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Constructions of smooth and analytic
cocycles over irrational circle rotations

DALIBOR VOLNY

Abstract. We define a class of step cocycles (which are coboundaries) for irrational ro-
tations of the unit circle and give conditions for their approximation by smooth and real
analytic coboundaries. The transfer functions of the approximating (smooth and real
analytic) coboundaries are close (in the supremum norm) to the transfer functions of
the original ones. This result makes it possible to construct smooth and real analytic
cocycles which are ergodic, ergodic and squashable (see [Aaronson, Lemanczyk, Volny]),
of type I1lp, or which are coboundaries with nonintegrable transfer functions. The
cocycles are constructed as sums of coboundaries.

Keywords: smooth cocycle, real analytic cocycle, transfer function, type I1lg, ergodic
and squashable, distributions of a cocycle

Classification: 28D05, 11K50, 60F05

1. Introduction

Let us represent the unit circle T as the interval [0, 1) and its irrational rotation
by the transformation T :  — z + « mod 1 (where € (0,1) is an irrational
number). By A\ we denote the Lebesgue (probability) measure on [0,1). For any
measurable function f, the transformation 7 : T X R — T x R defined by

Ty(z,y) = (Tw,y + f(2))

preserves the product Lebesgue measure on T x R. Let us denote S,(f) =
Z?:_ol foT! n=0,1,.... The mapping Z x T — T defined by (i,z) — S;(f)(z)
for i > 0 and (i,2) — —S_;(f)(z) for i < 0, is called a cocycle. Here (as usually)
we call cocycle the function f. If f can be represented by f = g — g o T where g
is measurable, we say that f is a coboundary and g its transfer function.

A real number a is called essential value of the cocycle f iff for every ¢ > 0 and
every set B C [0, 1) of positive measure there exists a positive integer n such that

ABNT BN {Sa(f) € Uc(a)}) >0

This research has been partially supported by the Grant Agency of the Charles University,
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where U, (a) denotes the e-neighbourhood of a. The cocycle f is ergodic iff all real
numbers are its essential values and it is of type I1Ij iff co and 0 are the only
essential values (see [Schmidt)).

We shall present a method of construction of smooth or real analytic cocycles
F with a special limit behaviour of Sy, (F).
First, in the next Section, we define a special class of coboundaries f which are
step cocycles (see (5)). The main results (Theorems 1 and 2) show that the step
cocycles defined by (5) can be well approximated by coboundaries F' which are
C®° functions or zero mean real trigonometric polynomials, so that the transfer
functions g, G, of f, F', are also close to each other. Therefore, the limit properties
of Sy, (F) are similar to those of Sy (f).
Then, in the last Section, we apply the approximation results in constructing
smooth and real analytic cocycles F

— for which the distributions of Sy, (F') converge along subsequences to all
probability laws,

— which are of type 111y,

— which are coboundaries with nonintegrable transfer functions,

— in [Aaronson, Lemariczyk, Volny], ergodic and squashable smooth and real
analytic cocycles F' are found.

Theorem 1 is partially included in the proofs in the paper [Liardet, Volny], where
the result on the convergence of Sy, (F) was proved for F' € CP, 1 < p < o©
(here we show the simplification of the proof enabled by the use of Theorem 1
and we extend the result to real analytic functions). The construction of smooth
and real analytic coboundaries with nonintegrable transfer functions generalizes
results from [Baggett, Merrill]. The construction of the ergodic and squashable
cocycles in [Aaronson, Lemanczyk, Volny] implicitly uses Theorem 1 (Theorem 2
enables us to extend the results to real analytic cocycles).

Recall that the irrational number « can be represented by the continued frac-
tion expansion « = [0;ag, ag, .. .| where the positive integers a,, are called partial
quotients. The convergents pp /gy defined by the recurrent formulas

) po=0, p1=1, pn=anpn-1+pp-2,
Q=1 q=a1, gn=anqn-1+ -2
give an approximation of .
In the constructions we shall largely use the
Rokhlin towers.

By {z} we denote the fractional part of z, i.e. {z} =z — [z]. For z € [0,1), ||z]|
denotes min{z,1 — z}.

