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A note on Banach spaces with (!-saturated duals

DENNY H. LEUNG

Abstract. It is shown that there exists a Banach space with an unconditional basis which
is not cg-saturated, but whose dual is ¢!-saturated.
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Let F and F be Banach spaces. We say that E is F-saturated if every infinite
dimensional closed subspace of E contains an isomorphic copy of F. In [2], it is
shown that there exists a cg-saturated Banach space with an unconditional basis
whose dual contains an isomorphic copy of ¢2. In this note, we give an example
where the dual situation occurs. It is shown that there is a Banach space with
an unconditional basis which contains an isomorphic copy of 2, and whose dual
is ¢1-saturated.

We follow standard Banach space terminology as used in [3]. Our example is
a certain subspace of the weak L2 space L2’°°[0, 00). Recall that this is the space
of all measurable functions f on [0, 00) such that

1) 1£1l = sup (M| f] > )2 < oo,
c>0

where A is the Lebesgue measure on [0,00). Although equation (1) only defines
a quasi-norm on L?°°[0,c0), it is well known that it is equivalent to a norm on
L?°[0, 00), and that L2°°[0, c0) is norm complete. The reader may consult [4] for
further information concerning the family of Lorentz spaces, of which L%°°[0, o)
is a member. Finally, for a measurable function f, we let f* be the decreasing
rearrangement of | f|, as defined in §2a of [4].

Proposition 1. For each n € N, define

it = {

min(2"/2,(t —n+1)"Y2) if n—1<t<n,

0 otherwise.

Then for any m € N, and any sequence of scalars (an),

L)< | omn] = (L)

n=1
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where || - || refers to the quasi-norm defined by (1).

PRrROOF: Given a scalar sequence (an);";, let a = max{|ap|: 1 < n < m}, and
suppose this maximum is attained at ng. Let N be the set of all natural numbers
< m such that a, > 271/2q If0 < ¢ < a, and n € N, then ¢ < 2”/2an. Hence
Mlan fn| > ¢} = min(a2 /c?,1). Therefore,

| S0t = sup (A 3 fautul > })*
n=1 neN

0<c<a

1/2
= sup ( Z min(a%,cz))
0<c<a neN

(2 a)”

neN
If1<n<m,and n¢ N, then a, < 2-7/2¢. Thus
m
Z a%§a222_"<a2.
1<n<m n=1
n¢N

Hence

1 n=1 1<n<m
n¢N
m
1/2
2 (L)
n=1

I
/
|
A
S
I

Clearly, || >0 1 anfnll = llang froll = lane| as well. This proves the first half of
the inequality. Observe that for any ¢ > 0,

A{]éanfn‘ >c} _gmm > la—il}géiai.

n=1
The second half of the inequality follows. O

Forn € N,and 1 < j <27, let g, j be the characteristic function of the interval

[n—1+(j—1)27",n—14427"). Let E be the closed linear span of the sequence

(gn,j)?ll o 1- Clearly (9n,j)?i1 ©°_1 is an unconditional basis of E.
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Proposition 2. The space E contains an isomorphic copy of ¢2.

ProoF: Recall the sequence (f) defined in Proposition 1. For each n, let

hn = ?21\/2"/]'9”7]‘. Then 0 < hy < fn < V2hy, for all n. It follows
from Proposition 1 that the subspace [{hy,}] of F is isomorphic to 2. O

It remains to show that E’ is (!-saturated. Let F be the closed subspace
of L>*°[0,00) generated by L' N L. It is well known that F’ is canonically
isomorphic to L2’1[0, 00), where the latter is the space of all measurable functions

f on [0,00) such that
_ [ @
e = [~ <o,

Let X be the o-algebra generated by the sets [n — 1+ (j —1)27", n— 14 j277),
1 <37 <2" n e N. Then clearly E is the subspace of I’ consisting of all X-
measurable functions. It follows easily that E’ can be identified canonically with
the subspace of L?1[0, 00) consisting of all ¥-measurable functions. Now if G is
a subspace of E’, then it contains a basic sequence equivalent to a normalized
disjointly supported sequence (uy,) in L?1[0,00). By [1, Corollary 2.4], [{un}],
and hence G, contains a copy of /1.

We end this note with the following problem.

Problem. Suppose FE is a Banach space (with or without an unconditional basis)
such that £’ has the Schur property. Is E necessarily cg-saturated?
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