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On E%O’Z-regularity for the gradient of
a weak solution to nonlinear elliptic systems
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Abstract. Interior Ci’)’:-regularity for the gradient of a weak solution to nonlinear second

order elliptic systems is investigated.
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1. Introduction

In this paper we consider the problem of the regularity of the first derivatives
of weak solutions to a nonlinear elliptic system

) — Do (A% (Du)) =0, (i=1,...,N)

in a bounded open set 2 C R™. Throughout the whole text we use the summation
convention over repeated indexes.

If n > 3, it is known that Du may not be continuous. Examples are provided
by nonregular solutions of elliptic systems presented by Necas in [8]. Campanato

in [2] proved that Du € leo’? (2, RN) with A(n) < n, and u € C’loo’? (2, RN) for

some a < 1if n = 3,4. In this paper we give sufficient condition on Elzo’g—regularity

for the gradient of a weak solution to (1). Recall that if Du € crn

loc then u is
locally Zygmund continuous.

2. Preliminaries

Let  be a bounded open set in R™ with points z = (z1,...2p), n > 3.
The notation Qy € Q means that the closure of Qg is contained in Q, i.e. Qy C
Q. For the sake of simplicity we denote by | - | and (.,.) the norm and scalar
product in R”, RN and R™N. If € R" and r is a positive real number, we set
B(z,r) ={y € R": |y — x| <r}, i.e. the open ball in R", Q (z,7) = B (z,7) N Q.
By u(2(z,7)) we denote the n-dimensional Lebesgue measure of Q (z,r). A
bounded domain Q C R" is said to be of type A if there exists a constant 4 > 0
such that for every x € Q and all 0 < r < diam € it holds u (Q (z,7)) > Ar™.

Let u: @ — RN, N > 1, u(z) = (ul(2),...,u" (2)) be a vector-valued
function and Du = (Dyu, ..., Dpu), Do = 0/0z4.
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By ug, = = (Q(x,7)) fQ(m,r) u(y) dy = JCQ(LV) u (y) dy we denote mean value
of u over the set Q(z,r) provided that v € L'(Q, RY). Besides usually used
spaces as C§° (Q RN ) the Holder spaces CO@ (ﬁ, RN ) and the Sobolev spaces
H*P(Q, RN), lo’f(Q RN), Hg’p(Q, RN) (see e.g. [1], [6], [7] for definitions and
basic properties) we use the following Campanato and Morrey spaces.

Definition 1 (Campanato and Morrey spaces). Let A € [0,n], ¢ € [1,00). The
Morrey space L9 (Q, RN ) is the subspace of such functions v € L? (Q, RN ) for
which ||1L||%%A(Q RN) = sup{r—* fﬂ(ﬂw) lu(y)|? dy: r >0,z € Q} is finite.

Let A € [0,n+q], ¢ € [1,00). The Campanato spaces £ (Q,RN) and
E‘f’)‘ (Q, RN) are subspaces of such functions u € L9 (Q, RN) for which
[u]ng,A(QﬂN) = sup{r—* fQ(w,r) lu(y) — ey |? dy: v > 0,2 € Q} is finite and

q _ : —-A _ q . . ;
[u]ﬁ‘{'*(Q,RN) = sup{inf{r fﬂ(l‘ﬂ“) lu(y) — P(y)|? dy: P € P1}:r >0,z € Q} is
finite. Here P is the set of all polynomials in n variables and of degree < 1. Let us
denote [ul|po, llullgar = llullpe +[ulzor and [lull sox = [lull Lo, mvy + [l ggr-

Remark 1. It is worth to recall a trivial however important property saying that
Jolu— uq|? dz = min{ [, [u — ¢ dz: c € RN} for every u € L2 (Q,RN).

Definition 2. The Zygmund class Al (ﬁ, RN ) is the subspace of such functions
u e C° (ﬁ, RN) for which [U]Al(ﬁ,RN) = sup{|u(z) + u(y) — 2u ((z +y)/2)|/
|z —y|: 2y, (x +y)/2 € Q} is finite.

For more details see [1], [4], [6], [7]. In particular, we will use the following result.

