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Constructions of smooth and analytic

cocycles over irrational circle rotations

Dalibor Volný

Abstract. We define a class of step cocycles (which are coboundaries) for irrational ro-
tations of the unit circle and give conditions for their approximation by smooth and real
analytic coboundaries. The transfer functions of the approximating (smooth and real
analytic) coboundaries are close (in the supremum norm) to the transfer functions of
the original ones. This result makes it possible to construct smooth and real analytic
cocycles which are ergodic, ergodic and squashable (see [Aaronson, Lemańczyk, Volný]),
of type III0, or which are coboundaries with nonintegrable transfer functions. The
cocycles are constructed as sums of coboundaries.

Keywords: smooth cocycle, real analytic cocycle, transfer function, type III0, ergodic
and squashable, distributions of a cocycle

Classification: 28D05, 11K50, 60F05

1. Introduction

Let us represent the unit circle T as the interval [0, 1) and its irrational rotation
by the transformation T : x 7→ x + α mod 1 (where α ∈ (0, 1) is an irrational
number). By λ we denote the Lebesgue (probability) measure on [0, 1). For any
measurable function f , the transformation Tf : T × R → T × R defined by

Tf (x, y) = (Tx, y + f(x))

preserves the product Lebesgue measure on T × R. Let us denote Sn(f) =
∑n−1

i=0 f ◦ T i, n = 0, 1, . . . . The mapping Z ×T → T defined by (i, x) 7→ Si(f)(x)
for i ≥ 0 and (i, x) 7→ −S−i(f)(x) for i < 0, is called a cocycle. Here (as usually)
we call cocycle the function f . If f can be represented by f = g − g ◦ T where g
is measurable, we say that f is a coboundary and g its transfer function.
A real number a is called essential value of the cocycle f iff for every ǫ > 0 and

every set B ⊂ [0, 1) of positive measure there exists a positive integer n such that

λ(B ∩ T−nB ∩ {Sn(f) ∈ Uǫ(a)}) > 0

This research has been partially supported by the Grant Agency of the Charles University,
grant #GAUK 368
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where Uǫ(a) denotes the ǫ-neighbourhood of a. The cocycle f is ergodic iff all real
numbers are its essential values and it is of type III0 iff ∞ and 0 are the only
essential values (see [Schmidt]).

We shall present a method of construction of smooth or real analytic cocycles
F with a special limit behaviour of Sn(F ).
First, in the next Section, we define a special class of coboundaries f which are
step cocycles (see (5)). The main results (Theorems 1 and 2) show that the step
cocycles defined by (5) can be well approximated by coboundaries F which are
C∞ functions or zero mean real trigonometric polynomials, so that the transfer
functions g, G, of f , F , are also close to each other. Therefore, the limit properties
of Sn(F ) are similar to those of Sn(f).
Then, in the last Section, we apply the approximation results in constructing
smooth and real analytic cocycles F

– for which the distributions of Sn(F ) converge along subsequences to all
probability laws,
– which are of type III0,
– which are coboundaries with nonintegrable transfer functions,
– in [Aaronson, Lemańczyk, Volný], ergodic and squashable smooth and real
analytic cocycles F are found.

Theorem 1 is partially included in the proofs in the paper [Liardet, Volný], where
the result on the convergence of Sn(F ) was proved for F ∈ Cp, 1 ≤ p ≤ ∞
(here we show the simplification of the proof enabled by the use of Theorem 1
and we extend the result to real analytic functions). The construction of smooth
and real analytic coboundaries with nonintegrable transfer functions generalizes
results from [Baggett, Merrill]. The construction of the ergodic and squashable
cocycles in [Aaronson, Lemańczyk, Volný] implicitly uses Theorem 1 (Theorem 2
enables us to extend the results to real analytic cocycles).

Recall that the irrational number α can be represented by the continued frac-
tion expansion α = [0; a1, a2, . . . ] where the positive integers an are called partial
quotients. The convergents pn/qn defined by the recurrent formulas

(1)
p0 = 0, p1 = 1, pn = anpn−1 + pn−2,

q0 = 1, q1 = a1, qn = anqn−1 + qn−2

give an approximation of α.