From the continued fraction expansion we get two Rokhlin towers: If n is odd,
we have

{ja}, {(gn—1+J)a}), j=0,...,qn — 1 and
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[{qna}a 1)7 [{(.] + qn)a}a {jOé}), J=1.. . qn-1—1,
for n even we have
Han—1a},1),[{(J + gn—1)a}, {ja}), j=1,...,qn — 1,
e} {(gn +3)e}), 5=0,. - gn-1 — 1.
In the next we shall for simplicity suppose that n is odd (the cases with n even
are similar).
For 0 <z <1 — ||gn—1¢]|| we thus have T~z = z + ||gp—1¢]|. Let us denote

IO = [07 ||qn—1a||)7 Ii :Ti‘[07 /L.: 17"'7qn_17
@) ot

JU = [{’LLO[}, {’LLO[} + an“‘]n—laH) = U Iu—i—iqnfla u = 05 LR} Qn—l - 1
1=0

Notice that

< gm0 < ~
= > -1 =~ —,
2Qn n dn

(2)

1
5 SanHQn—lan < .
dn—1 dn—1

We shall consider the rotations a with unbounded partial quotients, i.e. with

lim sup gp+1/gn = 0.
n—oo

For such rotations there exist C! cocycles which are nontrivial, i.e. are not cobound-
aries (we assume zero mean). This does not hold in the case of bounded partial
quotients; for such rotations there exist nontrivial absolutely continuous cocycles
(cf. [Liardet, Volny]) but none which would also be ergodic and squashable, or of
type I11j, has been found.

The condition

3) lim sup g 41/¢qj, = 00

n—oo
is necessary and sufficient for the existence of nontrivial cocycles in the space CP;
if it holds, the set of ergodic (hence nontrivial) cocycles is in CP dense and G (cf.
e.g. [Baggett, Merrill], [Liardet, Volny]).
The validity of (3) for all positive integers p is necessary and sufficient for the
existence of a nontrivial (and ergodic as well) C*° cocycle ([Liardet, Volny]).
The last assumption on the rotation we shall use is

(4) lim sup log ¢n+1/¢n = .
n—oo

The positivity of the limsup is necessary and sufficient for the existence of real
analytic nontrivial cocycles ([Herman)); if they exist, an ergodic one exists, too.
If lim sup,,_, . log gn/gn—1 < 00, we do not know whether a real analytic cocycle
F can also be squashable, whether the distributions of Sy, (F') can converge along
subsequences to all probability laws, whether F' can be of type I11j.
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2. Approximations of step cocycles

All integrable cocycles will be assumed to have a zero mean. Let f be a step
function on [0,1), i.e.

f=> bix(B))
=1

where {Bj,..., By} is a partition of [0,1), B; = [, Zi+1), 0 =21 <29 < --- <
Tyl = 1, let fol f(z)dx = 0. Define

qn—-1—1

(5) )= S X,

2 g Tl

Suppose that for a positive integer n, all the numbers x;, 0 < i < m + 1, can
be expressed as fractions with denominators ay, i.e. apz; are integers. Then ™ f
is constant on the sets I;, 0 < i < ¢ — 1, and zero out of their union. Since
fol fd\ =0, we thus have 23261_1 " f(Tz) = 0 for every x € Iy. Therefore, ™ f
is a coboundary with a transfer function "¢ where

i—1
"g(T'x) == "f(Tx) for wely, 1<i<g—1,
=0
(6) 1
Tg(x) =0 for x €Iy and for x ¢ U I;.
1=0

Moreover, we can derive
1
5bantn-1 max|" f| < max|Sy("f)(2)| < 2¢n max|[" f]

where b is the length of the interval B;j on which |f| attains its maximal value.
Let ™ f be the cocycle defined by (5), ™g its transfer function defined by (6).

Theorem 1. For every ¢,6 > 0 there exist positive integers kg, K > 0, such that

. -1
if an > koqﬁ_l,

(i) F ="™f on a set of measure at least 1 — ¢, and |F| < (1 + ¢) max |f],
(i) [|Fller < Kqj,_y, and
(iii) for transfer functions "g, G, of the cocycles™ f, F, we have
"g — G| < dsup|"g| < dgn.

then there exists a cocycle F € CP,
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Theorem 2. For every ¢,0 > 0 there exists a positive integer kg such that if
log gn/gn—1 > ko, then there exists a real trigonometric polynomial

s
F(I) _ Z cZe27riEqn,1m,

l=—s

(i") |[F —™f| < € on a set of measure greater or equal 1 — ¢, and |F| <
(1+ ) max| f|,

(ii") for M =>"j__ . |cs| we have MeIn=1 /g, < 4,

(iii) for the transfer functions "g, G, of " f, F', we have sup |""g — G| < dqp,.

Notice that for any coboundary F' with a transfer function G, if there does not
exist d > 0 with G > d or G < —d, then

supsup |Sm (F)| < 2sup |G|,
(7) "

sup |G| < supsup | S, (F)|.
m

The first inequality immediately follows from F' = G — G o T', the second from
E?:_()l FoT'=G — GoT"™ and ergodicity of T.
Using (iii) and this observation we can approximate the partial sums Sy, (F') by

Sn(f)-
PrOOF OF THEOREM 1:
I. First we shall prove the theorem for p = 1.
Let h be a nonnegative C*° function on R, h < 1, h(0) = 1/(0) = 0 = k(1) = h/(1),
h(z) =0 for z € R\ (0,1), [ h(z)dz = 1/c.
H is a periodic function on R with period 2 defined by

t
H = { folh(ac) dx t on [0,1]
Jo Mz)dx — [[h(z—1)dz  on [1,2].