Proposition 1. Let Q2 be of type A and 1 < g < co. Then it holds
a ’ , , LD , an ’ , equipped with norms
L9 (9, RN), £9* (2, RN) and £9 (2, RN) equipped with
[ullgaxs [[ull cax and [[u]| .q,x are Banach spaces.
1
(b) LA (Q, RN) is isomorphic to the C% (A=n)/q (QRN) ifn<A<n+gq,
(c) L%™ (Q,RYN) is isomorphic to the L™ (@, RN) C £¢" (Q, RY),
(d) £ 2 2 (2, RN) is isomorphic to the A (2, RN)
() co (L RN) c AL (Q,RY)C N €% (Q,RY).
0<axl
Further, we suppose

(i) there is an M > 0 such that for every p € R™Y

(2) [AF ()| < M (1+ |p]),
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(i) A(p) are differentiable functions on R™Y with the bounded and contin-
uous derivatives, i.e.

DA
o

(iii) the strong ellipticity condition, i.e. there exists v > 0 such that for every
p,é € RMN

(p)| <M for every p e R™,

3)

DA
o

(4) (p) 6487 > Vg2,

From (ii) it follows (see [3, p.169]) the existence of a real function w(s) de-
fined on [0, 00), which is nonnegative, bounded, nondecreasing, concave, w(0) = 0

(moreover, w is right continuous at 0 for uniformly continuous 9A$/ szg) and
such that for all p,q € R™V
0AY 0AY

— w — 2 .
(5) o ® o @S (Ip—a?)

By a weak solution of (1) we mean a function u € H? (2, RN) satisfying

(6) A (Du) Do daz =0
/

for every ¢ € Hé’Q (Q, RN).
We will also consider the pair of complementary Young functions

t/a for 0<t<1,

7y ®(t)=tlnyat for t >0,  W(t) =
() @)= tlnpat for ¢ > (0 {et_l/a ey

where @ > 0 is a constant, Iny at = 0 for 0 < ¢ < 1/a and lnt at = Inat for
t > 1/a. Recall Young’s inequality
ts < ®(t) + ¥(s), ¢,s>0.
For our consideration we also need to introduce quasiconvex functions.

Definition 3 ([5, p.4]). A function G: [0,00) — R is said to be quasiconvex
(quasiconcave) on [0, 00) if there exist a convex (concave) function g (§) and a
constant ¢ > 0 (¢ > 0) such that

9(t) < G(t) < cglet), (3(t) < G(t) < Eglet)) for t>0.
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Next, we will need the following properties of quasiconvex functions:

Lemma 1 ([5, p.4]). Let us consider three statements:
(a) G(t) is quasiconvex (quasiconcave) on [0, 00);
(b) for all t1,tg € [0,00) and all A € (0,1)

G(At1+ (1= Nt) < ki1 (AG (kit1) + (1= X) G (kitz))

(AG (1) + (1= N G (t2) < UG (Il (Nt + (1= W) 12)) )

(c) there exists a constant ka (l2) such that for all u € Ll200 (2, RYN) and all
balls B (z,r) C Q2

G( ][ |u|2dy)§k2 ][ G(k2|u|2) dy,

B(z,r) B(z,r)
( ][ G(|u|2) dyglgG(lg ][ |u|2dy)).
B(z,r) B(z,r)

Then (a) = (b) = (c).

Proposition 2. For all u,v € L? (Q,RN), all balls B (z,r) C Q and an arbi-

loc
trary nondecreasing quasiconvex function G on [0,00) we have

(a)
/ G(|u+v|2)dy§%(/ G (4ky [ul?) dy + / Gty o) dy).

B(z,r) B(z,r) B(z,r)

(b)
/G(‘u—u%r‘z)dygcl / G(02|u—0|2)dy,

B(z,r) B(z,r)

where ¢ = max{k1/2, ka}, co = max{4ki,4k1ka} and ¢ € R is arbitrary.
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PRrROOF: (a) It follows from Lemma 1 (b).
(b) From (a) we get

k
/G(‘u—uw,r|2) dy < %(/G(Zlkl |u — c|2) dy + /G(4k1 |c—ux,r|2) dy).