In the constructions we shall largely use the

Rokhlin towers.

By {x} we denote the fractional part of x, i.e. {x} = x − [x]. For x ∈ [0, 1), ‖x‖
denotes min{x, 1− x}.
From the continued fraction expansion we get two Rokhlin towers: If n is odd,
we have
[{jα}, {(qn−1 + j)α}), j = 0, . . . , qn − 1 and
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[{qnα}, 1), [{(j + qn)α}, {jα}), j = 1, . . . , qn−1 − 1,
for n even we have
[{qn−1α}, 1), [{(j + qn−1)α}, {jα}), j = 1, . . . , qn − 1,
[{jα}, {(qn + j)α}), j = 0, . . . , qn−1 − 1.

In the next we shall for simplicity suppose that n is odd (the cases with n even
are similar).
For 0 ≤ x < 1− ‖qn−1α‖ we thus have T qn−1x = x+ ‖qn−1α‖. Let us denote

(2)

I0 = [0, ‖qn−1α‖), Ii = T iI0, i = 1, . . . , qn − 1,

Ju = [{uα}, {uα}+ an‖qn−1α‖) =

an−1
⋃

i=0

Iu+iqn−1
, u = 0, . . . , qn−1 − 1.

Notice that

(2′)

1

2qn
≤ ‖qn−1α‖ ≤

1

qn
,

1

2qn−1
≤ an‖qn−1α‖ ≤

1

qn−1
.

We shall consider the rotations α with unbounded partial quotients, i.e. with

lim sup
n→∞

qn+1/qn =∞.

For such rotations there exist C1 cocycles which are nontrivial, i.e. are not cobound-
aries (we assume zero mean). This does not hold in the case of bounded partial
quotients; for such rotations there exist nontrivial absolutely continuous cocycles
(cf. [Liardet, Volný]) but none which would also be ergodic and squashable, or of
type III0, has been found.
The condition

(3) lim sup
n→∞

qn+1/qp
n =∞

is necessary and sufficient for the existence of nontrivial cocycles in the space Cp;
if it holds, the set of ergodic (hence nontrivial) cocycles is in Cp dense and Gδ (cf.
e.g. [Baggett, Merrill], [Liardet, Volný]).
The validity of (3) for all positive integers p is necessary and sufficient for the
existence of a nontrivial (and ergodic as well) C∞ cocycle ([Liardet, Volný]).
The last assumption on the rotation we shall use is

(4) lim sup
n→∞

log qn+1/qn =∞.

The positivity of the lim sup is necessary and sufficient for the existence of real
analytic nontrivial cocycles ([Herman]); if they exist, an ergodic one exists, too.
If lim supn→∞ log qn/qn−1 < ∞, we do not know whether a real analytic cocycle
F can also be squashable, whether the distributions of Sn(F ) can converge along
subsequences to all probability laws, whether F can be of type III0.
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2. Approximations of step cocycles

All integrable cocycles will be assumed to have a zero mean. Let f̄ be a step
function on [0, 1), i.e.

f̄ =

m
∑

j=1

bjχ(Bj)

where {B1, . . . , Bm} is a partition of [0, 1), Bi = [xi, xi+1), 0 = x1 < x2 < · · · <

xm+1 = 1, let
∫ 1
0 f̄(x) dx = 0. Define

(5) nf(x) =

qn−1−1
∑

i=0

χJi
f̄(

T−ix

an‖qn−1α‖
).

Suppose that for a positive integer n, all the numbers xi, 0 ≤ i ≤ m + 1, can
be expressed as fractions with denominators an, i.e. anxi are integers. Then

nf
is constant on the sets Ii, 0 ≤ i ≤ qn − 1, and zero out of their union. Since
∫ 1
0 f̄ dλ = 0, we thus have

∑qn−1−1
i=0

nf(T ix) = 0 for every x ∈ I0. Therefore,
nf

is a coboundary with a transfer function ng where

(6)

ng(T ix) = −

i−1
∑

j=0

nf(T jx) for x ∈ I0, 1 ≤ i ≤ qn − 1,

ng(x) = 0 for x ∈ I0 and for x /∈

qn−1
⋃

i=0

Ii.

