
every n. Consequently, limn→∞ α(x)n = 0 and α(x) ∈ c0. So we may conclude
that α−1(c0) = c0. All the conditions of Lemma 2.2 (b) are now satisfied and the
proposition is proved. �

The following result follows from Lemma 2.6 and Proposition 3.6. Its proof is
identical to the proof of [5, Theorem 6.5]. (Note that a compact X is metrizable
and hence Cp(X) ∈ Fσδ .)

Proposition 3.7. If X is compact then Cp(X) is an Fσδ-absorber rel R
X in

R̂X .

Applying Theorem 2.3 (b) we find:

Theorem 3.8. If X is compact then (R̂X ,RX , Cp(X)) is homeomorphic to
(Q, s, c0).

This proves the Cp(X) part of Theorem 1.2.

4. Sequence spaces

We prove the lp part of Theorem 1.2 and Theorem 1.3.
Let p be an arbitrary positive real number and define the following function

from Q into [0,∞]:

|x|p =

(
∞∑

n=1

|xn|
p

)1/p

.

The subspace lp consists of all x in Q (or s) with |x|p < ∞. Since the expression
|x|p is nonincreasing as a function of p we have lp ⊂ lq whenever p < q. So we
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have an ordered system with index set (0,∞). Our objective is to show that the
spaces

l̃p =
⋂

q>p

lq p ∈ [0,∞)

are Fσδ-absorbers in Q. Since these spaces are contained in the σ-compactum
Σ ⊂ s they cannot be Fσδ-absorbers in s. For this reason we shall use the Hilbert
cube as ambient space rather than s (cf. the case with compact X in Section 3).

We need some definitions. If A is a countable infinite set then we define the
following subspaces of the Hilbert cube R̂A: the capset

Σ′(A) = {x ∈ R̂A : ∃M ∈ N such that |xa| < M

for all but finitely many a ∈ A}

and the fd-capset

σ′(A) = {x ∈ R̂A : xa = 0 for all but finitely many a ∈ A}.

In the standard model Q we put Σ′ = Σ(N) and σ′ = σ(N). The sets Σ′ and σ′

are of course topologically equivalent in Q to Σ respectively σ. Unlike Σ and σ
the have the following property: if x, y ∈ Q differ at only finitely many coordinates
then we have x ∈ Σ′ (or σ′) if and only if y ∈ Σ′ (or σ′). This makes Σ′ and σ′

a superior choice when the ambient space is a Hilbert cube.
It is well known that lp is a capset, i.e. the pair (Q, lp) is homeomorphic to

the pairs (Q, Σ′), (Q × Q, Q× Σ′), and (Q × Q, Q× σ′). The idea is to establish
a connection between the system lp and systems that find their origin in the
topological product structure of the Hilbert cube. This leads to the following
definitions. If A is a countable dense subset of the interval (0,∞) and p is a
positive real number then

Zp = Zp(A) = R̂(0,p]∩A × Σ′((p,∞) ∩ A) ⊂ R̂A

and
ζp = ζp(A) = R̂(0,p]∩A × σ′((p,∞) ∩ A) ⊂ R̂A.

Both (Zp)p and (ζp)p are ordered systems of capsets. Our objective is to show
that the systems lp, ζp, and Zp are in essence topologically indistinguishable, a
result that has the claims made in the introduction as immediate corollaries.

Throughout this section let A be a countable dense subset of (0,∞). Let

a1, a2, . . . enumerate A and let the product topology on RA be generated by the
metric

d(x, y) = max
n∈N

1

2n
|ξ(xan) − ξ(yan)|,

where ξ : R̂→ [−1, 1] is a fixed homeomorphism with the property ξ(0) = 0. Note

that if x, y ∈ R̂A have their first n coordinates in common then their distance is
at most 1/(n + 1).

The following statement is obvious.
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Lemma 4.1. The collections (Zp)p, (ζp)p and (lp)p are Z-systems in R̂
A respec-

tively Q.

Lemma 4.2. The systems Zp and ζp are reflexively universal.