BT B'r BT

Now, by means of Holder’s inequality and Lemma 1 (c)

/G(4k1 ‘c — u%r‘z) dy = u(By) G(4k1 |c— ux,r|2)

By
_ 2 o 4kq 2
—u(Br)G(4k1 c— ][U(y) dy’ ) —H(BT)G(W /(u(y) —C)dy’ )
B B
<n(B)6( ]l4k1 uly) — cf? dy) < ks / G (kiks Ju(y) — cf?) dy
B, By
and the result follows easily. O

Lemma 2 ([9, p.37]). Let ¢: [0,00] — [0,00] be a monotone function which
is absolutely continuous on every closed interval of finite length. If v > 0 is
measurable and E(t) = {x € R™: v(z) > t}, then

[e.e]

/ povds — / W(E®) (1) dt.

R" 0

Proposition 3. Let v € L? (Q,R™), B(z,0) C Q, a > 0 and s € [1,00) be

loc

arbitrary. If the inequality

][ |v—vx,m|2dys][ v — v |2 dy
B(z,r0) B(z,0)

holds for some 7 € (0,1), then there exists a constant b such that

In% (ajv — v 2 dygb][ S (alv —veol?) dy.
]LB(Z‘,TO') +( | :E,To| ) B(z,0) +( | :B,0| )

For the constant b we have the following estimate

—1
b<h ]L v—vmﬁzdy) <][ In% (a v—vm7g2 dy) ,
< B(z,0) ’ ’ B(z,0) N ( ’ ‘ )
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where h(t) = (s/e(s — 1)) Dat, ¢ € [0,e/"Y/a] and n¥ =Y (at), t €
(e/6=1) Ja, 00).

Proor: Weset E.,(t) = {y € B(z,70): [v—vg7¢|? >t} fort > 0and0 < 7 < 1.
From Lemma 2 and by means of integration by parts we get

S T ns1(q
]L In% (a|v - ”TU|2) dy = 2(Bro) / 1 (Erq (1)) ™ (at) t( ) dt
Bro i 1/a
s Ins~1(at) t >
- [ [ L) ay
0 1/a
S o t lns_l(at) _ (s _ 1) lns_z(at)
M(BTJ) / //L(ETU(/\)) dX 2 dt.
1/a 0

For the sake of simplicity we put V, = JCB(m ") ”U — Ux7r’2 dy. The first integral
is zero and on the second integral we can use the mean value theorem for the
integrals and we have for some 1/a < &4, £ < 00,

o0
Ins~1(at) — (s — 1) In°2(at
][ In% (a|v - vm|2) dy = sVro / (at) (t2 ) (at) dt

B‘ro’ 57"7
sln*~1 (a&ro) & n*alry) Vo ]L 9
= V=" 277 7 4L 1nf (av—v d
[ TOo o lns_l(afg) v, + ( | x,o| ) Y
=b(r) ][Inﬁ_ (a|v - vx,g|2) dy.
Bs
Now the result follows from Lemma 1 (c). O

3. The result
For x € Q, r > 0 we set U, = U(z,r) = fQ(x ") | Du — (Du):(;ﬂn’2 dy, dy =
dist(z,00Q) and oy, = p (B(0,1)). We define So = {z € Q: lim, o4 U(z,7) > 0}.

Remark 2. Let u be a solution of (1). It is well known (see [9, pp. 75, 122]) that
lim, 0+ U(x,7) = 0 for all x € Q\ E where n — 2 4+ 8 dimensional Hausdorf
measure H"2T8(E) = 0 for every 3 > 0.

Now we can formulate the main theorem.
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Theorem. Letu € H? (2, RN) be a weak solution to the nonlinear system (1)
under the hypotheses (i), (ii), (iii). Let « € Sy be arbitrary and suppose that
there exists d € (0, dz/2) such that

_ 2 1-1/q
Klow? a/(q-1) ( Haw? | Du — (Du)g a4] 1,
(3) =2 (v ][ @D ( T ) dy <7

B(z,2d)

where K = ¢(n,N,q) (M/v)8, 7 = (2"5A)=1/2 Iy, A are the constants from
Lemma 1(c), Lemma 3, w = w(2"aUsg), w is from (5), C = 2"~ 827" /o, A
and b is the constant from Proposition 3 for the case a = 1/CUyy, 0 = 2d,
v = 2y/lowDu, s = q/(q — 1) where q € (1,n/(n — 2)]. Then there exists a ball
B(x,75) C Q such that Du € L% (B(z,75), R™Y) and