Moreover, we can derive

1

2
banqn−1max |

nf | ≤ max
k

|Sk(
nf)(x)| ≤ 2qnmax |

nf |

where b is the length of the interval Bj on which |f̄ | attains its maximal value.

Let nf be the cocycle defined by (5), ng its transfer function defined by (6).

Theorem 1. For every ǫ, δ > 0 there exist positive integers k0, K > 0, such that

if an > k0q
p−1
n−1, then there exists a cocycle F ∈ Cp,

(i) F = nf on a set of measure at least 1− ǫ, and |F | ≤ (1 + ǫ)max |f̄ |,
(ii) ‖F‖Cp < Kqp

n−1, and

(iii) for transfer functions ng, G, of the cocycles nf , F , we have
|ng − G| < δ sup |ng| ≤ δqn.
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Theorem 2. For every ǫ, δ > 0 there exists a positive integer k0 such that if
log qn/qn−1 > k0, then there exists a real trigonometric polynomial

F (x) =

s
∑

ℓ=−s

cℓe
2πiℓqn−1x,

(i′) |F − nf | < ǫ on a set of measure greater or equal 1 − ǫ, and |F | ≤
(1 + ǫ)max |f̄ |,

(ii′) for M =
∑s

ℓ=−s |cℓ| we have Mesqn−1/qn < δ,
(iii) for the transfer functions ng, G, of nf , F , we have sup |ng − G| < δqn.

Notice that for any coboundary F with a transfer function G, if there does not
exist d > 0 with G > d or G < −d, then

(7)

sup
m
sup |Sm(F )| ≤ 2 sup |G|,

sup |G| ≤ sup
m
sup |Sm(F )|.

The first inequality immediately follows from F = G − G ◦ T , the second from
∑n−1

i=0 F ◦ T i = G − G ◦ T n and ergodicity of T .
Using (iii) and this observation we can approximate the partial sums Sn(F ) by

Sn(f).

Proof of Theorem 1:

I. First we shall prove the theorem for p = 1.

Let h be a nonnegative C∞ function on R, h ≤ 1, h(0) = h′(0) = 0 = h(1) = h′(1),

h(x) = 0 for x ∈ R \ (0, 1),
∫ 1
0 h(x) dx = 1/c.

H is a periodic function on R with period 2 defined by

H(t) =

{
∫ t
0 h(x) dx on [0, 1]

∫ 1
0 h(x) dx −

∫ t
1 h(x − 1) dx on [1, 2].

There exists a positive integer ν such that

d =

∫ 1

0
(
1

c
− H(x)) dx/

∫ 2ν

0
H(x) dx =

(

1

c
−

∫ 1

0
H(x) dx

)

/

∫ 2ν

0
H(x) dx < ǫ.

For k0 we choose an integer bigger than (4ν + 2)m/ǫ. We shall suppose that n
is fixed and an > k0. Without loss of generality we can (and shall) assume that
ǫ/((4ν + 2)m) is a positive fraction of the type k/an. The functions

nf , ng, will
be denoted by f , g.
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We define

f̃(x) = cbi
(4ν + 2)m

ǫ
h(
(4ν + 2)m

ǫ
(x − xi))

on the intervals [xi, xi +
ǫ

(4ν + 2)m
), i = 1, . . . , m,

f̃(x) = (−1)j+1cdbi
(4ν + 2)m

ǫ
h(
(4ν + 2)m

ǫ
(x − xi −

jǫ

(4ν + 2)m
))

on the intervals [xi +
jǫ

(4ν + 2)m
, xi +

(j + 1)ǫ

(4ν + 2)m
),

i = 1, . . . , m, j = 1, . . . , 2ν,

f̃(x) = (−1)jcdbi
(4ν + 2)m

ǫ
h(
(4ν + 2)m

ǫ
(x − xi+1 +

(2ν + 1− j)ǫ

m(4ν + 2)
))

on the intervals [xi+1 −
(2ν − j + 1)ǫ

(4ν + 2)m
, xi+1 −

(2ν − j)ǫ

(4ν + 2)m
),

i = 2, . . . , m+ 1, j = 0, . . . , 2ν − 1,

f̃(x) = − cbi
(4ν + 2)m

ǫ
h(
(4ν + 2)m

ǫ
(x − xi+1 +

ǫ

(4ν + 2)m
))

on the intervals [xi+1 −
ǫ

(4ν + 2)m
, xi+1), i = 2, . . . , m+ 1,

f̃(x) = 0 otherwise.