Proof: This proof is similar to the proof of Lemma 3.2. Let f : R̂A → R̂A

be a map that restricts to a Z-imbedding on a closed set K. We may assume

that f itself is a Z-imbedding. Let ε : R̂A → I be a map such that ε(x) ≤

d(f(x), f(K))/2 for x ∈ R̂A and ε−1(0) = K. Let A2 be a sequence in A that

converges to 0 and put A1 = A \A2. Let πi : R̂A → R̂Ai stand for the projection

an put fi = πi ◦ f . Select a map g2 : R̂A → R̂A2 that is ε-close to f2 and with
the property that g2|ε

−1([δ, 1]) is a Z-imbedding for each δ > 0. Select also a map

f̃1 : R̂A → R̂a1 that is (ε/2)-close to f1 and that maps the complement of K into
the fd-capset σ′(A1). Define for every n ∈ N the continuous map χn : I → I by

χn(r) = min{1, max{0, rn − 1}}.

Observe that χn(0) = 0 and that

χn(r) =

{
0, if rn ≤ 1

1, if rn ≥ 2.

We now define the map g1 : R̂A → R̂A1 by

g1(x)an = f̃1(x)an + ξ−1(χn(ε(x)/2)ξ(xan )
)

for x ∈ R̂A and an ∈ A1, where we used the fact that addition is well defined and

continuous from R̂×R to R̂. Put g = (g1, g2) : R̂A → R̂A.

Let x ∈ R̂A. If x ∈ K then we have ε(x) = 0 and hence χn(ε(x)/2) = 0. This
means that g1(x) = f̃1(x) = f1(x) and g(x) = f(x). If x /∈ K then ε(x) > 0
and we can select an n ∈ N such that nε(x)/2 ≤ 1 < (n + 1)ε(x)/2. The
properties of χ guarantee that gai(x) = fai(x) for each i ≤ n with ai ∈ A1. This
means that the distance between g1(x) and f1(x) is at most 1/(n + 1) < ε(x)/2.
Consequently, g and f are ε-close. Observe that g|(ε−1([δ, 1])) is a Z-imbedding
for each δ > 0 since g2 has that property and hence Lemma 2.4 guarantees that
g is a Z-imbedding.

Consider now an x /∈ K. Choose an n with the properties nε(x) ≥ 4 and
f̃1(x)ai = 0 for all i ≥ n with ai ∈ A1 (recall that f̃1(x) ∈ σ(A1)). Then
χi(ε(x)/2) = 1 and g1(x)ai = 0 + ξ−1(ξ(xai )) = xai for all i ≥ n with ai ∈ a1. So
g(x)a = xa for all coordinates in A except possibly those in C = {ai : i < n}∪A2.
Since C is a sequence that converges to 0 we have for every p ∈ (0,∞) that
(g(x)a)a>p differs at only finitely many coordinates from (xa)a>p and hence that
g(x) ∈ Zp (or ζp) if and only if x ∈ Zp (or ζp). �
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Lemma 4.3. The system lp is reflexively universal rel s in Q.

Proof: This is virtually identical to the proof of Proposition 3.6. The only

addition is that the homeomorphism π : R̂→ [−1, 1] should satisfy the condition

π(x) = x for |x| ≤ 1
2 . This guarantees that for every x ∈ s,

∑
∞
i=1 |xi|

p < ∞ if
and only if

∑
∞
i=1 |π(xi)|

p < ∞. �

Proposition 4.4. The system lp is imbeddable in Zp.

Proof: Write A as a disjoint union of A0 and A1, where A0 is a sequence that
converges to 0. Let a1, a2, . . . enumerate A1. Select an imbedding α0 : Q → RA0 .

We define α1 : Q → R̂A1 by

α1(x)an =

(
n∑

i=1

|xi|
an

)1/an

for x ∈ Q and n ∈ N.