There exists a positive integer v such that

d= /01(3 — H(z))dz/ O2V H(z)da = (% - /01 H(z) d:c) / 02V H(z)dz < e.

c

For ko we choose an integer bigger than (4v + 2)m/e. We shall suppose that n
is fixed and ay,, > ko. Without loss of generality we can (and shall) assume that
e/((4v + 2)m) is a positive fraction of the type k/ay. The functions ™ f, g, will
be denoted by f, g.
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We define
~ v +2)m (dv+2)m
Fla) = o QDT A ED )
on the intervals [x;, x; + m), i=1,...,m,
= ; v+ 2)ym  ,(4v + 2)m je
= (-1)/1! db-( h —r; -
f(‘r) ( ) cab; € ( € (‘r g (4V+2)m))
. € |+ 1)e
on the intervals [z; + (41/—ji-2)m’xi + (ilj/—i—;)m)’
1=1,....m, j=1,...,2p,
- ; v+ 2)m (v +2)m 2u+1-—j)e
= (-1) db-( h — —_—
la) = (-tyean L I o o B )
2v—75+1 20—3
on the intervals [:ci_,_l—w ; (2v = j)e ),

(4v +2)m » Fikl = (4v +2)m
i=2...m41, j=0,....20 1,

s (v +2)m, (4v+2)m ' €
f(x) = —cb; c c (x — @1+ m))

h(

on the intervals 1=2,....m+1,

€
[332‘4-1 - m, Ii+1)7

f(z) = 0 otherwise.

For "
F(:C)z/ f(z)dz
0
and i =1,...,m we have
- € €
Tit1 Tit+l _
©) [ R [ fe
x; T4
(10) |F| < (14 d)max |f| < (14 ¢) max|f].
Define
gn—1—1 _g
- 1 ~ T 'x
f(x) = —— X, [ (),
@= 2 el el

Let us define

Bij =T (an|gn-1a||B;), 1<i<m, 0<j<gn1—1.
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S
Every B;; equals a union UIj_quil where 0 < r < s < ap, ie. B;; =
l=r
S—r

anflzlj_‘_rqnfl. For every 0 < j < qp—1 — 1, the sets B; j, 1 < ¢ < m, are
£=0
disjoint subsets of J;.

The functions f and F' are supported by the sets B; ; and by (8),
ABij N{f # F})/A(Bij) <€

m

for each 1 <i <m, 0 <j < ¢,—1 — 1. By the definition, |J B;; = J;,0<j <
i=1

Gn—1—1
gn-1—1, U J; is the support of both f and F. From this, the first part of
=0
(i) follows, and from (10) we get |F| < (1 + €) max|f|.
From the definition of f we can see that

|| < max|f|(c + ed)(4v + 2)m/(ean||gn-1])).

We have ay||gn—12| > 1/(2¢n—1), hence

|F*] < max || - 24 + 2)(c + cd)man_1 fe

which proves (ii) for C! functions with K = max |f|(c + cd)2(4v + 2)m/e.

The function f is a coboundary with a transfer function

i—1
g(T'z) == f(T7z) for wely, 1<i<gn—1,
j=0
(6) qn—1
g(x) =0 for z €Iy and for x ¢ U I;
=0

(recall that we denote " f, "g, by f, ¢); in the same way, with F' at the place of f,
we define a function

i—1
G(T'z) ==Y F(T’x) for ze€lp, 1<i<gn—1,
/ j=0
(6) qn—1
G(x) =0 for x € Iy and for z ¢ U I;.
=0

Forany 1 <k <mand 0 < j < gp—1 — 1, there exist 0 < r < s < ay such

S .
that By, ; = U Iitig,_,- The points Titlan—1y r < ¢ < s, x € I, are the points
1=r

from the orbit (Tix)g;al, which belong to the By, ;.
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For any x € Iy and 0 <1 < g, — 1 we have

Tix _

(11) F(T'z) — F(T'0) z/ f(y) dy.
T0
On the intervals
4 (+1 (+1 4
(x; + —, x; + ) and (2441 — s Tigl — —),
Qn Qn n an

0</{/an <e/(2m)—1/an,

the values of f differ just in the sign (i.e. for ¢ € [O,%), flx; + % +1) =
—f(zip1 — L 4 1)). For the function f*, the intervals (791n—10, 79 +in-1z),
).

an -
r < i < s, thus occur in pairs on which f* differ just in the sign (if it is nonzero
From this and from (11) it follows that

S
3 (F(Tj”q"*lO) — F(Tj”q"*l:z:)) —0 forevery z€lp,
i=r
hence s
/ F(y)dy = A(Io) 3 F(T3+4n-19)
By, j {=r

