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Sequential closures of o-subalgebras for a vector measure

W.J. RICKER

Abstract. Let X be a locally convex space, m : ¥ — X be a vector measure defined
on a o-algebra ¥, and L'(m) be the associated (locally convex) space of m-integrable
functions. Let X(m) denote {x;E € X}, equipped with the relative topology from
L'(m). For a subalgebra A C X, let A, denote the generated o-algebra and As denote
the sequential closure of x(A) = {x,;E € A} in L!(m). Sets of the form A, arise in
criteria determining separability of L!(m); see [6]. We consider some natural questions
concerning A and, in particular, its relation to x(.As ). It is shown that As; C %(m) and
moreover, that {E € 3;x, € A,} is always a o-algebra and contains A,. Some proper-
ties of X are determined which ensure that x(As) = As, for any X-valued measure m
and subalgebra A C 3; the class of such spaces X turns out to be quite extensive.
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Let X be a locally convex Hausdorff space (briefly, IcHs), ¥ be a o-algebra
of subsets of some set 2 and m : ¥ — X be a vector measure (i.e. m is o-
additive). Associated with m is a IcHs L'(m) of m-integrable functions. Just as
for scalar measures, an important property is the separability of L!(m); see [6].
In particular, if ¥(m) denotes the subset {x,; E € £} of L!(m), then one criteria
which ensures the separability of L'(m) is the existence of a countably generated
o-algebra ¥y C ¥ such that X(m) = X¢(m), [6, Proposition 2]. So, the idea is to
look for algebras of sets A C X, hopefully countable, such that the generated o-
algebra A, satisfies Ax(m) = X(m). A closely related set is the sequential closure,
As, of the set x(A) = {x; E € A}, formed in the topological space L!(m). It is
always the case that x(Ay) C As and, if the range, m(X) = {m(E); E € X}, of
m is metrizable for the relative topology from X, then actually As; C ¥(m) and
x(As) = As, [6, Proposition 3].

The purpose of this note is to consider the following questions.

(A) Is it always the case that As is a sequentially closed subset of ¥(m), rather
than just of L(m)?

(B) Is {E; x,, € As} actually a o-algebra and is it contained in %7

(C) Is it always the case that x(Ay) = As?

The first question was raised in [6, Remark 5 (i)]. It will be shown that Ques-
tions A & B have an affirmative answer. The final section is concerned with
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Question C. By the remarks above x(Ay) = As whenever X is a Fréchet lcHs or
has the property that bounded sets are metrizable (e.g. the strict inductive limit
of a sequence of Fréchet spaces). It will be shown that Question C has a positive
answer in a much larger class of lcH-spaces.

1. Preliminaries

Let X be alcHs and m : ¥ — X be a vector measure. A Y-measurable function
f: Q — C is called m-integrable if it is integrable with respect to the complex
measure (m,z’) : B +— (m(E),2’), for E € ¥, for every 2’ € X’ (the continuous
dual space of X) and if, for every E € X, there exists an element of X, denoted
by [z fdm, which satisfies ([, fdm,2') = [ fd(m, '), for every 2/ € X'. The
linear space of all m-integrable functions is denoted by L(m). Let P(X) denote
the family of all continuous seminorms in X or, at least enough seminorms to
determine the given le-topology 7 in X. Each ¢ € P(X) induces a seminorm
g(m) in L(m) via the formula

(1) g(m) : f — sup{ /Q Fldlm, ) €U, f e Lm),

where |v| denotes the total variation measure of a complex measure v : ¥ — C
and Ug C X' denotes the polar of the closed g-unit ball Uy = ¢~1([0,1]). The
seminorms (1), as ¢ varies through P(X), define a lc-topology 7(m) in L(m). Since
7(m) may not be Hausdorff we form the usual quotient space of L(m) with respect
to the closed subspace ﬂqep(X)q(m)_l({O}). The resulting Hausdorff space (with

topology again denoted by 7(m)) is denoted by L'(m); it can be identified with
equivalence classes of functions from L(m) modulo m-null functions, where a
function f € L(m) is m-null whenever fE fdm =0, for every F € ¥. All of the
above definitions and further properties of L!(m) can be found in [4].

Let X(1m) denote the subset of L!(m) corresponding to {x,; E € X} C L(m).
Elements of X(m) will be identified with equivalence classes of elements from X.
The topology 7(m) of L(m) induces a topology on ¥(m) by restriction (again
denoted by 7(m)).