Note that 0 ≤ α1(x)an ≤ |x|an . Put α = (α0, α1) : Q → R̂A0 × R̂A1 = R̂A

and observe that α is an imbedding. If x ∈ lq and a ∈ (q,∞) ∩ A1 then we have
α1(x)a ≤ |x|a ≤ |x|q so α1(x)a>q is bounded by |x|q . Since (q, p)∩A0 is finite we
may conclude that α(x)a>q is bounded and that α(x) ∈ Zq. On the other hand
if x /∈ lq then we have |x|q = ∞. Let M ∈ N be arbitrary. There exists an n ∈ N

such that
(∑n

i=1 |xi|
q
)1/q

> M . By continuity in q we can find an ε > 0 such

that
(∑n

i=1 |xi|
r
)1/r

> M for each r ∈ (q, q + ε). Since A1 is dense there is an
m > n with am ∈ (q, q + ε). So we have α1(x)am > M and we may conclude that
α1(x)a>q is unbounded and that α(x) /∈ Zq. �

Proposition 4.5. If ∆ is a countable dense subset of (0,∞) then the system Zp

is ∆-imbeddable in ζp.

Proof: We shall use the known fact that there exists a map v : Q → Q such
that v−1(σ′) = Σ′. This can easily be seen as follows. The product of Q and the
fd-capset σ′ is a capset in Q × Q. Since capsets are topologically unique there is
a homeomorphism h : Q → Q × Q with h(Σ′) = Q × σ′. If we combine h with
the projection onto the second coordinate then we have v.

Let b0 = 0 and enumerate ∆ = {bn : n ∈ N}. Select by induction for every
n ≥ 0 a sequence An ⊂ A ∩ (bn, cn) that converges to bn, where cn ∈ (bn,∞] is
the minimum of the compact set

(bn,∞) ∩

(
{bi : i < n} ∪

n−1⋃

i=0

Ai

)
.

Note that the An’s are pairwise disjoint. Put A′ = A \
⋃

∞
i=0 Ai. Let α0 : R̂A →

RA0 be an imbedding and for n ∈ N let αn : R̂A∩(bn,∞) → R̂An be a map like v
above, i.e.

α−1
n (σ′(An)) = Σ′(A ∩ (bn,∞)).
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We obviously may assume that αn(0) = 0. Define the closed imbedding α : R̂A →

R̂A by

α(x)a∈A0 = α0(x),

α(x)a∈An
= αn

(
(max{0, |xa′ | − n})a′>bn

)
for n ∈ N,

α(x)a∈A′ = 0.

If x /∈ Zbn
then we have that (max{0, |xa| − n})a>bn

is still outside of Σ′(A ∩
(bn, p)). Consequently, α(x)a∈An

/∈ σ′(An) and α(x) /∈ ζp
bn

. Let x ∈ Zp
bn

and let

m be such that |xa| ≤ m for all a > bn that are outside of some finite set C. Let
i be such that bi < bn. If i > n then Ai and (bn,∞) are disjoint and if i < n then
Ai ∩ (bn,∞) is finite. Consequently, we have that (bn,∞) ∩

⋃
{Ai : bi < bn} is

finite and hence these coordinates are irrelevant to the question whether α(x) is an
element of ζbn

or not. Let i be such that bi ≥ bn. If i ≥ m then max{0, |xa−i|} = 0
for a ∈ (bi,∞) \ C and hence we have α(x)a = 0 for every a ∈ Ai \ C. If i < m
then

(max{0, |xa| − i})a>bi
∈ Σ′(A ∩ (bi,∞))

and hence α(x)a∈Ai
is an element of σ′(Ai). So we may conclude that α(x) ∈ ζ

p
bn

.
�

Proposition 4.6. If ∆ is a countable subset of (0,∞) then the system ζp is

∆-imbeddable in lp.

Proof: For technical reasons we shall imbed R̂A into QN rather than Q. Enu-
merate A = {an : n ≥ 2} and ∆ = {bn : n ≥ 2}. Select for every n ≥ 2 a δn

between 0 and an such that [an − δn, an) and {bi : i ≤ n} are disjoint. Define the

continuous map χ : [1,∞) → IN by

χ(t)k = t−1 min{1, max{0, t + 1 − k}} for t ∈ [1,∞) and k ∈ N.

This map has the following properties: |χ(t)|1 = 1 and

χ(t)k =

{
t−1 for k ≤ t

0 for k ≥ t + 1.