The function f is constant on the sets By, ;, therefore

| fw)dy = M) > f(rittang).
k.j {=r
By (9) we have

F(z)dx = f(z)dx
By, ; By, ;

for every 1 <k <m, 0<j <gqgn—1— 1, hence for every z € Iy,

S S
Z F(Tj-l-iqnﬂx) — Z f(Tj-l-iqnﬂx)'
i=r

i=r

From this and Sg, (f) = 0 (recall f ="f) it follows that Sy, (F')(z) = 0 for every
x € Iy, hence F is a coboundary with transfer function G (defined by (6')). By
the definition of F' we have |F| < (1 4 d) max |f| and by (i), A(F # f) < ¢, hence
by (6), (6') we get |G — g| < (1 + d) max | f| - g,. From this, (iii) follows.

I1. Next we shall prove the theorem for a general p.

Let us define a class of C°° functions
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H={heC®onR,h<1,h(0)="1r(0)=0=h(1)="Hr(1), h(z)=0
for € R\ (0,1), [y h(z)dz > 0}.
P is a set of positive integers p such that
(12) For all h € H there exist numbers 0 < 1y < mo, g < t1 < tg--+ <t <
1=, tigg —ti >mpfori=1,...,k—1,3ky € N,K >0, Va, > kog"_}
IV, €ER, 0 < < <12, apn € N, such that for the function f
on [0, 1] defined by

k
F&) = vih((t —t:)/n)
i=1

the p-th indefinite integral F' of

n— -1 ,
. 1 n 1 LT

(13) () = (m)p 2 XJi (t)f(m

satisfies (1)-(iii):
(i) F'="f on a set of measure at least 1 — ¢ and |F| < (1 + ¢) max|f],
(i) [|Fller < Kqp_y,
(iii) for transfer functions "g, G, of the cocycles ™ f, F', we have |"g — G| <
dsup|"g| < dgn.

In the first part of the proof we showed that 1 € P. By induction we shall
prove that all positive integers belong to P.

Suppose that p > 1, p € P. Let h € H,

h(2x) for = €[0,1/2)
hi(z) =< —h(2z—1) for z€[1/2,1)
0 for x€R\(0,1),

H(t):/othl(:c)dx, teR.

Then H € H. By the assumptions there exist numbers n > 0, n < t; < --- <
tr <1—mn,and v1,...,7 € R, such that for

k
F) =" wH((t—t:)/n)
i=1
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and f* derived from f by (13), the p-th indefinite integral of f* satisfies (i)-(iii)
with a constant K = K(H) in (ii).
We have 1
JE*/ — £l
anllgn_1al
hence the (p + 1)-st indefinite integral of f*/(an||gn_1al|) satisfies (i)-(iii); the
constant K in (ii) is less or equal to 2K (H) (cf. (2)).

It remains to show that f’ can be expressed like in (12). Suppose that a,n/2 €
N (here we have to increase ko) and define ' = /2. We define

7

t;:t(i_,_l)/z for i odd, t :ti/2+g for i even,

V= M(i+1)/2 for i odd, ny, = tis2 —|—g for ¢ even,
1 <4 <2k

Then k

Z ((t—t5)/n)

N

Z( 20t = ti)/MX{0<(t—t:) /n<1/2} —

- Eh@(f — i+ 77/2))/77)X{1/2§(t—ti)/17§1})
2k
= An(t—t)/n)

=1

Therefore, p + 1 € P. This finishes the proof. O

ProOOF OF THEOREM 2: All functions used here are to be understood as 1-

periodic functions on R. Let
S

P(ZE) — Z 65627”:&2,
l=—s
where cg = 0, c_p = ¢y, i.e. P is a real, zero mean trigonometric polynomial. P
is chosen so that
MIP = fl =€) <e€/2, |P| < (1+¢)max|f].
There exists kg such that if log ¢ /gn—1 > ko, then (ii') Me5In—1 /g, < §, where
M =3>"__,lcl, and also

if logqn/qn-1 > ko, then 4sq,_1M < eqn and 2g,_1sup|f| < egn.
The function F' is defined by

s

F(I) = P(an—l) = Z C£e27ri€qn,1x.
l=—s
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For f(x) = f(xgn_1) we thus have
MIF = fl = ) <€/2, |F| < (1+¢)max|f].