Let A be a topological Hausdorff space and Y C A. Then [Y] denotes the set
of all elements in A which are the limit of some sequence of points from Y. A
set Y C A is called sequentially closed if Y = [Y]. The sequential closure Y s, of
a set Y C A, is the smallest sequentially closed subset of A which contains Y.
Alternatively, let Yy =Y. Let ;1 be the smallest uncountable ordinal. Suppose
that 0 < a < € and that Y has been defined for all ordinals 3 satisfying

0 < 3 < a. Define Yy = [Up<g<a¥3). Then Y = Up<q<, Ya-

2. Questions A and B

Throughout this section X is a IcHs. Given a vector measure m : ¥ — X and
a R-valued function f € L(m) we define A(f) = {w € Q|1 — f(w)| < %}
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Lemma 1. Let f € L'(m) be R-valued. Then, for every E € %,

|XE _XA(f)| < 2|XE - f|

PRrOOF: follows from the identity |x, — Xpz| = Xgap, valid for every E, F € %,
where EAF = (E\F) U (F\E). O

Proposition 1. Let m : ¥ — X be a vector measure. Then ¥(m) is a 7(m)-
closed subset of L'(m).

PRrROOF: Given any f € L!(m) and E € ¥, Lemma 1 implies that
IXe = Xareory | < 2Ixe — Re(f)| = 2|Re(x — ) < 2Ixg — /.
These inequalities and (1) show that
(M) (X = Xacre(ry)) < 2a(m)(xz — f),  q€PX).

It follows that if {x,,} is a net in X(m) which is 7(m)-convergent to f € LY(m),
then f =X, p. () andso f € S(m). O

Remark 1. (i) An affirmative answer to Question A is now immediate from
Proposition 1 and the fact that x(.A) C ¥(m) with As being the sequential closure
of x(A) in L*(m).

(ii) For the particular case of A = ¥, Proposition 1 implies that As = X(m) is
not just sequentially closed in Ll(m) but, is actually closed. This is not typically
the case for a proper o-subalgebra A C 3. For instance, let X = C [0.1] denote
the vector space of all C-valued functions on Q = [0, 1] equipped with pointwise
operations. Then X is a (complete) lcHs for the topology 7 of pointwise conver-
gence on 2. Let ¥ denote the o-algebra of all subsets of 2 and define a vector
measure m : X — X by m(E) = xp, for E € . It turns out that every function
f : Q — C belongs to L'(m) and [ fdm = xf, for E € ¥. The topology
7(m) is the topology in L'(m) of pointwise convergence on Q. Let A C ¥ be the
o-algebra of all Borel sets. Then Ag = x(A) which is clearly sequentially closed
in L!(m) but, is surely not closed. O

The answer to Question B is provided by the following

Proposition 2. Let m : ¥ — X be a vector measure and A C ¥ be an algebra
of sets. Then {E;x, € As} is a o-subalgebra of 3 and contains Ay-.

PROOF: Define Ay = x(A) C X(m) and A; = [Ag]. Let x, € Ay, say xp, =
lim x,,,, where E(n) e Aforn=1,2,---. Since x, — Xy = Xpmye — Xges f0T
alln=1,2,..., it follows from (1) that

a(m)(Xge = Xpmye) = 4(mM)(Xg — Xpy): ¢ € PX).
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Accordingly, X () = Xpe in X(m). Hence, x ;. € A1 whenever x, € Aj.

Suppose also that x, € A and F(n) € A, for n = 1,2,---, are sets such
that x ., — Xy in X(m). Since A is an algebra F(n) N E(n) € A, for each
n=1,2,.... Moreover,

IXznr — XE(n)mF(n)| <Ixg — XE(n)|XF +IxF — Xp(n)|XE(n)
and hence, for each ¢ € P(X),

q(m)(Xprr — XE(n)nF(n)) <q(m)((xp — XE(n))XF) +q(m)(xp — XF(n))XE(n))'
But, it is clear from (1) that g(m)(xzf) < g(m)(f), for every R € ¥ and f €
LY(m), from which it follows that

Q(m)(XEmF - XE(n)mF(n)) < Q(m)(XE - XE(n)) + Q(m)(XF - Xp(n))'
Accordingly, also X, € A1 whenever X, x, € A1. Hence, {E;x, € A1} is an
algebra of subsets of X.