Put χq(t)k = (χ(t)k)1/q and note that |χq(t)|q = 1. We now define a se-

quence (αn)n∈N of maps from R̂A into Q. Let α1 be an imbedding of R̂A into∏
∞
i=1[0, 2−i] ⊂ Q and note that the image of α1 is contained in l̃0. If n ≥ 2 and

x ∈ R̂A then put εn = min{2−n+1, |xan |}. The function αn : R̂A → Q is defined
by

αn(x) =

{
εnχan

(
ε
−nan/δn
n

)
for εn > 0

0 for εn = 0.
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Since |αn(x)|p ≤ |αn(x)|an = εn we have that αn is continuous. Noting that

|αn(x)|p ≤ 2−n+1 for each n ∈ N we may conclude that the sequence α =

(αn)n∈N forms a continuous map of R̂A into QN. This function is an imbedding
because its first component α1 is an imbedding.

Assume that x is an element of ζq. This means that only finitely many com-
ponents xan with an > q are nonzero. We have the following estimate for the
q-norm of α(x):

‖α(x)‖q
q =

∞∑

n=1

|αn(x)|q
q

= |α1(x)|q
q +

∞∑

n=2
an≤q

|αn(x)|q
q +

∞∑

n=2
an>q

|αn(x)|q
q

≤ |α1(x)|q
q +

∞∑

n=2
an≤q

|αn(x)|an
q +

∞∑

n=2
an>q

xan 6=0

|αn(x)|q
q.

This expression is finite because |α1(x)|q is finite, because |αn(x)|an = εn ≤
2−n+1 and because the last sum consists of only finitely many terms.

If x is not an element of ζq then there exist infinitely many an > q such that
xan 6= 0. If moreover q ∈ ∆ then all but finitely many of those an’s have the

property an − δn > q. Let an be such a coordinate of R̂A and put t = ε
−nan/δn
n .

Since at least t − 1 terms of χan(t) are equal to t−1/an we have that

|αn(x)|q
q ≥ εn

q(t − 1)t−q/an

≥
1

2
εn

qt(an−q)/an

≥
1

2
εn

qtδn/an ,

where we used t ≥ 2 and q < an − δn. Substituting the value for t we find
|αn(x)|q

q ≥ 1
2εn

q−n ≥ 1 for all but finitely many an’s. This means that infinitely
many of the terms of the series ‖α(x)‖q

q =
∑

∞
n=1 |αn(x)|q

q are at least 1 and
hence that ‖α(x)‖ is infinite. �

If we apply Theorem 2.1 to Lemma 4.1, Lemma 4.2, Lemma 4.3, Proposi-
tion 4.4, Proposition 4.5 and Proposition 4.6 then we obtain:

Theorem 4.7. If ∆ is a countable dense subset of (0,∞) then the systems lp,

ζp and Zp are ∆-homeomorphic, i.e. there exist homeomorphisms α, β : Q → R̂A

such that α(lp) = Zp and β(lp) = ζp for every p ∈ ∆.
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If p ∈ [0,∞) then we define the spaces

Z̃p =
⋂

p<q

Zq ⊂ R̂A

ζ̃p =
⋂

p<q

ζq ⊂ R̂A.

If ∆ is dense then we have l̃p =
⋂
{lq : q ∈ ∆ with p < q}, which observation

produces:

Corollary 4.8. The systems l̃p, ζ̃p and Z̃p are homeomorphic.

Observe that if ∞ = a0, a1, a2, . . . is a decreasing sequence in [0,∞] that
converges to p then we have:

Z̃p = R̂(0,p]∩A ×
∞∏

i=0

Σ′([ai+1, ai) ∩ A)

and

ζ̃p = R̂(0,p]∩A ×
∞∏

i=0

σ′([ai+1, ai) ∩ A).

This leads to:

Corollary 4.9. The pair (Q, l̃p) is homeomorphic to (QN, Σ′N) and to

(QN, σ′N) and hence also to (QN, ΣN) and (QN, σN).

This corollary proves the second part of Theorem 1.3 and it means that l̃p is

just like σN an Fσδ-absorber in the Hilbert cube, which combines with Lemma 4.3
to:

Theorem 4.10. The space l̃p is an Fσδ-absorber rel s in Q and hence the triple
(Q, s, l̃p) is homeomorphic to (Q, s, c0).

The proof of Theorem 1.2 is now complete.
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