©) [Pl (), o)
< max{2" (447" 4+ 1)Usq, p~*(Bag) [ |Du — (Du)q|? da}.
Q

Proposition 4. Set weo = limy oo w(t), Vi = ¢1 (M /)38 (woo /v)? and Vo =
co (M /)"0 (woo /1)2. If

(10) Va<el &g VAV YT <1 or Va> el & VT, < 1,

then condition (8) holds for every x € Sy. Here g € (1,n/(n—2)], ¢c1 = c1 (n, N, q)
and cg = c3 (n, N).

PRrROOF: Let x € Sg and d € (0,dy;/2) be arbitrary such that U (z,2d) > 0.
From Proposition 3 it follows that the left hand side of (8) is equal or less than
Klow2 h1=1/a (4w§oU2d) /v2. From the definition of the function & (t) and as-
sumption (10) it follows that (8) is satisfied.

(]

Example. We can consider the system (1) for n = 3, N = 2 where A% (p) =
(a 0ij0ag + bdindjg arctan |p|2 /271') pé, a, b are constants, 0 < b/6 < a. We have

HA y
L (p)EEL = (a—b/6) €[, VEpe RS,
Bpﬁ

Woo < b and BA?/Bpé (p)‘ < M = a+b. Setting P = b/a we get that V] <

461P2 (1 _|_P)3n+8/(1 _ P/6)3n+10, Vo < 402P2 (1 + P)3n+6/(1 _ P/6)3n+8
and it is not difficult to see that (10) is satisfied for P sufficiently small.
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Corollary 1. Let g € Q be arbitrary and of type A and the assumptions of
Theorem be satisfied for every x € Q29NSy. Then there are constants U, dy,rg > 0
such that Du € L>" (Qo, R"N) and the following estimate

[Duffan (g vy < max{2"(4A7" + 1)U,

5 (Bagy) / Du — (Du)g)? d,
(11) b

(Arg)_l /}Du — (DU)Q()’z dr}
Qo

holds.
PROOF: From Remark 2, Theorem and the definition of the set Sy it follows that
for every x € Qg there exists B(z,7;) C  such that Du € £2™ (B(z,r;), R™V).
As Qg is the compact set and the system balls {B(z,7;)} covers of o we can
choose a finite subcover {B(x;,re;)}TL;. If we set U = max{U(j,2dz;): 1 <
j<m}, rg= min{rxj: 1<j<m}anddy= min{dxj: 1 < j < m}, then the
estimate follows from Remark 1. O
Corollary 2. Let the assumptions of Corollary 1 be satisfied. Then u €
AL (@, BN,
PRrROOF: It follows from Proposition 1 (d), Poincaré’s inequality and Corollary 1.

O

4. Lemmas

The statement of the following lemma is well known (see e.g. [1], [3], [7], [8])-
Lemma 3. Letv € HY? (2, RN) be a weak solution to the system (1) satisfying
(i), (ii) and (iii), where QA / Bp% are the constants. Then there exists a constant

A =c(n,N)(M/v)® such that for every z € Q and 0 < o < R < dist (x,09Q) the

following estimate holds
o

n+2
/ Do) = (Dv)ao*dy < A (%) / (D (y) = (D), | dy.

B(z,0) B(z,R)

The following lemma is possible to derive by the difference quotient method
(see e.g. 1], 3], [7], [8))-
Lemma 4. Let u € H2 (Q, RN) be a weak solution to the system (1) satisfying
(i), (ii) and (iii). Then u € Hl20’02 (QRN) and for allz € Q, 0 < 0 < 9 <
dist(z,08)) we have

2
/ |D2u|2dy§% / |Du— (Du),,, [2dy.