By a transfinite induction argument it now follows that
{E;xp € As} = Up<a<0, {E; X € Aa} is an increasing union of algebras of sets
from ¥ and hence, is itself an algebra of sets from X.

Suppose that {E(n)}°, is a monotone sequence from {E;x, € A} with
limit £ € ¥, say. Then {x,,}p2; is a sequence in X(m) with pointwise limit
Xp- Let j: X — X be an isomorphism of X onto a dense subspace j(X) of
its completion X. Then the set function m : & — X given by m = jom
is a vector measure and L!(m) is a linear subspace of L!(77). Moreover, each
¢ € P(X) has a unique extension to a continuous seminorm ¢ € P(X) which
satisfies ¢()(x ) = ¢(m)(x;), for every F € ¥. Accordingly,

a(m)(xz — XE(n)) = Q(m)(XEAE(n)) = q(m)(XEAE(n)) = q(m)(xp — XE(n))7
for each n = 1,2,.... By the Dominated Convergence Theorem for vector mea-
sures in sequentially complete spaces, [4, IT Theorem 4.2], applied to /7 in X , it fol-
lows that ¢(r1) (X 5 =X g(y) — 0, as n — 00, and hence, also q(m)(X 5 =X 5(,)) — -
This shows that y By — Xp in Ll(m). The sequential closedness of Ag implies

that x,, € As. This shows that {E; x, € As}, in addition to being an algebra of
sets, is also a monotone class and hence, is actually a o-algebra.

The inclusion x(As) C As is established in [6, Lemma 2 (iii)] for the case when

X is sequentially complete. By passing to the completion X and arguing as above,

the proof given in [6, Lemma 2 (iii)] can easily be modified to apply in any lcHs X.

O

We give a simple application of Proposition 2. Let Y be a Banach space and
X = L(Y) be the space of all bounded linear operators from Y into itself, equipped
with the strong operator topology. The notion of a Boolean algebra (briefly, B.a.)
of projections which is o-complete (in the sense of W. Bade) is by now standard,
[2, Chapter XVII, §3]. This is a generalization to Banach spaces of the classical
notion of the resolution of the identity of a normal operator in Hilbert space.
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Corollary 2.1. LetY be a Banach space, M C L(Y) be a Bade o-complete B.a.
and B C M be a Boolean subalgebra. Then the sequential closure B, of B, in
the IcHs L(Y) is a sequentially complete, Bade o-complete B.a. containing B and
is minimal with respect to these properties.

PROOF: An argument along the lines of the proof of Proposition 2 shows that
Bs = Up<a <, Ba is the increasing union of a family of B.a.’s and hence, is itself a
B.a. It then follows from a standard result about monotone limits of sequences in
a Bade o-complete B.a., [2, XVII Lemma 3.4], that B is Bade o-complete. Since
closed, bounded subsets of the quasicomplete IcHs L(Y') are complete and Bs is
sequentially closed, it follows that Bs is sequentially complete. The minimality
condition is routine to verify. (|

A Bade o-complete B.a. is a complete subset of L(Y) iff it is Bade complete as
a B.a., [2, XVII Corollary 3.7 & Lemma 3.23]. Hence, Corollary 2.1 is of some in-
terest since, in applications, sequential completeness often suffices. Moreover, the
sequential closure is sometimes easier to determine than the full closure in L(Y).

3. Question C

Let m : ¥ — X be a vector measure and A C ¥ be an algebra of sets. Recall
that Ay is the o-algebra generated by A. It has been shown that always x(Ay) C
As and, under certain conditions on X (e.g. bounded sets are metrizable), it is
known this inclusion is an equality. The question is whether it is always true
that x(As) = As. Of course, this is equivalent to the question of whether y(Ay)
is sequentially closed in 3(m)? The construction of A, from A is a transfinite
procedure of a set theoretic nature whereas the construction of As = y(A)s is a
transfinite procedure of a topological nature; it is unclear whether these different
processes lead to the “same” set.