Each of the functions f, f, has at most Gn—1(m + 1) points of discontinuity. By
[Khinchine],

hence the points {ia}, 0 <i < ¢, — 1 differ from ip,/qp by less than 1/q, ({x}
denotes the fractional part of x, i.e.  — [z]). The points of discontinuity of f, f,
are thus distant by less than 1/¢y, hence

Mf=fl=e < qn—1@;

n

for n sufficiently big we have
MIF = fl=e€) <e,

i.e. (i') holds.
It is well known that for trigonometric polynomials the equation F' = G—GoT
has a solution

s

_ %4 2milx

Gla)= ) 1 2mita®
l=—s

hence F' is a coboundary.
We are going to prove (iii), i.e. to give an upper estimate for |G — g|.
Recall that

supsup [Sm (F)| < 2sup |G|,
(7) -
sup |G| < supsup [ Sy (F)].
m
We shall prove that

(14) VYm30<m' <gn—1 |Sp(F)— Sy (F)| < 4sq,_1M,
(15) Yu 30 <u < g, —1 |g—goT“_“,| < 2¢p_1sup |f| = 2¢n_1sup|f|.

Then we can estimate |G — g| using suprema of the sums Sy (F), Si(f), 0 <k <
qn — 1.

Let us prove (14):
From the equalities ¢y, = am@m—1 + ¢m—2 it follows that for every integer u > ¢y,
there exist denominators ¢ 4+r—1 < 4 < gn+r and 0 < v/ < g, —1 and nonnegative

755
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integers 0 < b1 < ap+1, 0 < b2 < apt2,...,0 < by < apyyr where a; are partial
quotients of o and 1 < r, such that

u=1u+ bign + -+ brgnir—1

(this is a special case of the Ostrowski’s formula, cf. also [Herman, p. 101]).
Because |1 — ¢2™4m%| < 1/g,, 11 (see [Kuipers, Niederreiter, pp. 122-123]), for
any positive integer m > n, —sqn—1 < j < sqp—1, and 0 < v < @41, we have

1 — e2rijvama| < Sdn=10m+1

dm+1
hence
.. .. ]_ - e27rijvqma ]_ Sq _1Qa
2mijry 2mijry| — < n—10m+1
|Sy-qm+f(€ ) SZ(G )| | 1 _ e2mijo | = |1 — 627rijo‘| P .

From this and from ¢m41 > gmam+1 (cf. (1)) we get

i s 1 SQp—
2mijx 2mijx dn—1
|Sv~qm+f(e ) - Sf(e )| < |1 — 627Tija| am )
hence 1 1
S (e2mH7Y — g, (e2mHT)) < Hn-Ll (. +.).
Su(e25%) = S, < I )
For a positive constant L = 1/qp +1/qn+1+ ... we thus have [Sy,(F) — Sy (F)| <
Sqn—1Man(1/gn + 1/gn+1 + ...) < Lsgn—1M. From (1) it follows that L < 4.

This finishes the proof of (14).

Proof of (15):
Recall that f is suppposed to be constant on the sets I;, 0 < i < g, — 1 and

v—1
g(T?z) = —Zf(Tix) for zely, v=0,...,qp —1
1=0
(6) I
g(z)=0 for z €10,1)\ U I;.
1=0

We have [Su(£) = Sy (f)] = |g 0 T — g o T¥'| = |g — g o TV~
Following [Stewart]

1(b1gn + -+ + branir—1)e| < llgn-10].

Therefore, x — T% %'z =z + # mod 1 where § < |gn, 1] < 1/qn,-

For z € Iy we have Zgigl f(T'z) = 0, I; and I;4,, , are adjacent, 0 < i <
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Gn — qn—1 — 1, and the sets from the smaller Rokhlin tower are adjacent to I; with
i< qn-1—lorizqn—qn-1—1L
Therefore, |Sy(f) — Sy (f)| < 2¢n—1sup|f|, which proves (15).

Because |F — f| <,

F— < gne.
S [SK(F = ))@)] < e

From this, (14), and (15), it follows that

max Sy (F = f)(2)] < gne + 4s4p-1M + 2qn—1 50 | ]
For ko < logqn/qn—1 we have 4sq,_1M < eqp and 2g,_1sup|f| < eqn, hence
maxg<y, |Si(F — f)(z)| < 3gne, which proves (iii) and thus finishes the proof of
the theorem. O

3. Applications

The set of applications of Theorems 1 and 2 which we exhibit here is rather
aimed to show the possibilities than to exhaust them.

The coboundary " f defined by (5) has a specific feature: If k < jg,_1, "foT*
is the function ™ f shifted by less than j /gy, (cf. (2')), hence for k/q, small, Sy(" f)
is close to k" f.

Theorem 3. Let the irrational number o satisfy one of the assumptions:

(3) limsup,,_,o0 gn+1/qh = 0o where p is a positive integer,

(3") limsup,,_, oo qni1/qn = oo for all positive integers p,

(4) limsup,, o 10g gnt1/qn = oo.
Then there exists a cocycle F such that the distributions of the partial sums
Sy (F) weakly converge along subsequences (ny) to all probability laws. If (3)
holds, F can be found in CP, and if (4) holds, F can be found real analytic.