B(z,0) B(z,0)
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Lemma 5 ([6]). Let 1 <p, g <oo,p ' —¢ ' <n"! R>0,z¢& R" Then for
ue HY (B(z,R) ,RN) we have

([ wor dy>1/q

B(z,R)

1/p
e (me [ as [ amra)
B(z,R) B(z,R)

where ¢ = ¢(n, N, p, q) is a constant independent of z, R and u.

Lemma 6. Let u € H'? (Q,RN) be a weak solution to (1) satisfying (i), (ii)
and (iii). Then for every ball B (z,2R) C Q and an arbitrary constant a > 0 we
have

/ ’Du— (Du)x7R’2ln+(a‘Du— (Du)x7R‘2) dy
B(z,R)

M /(a-1) o\
- /9~ _
<c ( > ) <][B(m,2R) In’Y (4a ‘Du (Du)x,gR’ ) dy)

2
/ |Du — (Du)y 2r|” dy,
B(z,2R)
where 1 < ¢ <n/(n—2) and ¢ = c(n, N, q).
PROOF: Let z € Q and 0 < R < %dist (x,00). We denote Bp = B (z,R) for
simplicity. From Lemma 4 it follows that Du € H 110’02 (Q,RN ) By means of
Sobolev’s imbedding theorem H1:2 (BR, RN) — L® (BR, RN), where Br C €2 be

arbitrary and 1 < s < 2n/(n — 2). From this we obtain by Proposition 2 (b) and
Lemma 5

[ 1w~ (Dwalin (a1Du - (Du)r) dy

Br
<4 [ |Du~ (Duynl* . (10|Du~ (Duanl?) dy
Br
1/q J(g—1) 1-1/q
< 4(/ |Du — (Du)2R|2q dy) (/ lni a (4a|Du — (Du)23|2) dy)

Br

Br
2
ScRn(l/q_1)+2(R_2/|Du—(Du)2R|2+ / ’Dzu’ dy)x
Br Br
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1-1/q
< (/ /™Y (40| Du — (Du)on ) dy)
Br

M2 “n(1-1/q) 2
<cl— ) R a /|Du—(Du)gR| dy x

v
Bar

X (/ lni/(q_l)(4a|Du— (Du)2R|2) dy) i

Br
and we finally obtain the result. (Il
5. Proof of Theorem
Set, AT (¢) = 9AS /0pl, (0), ALY = AT (Du)p),

1
. / A28 ((Du) g+t (Du — (Du) ) dt,
0

Br = B(x,R) and Ug = U(z, R) for simplicity. Then the system (1) can be
rewritten as

Do (455D’ ) = =Da (455 = 45) (Dov’ = (D) ).
Split v as v + w where v is the solution of the Dirichlet problem
~ Do (A54Dgv?) =0 in B
v—ue Hy? (Bgr,RN).
For every 0 < ¢ < R from Lemma 3 it follows
2 o\nt+2 2
[1pe— o), Pay < a (7)™ [ 100 = (D) 2 dy,
Bo Br
hence

+2
(12) /|Du—(Du)0|2dy§2A (%)" /|Dv—(Dv)R|2dy+2/|Dw|2dy.
B, Br Br

Now w € Hé’Q (BR, RN) satisfies

[ o= [ 55 7]~ (00 ]

Bpr Br

1/2 1/2
<| [« (1pu- wal) 1Du= DueP dy | | [ 1D dy
Br

R
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for any ¢ € Hé’Q (BR, RN), where w is from (5). Hence, choosing ¢ = w, we get

V2 / |Dwf? dy < / w? (|Du = (Du)g 2) |Du = (Du)  [* dy.

B Br

Now applying the Young inequality (with the complementary functions (7)) on
the right-hand side, we obtain for every ¢ > 0

(13) 2 / |Dw|* dy < e / |Du — (Du)p|* In (a£|Du— (Du)R|2) dy

Br Br
+g/ew%ﬂ/a_1dy,
a

Br

where w?% = w?(|Du — (Du)g|?).