It is now necessary to have a more precise notation. If we wish to indicate the
dependence of the sequential closure of a subset Y of a topological space A on
the particular topology 7 under consideration, then we will denote the sequential
closure by Ys(7). Let X be a lcHs and m : ¥ — X be a vector measure. Let
p be any lcH-topology in X consistent with the duality (X, X’); for brevity we
will simply call p a consistent lcH-topology. If X, denotes X equipped with the
topology p and m, : ¥ — X, denotes the set function m considered as taking
its values in X, then the Orlicz-Pettis theorem, [4, I Theorem 1.3], guarantees
that m, is also a vector measure. Clearly L!(m) and L!(m,) coincide as vector
spaces and Y(m) and 3(m,) coincide as sets. Proposition 2 applied to m,, in X,

shows that x(As) C As(p) for every consistent IcH-topology p. If p; is weaker
than pa, then clearly As(p2) C As(p1). It follows that if x(Ags) = As(p) for some
consistent lcH-topology p, then actually x(As) = As(v) for every consistent lcH-
topology v in X satisfying p C v C u, where p is the Mackey topology in X. We
summarise these comments in the following

95



96

W.J. Ricker

Lemma 2. Let m : ¥ — X be a vector measure and A C Y. be an algebra of

sets. If p is any consistent IcH-topology in X for which x(As) = As(p), then also

X(Ag) = Ag(v) for every consistent IcH-topology v in X satisfying p C v C p.
The weak topology o (X, X’) is also denoted simply by o.

Proposition 3. Let X be a quasicomplete IcHs with the property that its weakly
compact sets are metrizable for o(X,X'). Let m : ¥ — X be a vector measure

and A C X be an algebra of sets. Then x(As) = As(p) for every consistent
IcH-topology p in X. In particular, x(As) = As where Ay is formed with respect
to the given topology in X.

PROOF: It is known that the range m(X), of m, is relatively o (X, X’)-compact,
[4, IV Theorem 6.1]. Consider my : ¥ — X5. An examination of the proof of [6,
Proposition 3 (i)] shows that it does not require the IcHs X there to be sequentially
complete (a standing hypothesis in [6]) and hence, by this result applied to me

in Xy it follows that x(As) = As(o). Then Lemma 2 implies the result. O

Remark 2. (i) Proposition 3 applies to a large class of spaces X, different from
the spaces X admitted in Proposition 3(i) of [6] where typically the bounded sets
of X are required to be metrizable for the given topology in X. For example, if X
is a quasicomplete Suslin 1cHs, then it is also Suslin for the weak topology, [8], and
hence, compact subsets of X, are metrizable for the weak topology, [1, Chapter 9,
Appendix 1, Corollary 2 to Proposition 3]. The class of IcH Suslin spaces is quite
extensive, [7]; [8]. Or, if X’ is weak-star separable, then compact subsets of X, are
metrizable for o(X, X'), [3, Proposition 3.2]. Or, if X = Y” is a dual space, then
certain properties of Y may imply that particular balanced, convex, o(X,Y)-
closed and bounded (or equicontinuous) subsets of X, including the balanced,
closed, convex hull of m(X), are o(X,Y)-metrizable, [6, Proposition 4].

(ii) For a particular measure m : ¥ — X the conclusion of Proposition 3 holds
under the assumption that just m(3) itself is o (X, X')-metrizable; no particular
properties of the space X are then required. 0

Remark 2, Proposition 3 and [6, Proposition 3 (i)] show that there is an exten-
sive class of spaces X with the property that x(A,) = As, whenever m : ¥ — X
is a vector measure and A C ¥ is an algebra of sets. For all further examples of
vector measures m in spaces X which are known to the author (some such ex-
amples are given in [6] where X does not have any properties of the type above)
the equality x(Ay) = As also holds. This suggests the conjecture that perhaps
x(Ag) = A always holds in general. If so, then this would be an interesting result
because it would follow that x(Ags) = As(p), for every consistent lcH-topology p
in X. That is, the sequential closure of x(.A) in ¥(m) would be, as a subset of
¥(m), independent of which topology p(m)) is used in X(m)!

In conclusion, we recall that a vector measure m : ¥ — X is called closed,
[4, Chapter IV], if (3(m),7(m)) is a complete topological space. It is easy to
exhibit examples of vector measures m which are not closed, [4, p. 77]. However,
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all examples of vector measures m known to the author have the property that
¥ (m) is 7(m)-sequentially complete; call such a vector measure o-closed. It would
be interesting to know whether all vector measures are necessarily o-closed.
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