PROOF: The set of all probability measures on R with finite supports is a dense
set in the space of all probability measures on R equipped with the topology of
weak convergence. The space is separable, hence there exists a sequence f, k =
1,2,..., of step functions on [0, 1) the distributions Ao fk_l of which form a dense
set. For a sequence nj — oo of positive integers, let the functions "* f;, be defined
by (5). We shall simplify the notation and denote them by fi. Jo,...,Jg, 1—1
are the sets on T defined by (2). Define A;; by Ay, (E) = A(J; N E)/A(J;). Then
the distributions A J; © Ir 1 are the same as the distributions A o fk_ L For Qny,
big, the smaller Rokhlin tower (see the Introduction) has small measure. For hy,
converging in the measure to h, the distributions )\Ohlzl weakly converge to Aoh ™!
(cf. e.g. [Billingsley]). For ayn, — oo and € — 0, for A(hn, = "t fr) > 1 — €,
the sequence A o hflkl, k=1,2,...,is thus dense in the space of all probability
measures.



758

D. Volny

Let 1 < p < co. We shall recursively costruct sequences of numbers n; — oo,
€ — 0, and coboundaries Fy, such that (16.1)-(16.4) hold.
Theorem 1 guarantees the existence of «y; such that if g,/ qf;:i > i, then there
exists a number K} > 0 and a coboundary F}, for which

(i) Fy, ="f on a set of measure at least 1 — ¢,
(i) |Frllce < Kray,_y, and
(iii) for transfer functions "g;, Gy, of " fi, Fy, and & = e%, we have
"9k — G| < b sup ["gy| < an.

We choose v, > Kk/e%
Let us put ny = 1 = €1 and F; = 0. Suppose that £ > 2 and €1,...,€x_1,
ni,...,ng_1, and coboundaries Fy,..., Fj_q were defined. Gi,...,Gp_q are
their transfer functions. We define ¢, ny, so that

(16.1) ek <ep 1, ek <121 qper qan, an,,—1 < 1/2"

(16.2) €xan, is an integer.

Sk i1 F is a coboundary with a transfer function Ek 1 Gj, Tk Ik=1 rep-

resents a rotation by less than ez, hence we can choose €L, sufﬁmently small so
that

k—1

(16.3) M Seran a1 (D

= €50n;dn;—1

£ )| >1/2F) < 172",

We choose ny, such that
(16.4) nE > g1, dng /G, 1 > T
From this and g¢pn, < 2an,qn,—1 (see (1)) it follows

D D
F. o < qunk_1 < 2qunk_1 < 2K,
- 2 = =
€k0ngdn;—1 €k0ngdn;—1 €kdny, €Lk

hence the sum F = Y 72, F/(€xan, qn,—1) converges in CP. We also have
| Fie/ (€kany, any—1)| < 2¢j. From this and from (16.1) we get
o o0
F; 1 1
|Sskankan71( Z Z 2_ ok”
j=k+

ekt €5 nJan—l
From this inequality and from (16.3) it follows that

Fy, 1 1

(17) A(|Seran, gn,—1 (F = )= 2k—1) < ok

ekank an—l
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From the definition of f;, (see (5)) and (2), (2') we get
(18) A(Sepan any—1(fk) = €kanydng—1fr) =1 — €.

By Theorem 1 (iii) and (7),

1 1)
(19)  supsup ————|Sin(fi — F)| £ —EE— < 2¢ 0,
m €k0ngdn;—1 €angdn,—1
hence the distributions of Se;a,, gn, —1 (Fk/(€xan),dny—1)) form a dense set in the
space of all probability measures.
Therefore (cf. (17)), the distributions of Se,q,,, g, —1 (") form a dense set in the
space of all probability measures as well. This finishes the proof for 1 < p < co.

If limsup,,_,o Gnt1/¢h = oo for all positive integers p, we can construct
the functions Fj so that as before, the distributions of Se,a,, g, -1 (F) weakly
converge to all probability measures and for each positive integer p we have
Y req IFgllcr < 0o, hence F' e C*°.

If the assumption (4) holds, Theorem 2 enables us to construct similarly as
before a sum F' of trigonometric polynomials F}, such that the distributions of the
partial sums Sy, (F) weakly converge along subsequences to all probability laws:
For nj, — oo and €, — 0 we approximate the functions "* fj, by real trigonometric

polynomials Fy,(x) = Y_pk Sk cre®™ " and define

Fx) = 22021 Fir(@)/(€kany, gny—1)-
By Theorem 2 (ii’) for Mj, = Yk  leels Mye® k=1 /g, < €, we can choose

=—35
e and ny, so that F(z) = Y00, Fi.(2) = 200 cpe®™ % where Y200 |eglel! <
00, hence F' is real analytic.