From (12) and (13) it follows
+2
(19 [ 1Du= Dty <44 (5)" [ 1Du= D) ay
Bs Br

L 224+1) (

= a/|Du—(Du)R|2ln+ (aa|Du—(Du)R|2) d

Br
2
+a/ew?z/€—1dy>,

Br
We can estimate the right-hand side by means of Lemma 1 (c) (for the quasicon-
cave case), Lemma 6 and we get

o n+2
/ |Du — (Du)y|? dy < 44 (Tz) / \Du — (Du)g|? dy
B, Br

9 1-1/q
AN o (M) (w0 (sactpu— D) )
Baor

2
/ |Du — (Du)apl|* dy + —— O‘"R lzw%UR)/e—l]'

Bar

14

Setting

0= [ IDu=(Du), P dy,
By
1-1/q

Fz(t) = ][lnz_/(q_l) (4a5|Du — (Du), |2) dy ,
Bt
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we can rewrite the previous inequality as follows:

(15) o(o) <44 (2)"" o(R) + 55 P 2R)0(2R)

2404 A 2 (9n _
4 #elgw (2 ngUgR)/E an,

where K = ¢(n, N, q) (M/v)8. From the assumptions of Theorem it follows that
there exists d € (0,dy/2) such that (8) holds. Now we are going to prove that

(16) & (27’%1) < 71 (2d)

for every natural number k and 7 = (2"5A4)71/2, Let k = 1. If we put in (15)
a=1/CUsq, e = 1ow?(2"Us4),0 = 27d and R = d we get

4
Klo? 1o odyo(ad) + 2omd

Klgw

p(2rd) < 2" ATT20(d) +

CUsyd"

< on A Arnt2p(9q) + 22 p1-1/ap (24)p(2d) + ET%(M)

1 1
Thus (16) holds for k = 1. Consequently Us,q < Usg and by means of Proposi-
tion 3 we have Fr (2rd) < b*~1/1F; (2d).

Let us suppose that (16) holds for £ > 1. Similarly to consideration above we
have Uy_xy < Usg and Fr (2de) < b!=1/4F. (2d). We will show that (16) holds

for k4 1. Setting a = 1/CUsq, € = low?(2"Usy), 0 = 27F+t1d and R = 7Fd in
(15) we obtain

2
KB b orkdyg(2rhd)

b2 H1d) < 2 A2 (rha) +

4
%eWZ(zanUzrkd)/wz (2"12U2d)_17-knOU2ddn
14

< ontipmt2y (Zde

2
)+ £ lz‘“ Fz(2r%d)p(27%d) + ir(’““)"(b(Zd)

Klgw

< 2n+4A7_n+27,kn¢ (2d) + D02W - 1/qF5( )Tkn(b(Qd) + ET(k—i-l)n(b(Qd)

< (2n+4AT2 + i + i) rktng(2d) = rkFDng(24),

Let us consider the two possibilities:
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(a) if 7 <t <1, then t7"¢ (td) < 77"¢ (td) < 77" supe(r,1) ¢ (td) and also
(17) op@d) < | 7™ sup ¢(¢d) | t"
te[r,1)
(b) if 0 < t < 7, then there exists natural k > 1 such that 7+1 <t < 7%, From

Proposition 3, (8), (16) and (15) with a = 1/CUsg, € = law?(2"aUsg), o = td
and R = 7%d we have

ot1d) = o ( 5+

<44 (%)HH ¢ (de) + %Fg(%'kd)d) (ngd)

4
L2 O‘ZAelng(2”l2U27_kd)/€—17_kndn
av

n+2
gy <) o KEEpvan oo g o

24oznA

+ CUpgr"™d"

V
t\""?
<[44 (—k) 7 (D) 6 (2d)
T

n+2
< <4AT—" (%) + 1) 7B G (2d) < (4AT7" +1) 176 (2d) .
T

In both cases (17) and (18) we obtain
t7"p(td) <ec, te(0,1],

where ¢ = max{7™" sup;c-,1) ¢ (td), (4AT7" +1)¢(2d)} = (4A77" + 1)¢(2d).
Let 0 < r < dist (B (z,15),08). Hence U(y,r) is uniformly continuous for fixed
r in B(z,ry) C Q. According to Proposition 3, the expression

Klpw? (b][ o/ 1)(412w2\Du—(Du)yr\2)dz)1‘1/q
Z B(y,r) o CU (y,r)

is also uniformly continuous with respect to y in B (x,r;) and we arrive at the
conclusion. ]
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