Similarly as before, choosing recursively the numbers ¢; we can guarantee

= F; 1
S 1¢%% ng — 7‘] S ok *
| €kany dny, l(jzgi-l e]-anjqnj—l)' ok

Any trigonometric polynomial (of zero mean) is a coboundary, hence we can
similarly as before guarantee (16.3). Therefore, (17) holds. We have (18) and by
Theorem 2 (iii) we get (19). The distributions of Se,a,, gn, —1 (F/(€k@nydn,—1))
thus form a dense set in the space of all probability measures, hence the same
holds for F. O

In the case (3), F' can be found absolutely continuous (but not Lipschitz) or
Lipschitz (but not C1). An easy way of doing so is to use in the proof of Theorem 1
step or integrable functions for h (instead of a C*° function). As it was said in the
introduction, for absolutely continuous, Lipschitz, and CP, 1 < p < oo, cocycles
the result was proved in [Liardet, Volny]. The construction is based on the same
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ideas there. It can be, moreover, easily proved that the cocycles whose existence
is given by Theorem 3, form in the spaces CP, 1 < p < oo, as well as in the spaces
of absolutely continuous and of Lipschitz functions, a dense G set. (The proof is
based on the fact that in those spaces, the coboundaries are dense; the same idea
was used for LP spaces in [Volny].) As shown in [Liardet, Volny], Theorem 3 has
immediate implication to the rate of convergence in the ergodic theorem. It is
shown there, moreover, that the bounds given by Theorem 3 are the best possible.
This gives an impression that in cases where Theorem 3 cannot be applied (e.g.
for rotations with bounded partial quotients), the result does not hold. The same
might be the case of the next theorem as well.

Theorem 4. Let the assumption (3) or (3') or (4) of Theorem 3 hold. Then
there exists a cocycle F of type I11y; if (3') holds, F can be found in C*°, and if
(4) holds, F can be found real analytic. In the case (3), F' can be found absolutely
continuous (but not Lipschitz) or Lipschitz (but not C).

Theorem 5. Let the assumption (3) or (3') or (4) of Theorem 3 hold. Then
there exists a coboundary F' with non-integrable transfer function; if (3') holds,
F can be found in C*°, and if (4) holds, F' can be found real analytic. In the case
(3), F can be found absolutely continuous (but not Lipschitz) or Lipschitz (but
not C1).

Remark. In [Liardet, Volny, Theorem 5, (13)], it is shown that if for a positive
integer p we have limsup,,_,~ ¢n+1/qh < 00, then for F' € CP with zero mean the
integrals fol (Sn(F))2 d) are uniformely bounded, hence (see [Parry, Tuncel]) F is
a coboundary with a square integrable transfer function. Hence, for 1 < p < oo,
in CP there exists a nontrivial cocycle if and only if there exists a coboundary with
a nonintegrable transfer function.

PrOOF OF THEOREM 4: We shall construct the cocycles as sums of coboundaries
F=Y,F.

Let us suppose that (3) holds, 1 < p < oo.
Let k be a positive integer. Take n such that ¢, > ¢/ _; and define m,, = [an /2]
where [z] denotes the integer part of z. Define

1 on [0,mn/an)
fk,n =9 -1 on [[an/2]/an, [an/2]/an +mn/an)
0 otherwise.

Then we can define fj, , in the same way as in (5); fin, is then constant on the
sets I;, 0 < i < g — 1, from the Rokhlin tower, and zero out of their union.

Moreover, Zg;al Jen(x) =0 for all z € Iy, hence

fk,n =9kn — 9kn © T
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where
G (TV2) = kanTx for x€ly, v=0,...,qn, — 1
’
(6") gy 1
Grn(z) =0 for z€(0,1)\ | L
=0

Let ¢, =1/ 12", Similarly as in the proof of Theorem 1 we can define

mn—l
Bl ] - T] U qn— 1£7
fong2)1
BZ,] =17 U I n—14>
l=mmn
lan/2]=mn—1
By j = U g0
t=lan/2]
. an—1
Byj=T7 U Iy
{=[an/2]+mn

7j=0,...qn-1— 1.
For a,, sufficiently big we thus have

1

1
(20) /\(gk,n = mnqn—l) > 5 — €k )‘(gk,n = 0) > 5 — €L

By Theorem 1 there exists a number K, such that for a,,/ qﬁ_l sufficiently big
we can find Fj ,, € Cg, Fin=Grppn—GgnoT,
(i) )‘(Fk,n = fk,n) > 1 — e,
(i) 1 Frnller < Eray_y,
(iii) |Gk,n - gk,n' < €kdn-
Let np = 1 and for £ = 1,2,... let ng be the smallest n for which 12kKk <
gn/qt_;, and (20) holds true. Define

dy = 6" /any, F=dpFrn., Gr=dGrnys fr = difrng 96 = Ak, -

We then have

6" 1
[Fkller < Kia, 1 — < o
In, ~— 2

and for the transfer function g, = dpgy p, of fi we have

|G — gk| < diergn, = "
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The sum F = Y 72, Fj, converges in CP. In the case (3') we can have || Fi||ox <
1/2", hence F € C™.

Recall (see [Schmidt]) that a real number a is an essential value of the cocycle
F iff for every € > 0 and every set B C [0, 1) of positive measure there exists a
positive integer n such that

ABNT BN {Sp(F) € Ue(a)}) > 0

(where Uc(a) denotes the e-neighbourhood of a).
Let us consider the set

B = {z:Vk (gr(2) = mnyqn,—1 or gr(z) = 0)}.
From (20) it follows that A(B) > 0. From the definition of gj, it follows that on B,

1 1 L 1 k 1
gk € (_W’F)UB —Wﬁ” +F),

from this and Theorem 1 (iii) we get

1 1

1
2k—2’ 9k—2 )

- 2k—2"’

1
It is well known (see [Schmidt]) that two cohomologous cocycles (i.e. differing in
a coboundary) have the same sets of essential values.

Since each of the cocycles Fj is a coboundary, we can consider the essential
values of F) = 272, F; instead of F. We have Sp(Fj) = Gj — G o T", hence
on BNT7"B the sum |Sn(F(y))| is either smaller than 1/2%=3 or bigger than

3% —1/2%=2 hence F cannot have any finite essential value other than 0. On
the other hand, along a rigid sequence (7, = [an, /2]qn,—1) F' is attaining values
bigger than 3k/2 on the sets Ij-i-ianfl? 0<j<qn-1—-10<i<][ay,/2]. By
the EVC criterium from [Aaronson, Lemanczyk, Volny], co is thus an essential
value of F'. Therefore, F' is of the type II1j.

Let us suppose that (3) holds. We can do the same construction. The functions
Fy, are from C* and we can guarantee that for every 1 < p < 00, Y 72 || Fx|ler <
00, hence F' € C*°.

Let the assumption (4) be fulfilled. We then define f}, , and g, ,, in the same
way as before. Theorem 2 guarantees the existence of n = n; and a real trigono-
metric polynomial

Sk
Frn(@) = > ce?mitan—1z

l=—s}

with ¢_y = ¢ such that for ¢, = 1/12’“,
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(ii") for My, = EZi_sk lce| we have Mypeskin—1 /q, < ¢, and
(iii) for the transfer functions gy, (of f; ), and Gy, (of Fj ), we have

sup |9k n — Grnl < €kdn-

We define d;, = Gk/an and put F' = Fy ., fr, = [ n, as before, hence G, =

dr G} p, is a transfer function of Fj, and gy, = dygj p, is a transfer function of f}.

Similarly as before we have

|Gk — gkl < dxexan, = 2%
where ANgr = mnyqn,—1) > 1/2 — e, Mg = 0) > 1/2 — €k, M, Gny—1 >
[ank/2k]an_1 > an/2k — 2@, —1. Using the same arguments as before, we
can see that F' is of type I1Iy. The function F' = > 72 Fy, is a trigonometric
polynomial F(z) = 300 ¢, e?™ % with co = 0, c_yp = g, Y020 lcele’ < o0,
hence F'is a real analytic function. O

PrOOF OF THEOREM b: Similarly as in the proof of Theorem 4 we define

1 on [0,mpn/ay)
fkm = -1 on [(14Kk)mn/an, (L +k)mp/an +mn/an)
0 otherwise,

Jk,n is defined in the same way as in the previous case. The transfer function

Gk.n Of fin has a support of measure less or equal than (k + 2)/2F (cf. (47)). We
define the functions Fj, G, in the same way as before. We have

k+2 k
—5 MG = 3/2) > ok

A(|Gr| > 1/2%) <
Hence, by the Borel-Cantelli Lemma, the sum G = Y 72, G}, converges almost
surely; F = G — G o T (where F = 322, F;.). From Gj, > 0, EG}, > (3/2)F/2 it
follows that G is not integrable. O

Remarks.

The type I11y cocycles are constructed also in the papers [Lemanczyk] and
[Hamachi| in this volume.

The constructions from [Kwiatkowski, Lemaniczyk, Rudolph] and [Kwiatkowski,
Lemariczyk, Rudolph, II] allow to construct C*° and analytic cocycles cohomol-
ogous to step cocycles. This way, analytic cocycles which are ergodic or of type
ITIy can be constructed (see [Lemanczyk]). Analytic cocycles which are ergodic
and squashable can be constructed that way, too. The set of rotations for which
the results hold is in all cases smaller than when using Theorem 2 ([Lemanczyk
I1]).

As M. Lemarnczyk informed me, the existence of analytic coboundaries with
nonintegrable transfer functions is also proved in [Katok].
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