For

F̃ (x) =

∫ x

0
f̃(z) dz

and i = 1, . . . , m we have

F̃ (x) = bi on [xi +
ǫ

2m
, xi+1 −

ǫ

2m
),(8)

∫ xi+1

xi

F̃ (z) dz =

∫ xi+1

xi

f̄(z) dz,(9)

|F̃ | ≤ (1 + d)max |f̄ | ≤ (1 + ǫ)max |f̄ |.(10)

Define

f̃∗(x) =

qn−1−1
∑

i=0

1

an‖qn−1α‖
χJi

f̃(
T−ix

an‖qn−1α‖
),

F (x) =

∫ x

0
f̃∗(z) dz.

Let us define

Bi,j = T j(an‖qn−1α‖Bi), 1 ≤ i ≤ m, 0 ≤ j ≤ qn−1 − 1.
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Every Bi,j equals a union
s
⋃

ℓ=r
Ij+ℓqn−1

where 0 ≤ r < s ≤ an, i.e. Bi,j =

s−r
⋃

ℓ=0
T qn−1ℓIj+rqn−1

. For every 0 ≤ j ≤ qn−1 − 1, the sets Bi,j , 1 ≤ i ≤ m, are

disjoint subsets of Jj .
The functions f and F are supported by the sets Bi,j and by (8),

λ(Bi,j ∩ {f 6= F})/λ(Bi,j) ≤ ǫ

for each 1 ≤ i ≤ m, 0 ≤ j ≤ qn−1 − 1. By the definition,
m
⋃

i=1
Bi,j = Jj , 0 ≤ j ≤

qn−1 − 1,
qn−1−1

⋃

j=0
Jj is the support of both f and F . From this, the first part of

(i) follows, and from (10) we get |F | ≤ (1 + ǫ)max |f̄ |.

From the definition of f̃ we can see that

|f̃∗| ≤ max |f̄ |(c+ cd)(4ν + 2)m/(ǫan‖qn−1α‖).

We have an‖qn−1α‖ ≥ 1/(2qn−1), hence

|f̃∗| ≤ max |f̄ | · 2(4ν + 2)(c+ cd)mqn−1/ǫ

which proves (ii) for C1 functions with K = max |f̄ |(c+ cd)2(4ν + 2)m/ǫ.

The function f is a coboundary with a transfer function

(6)

g(T ix) =−

i−1
∑

j=0

f(T jx) for x ∈ I0, 1 ≤ i ≤ qn − 1,

g(x) =0 for x ∈ I0 and for x /∈

qn−1
⋃

i=0

Ii

(recall that we denote nf , ng, by f , g); in the same way, with F at the place of f ,
we define a function

(6′)

G(T ix) =−
i−1
∑

j=0

F (T jx) for x ∈ I0, 1 ≤ i ≤ qn − 1,

G(x) =0 for x ∈ I0 and for x /∈

qn−1
⋃

i=0

Ii.

For any 1 ≤ k ≤ m and 0 ≤ j ≤ qn−1 − 1, there exist 0 ≤ r ≤ s ≤ an such

that Bk,j =
s
⋃

i=r
Ij+iqn−1

. The points T j+ℓqn−1x, r ≤ ℓ ≤ s, x ∈ I0, are the points

from the orbit (T ix)
qn−1
i=0 , which belong to the Bk,j .
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For any x ∈ I0 and 0 ≤ i ≤ qn − 1 we have

(11) F (T ix) − F (T i0) =

∫ T ix

T i0
f̃∗(y) dy.

On the intervals

(xi +
ℓ

an
, xi +

ℓ+ 1

an
) and (xi+1 −

ℓ+ 1

an
, xi+1 −

ℓ

an
),

0 ≤ ℓ/an ≤ ǫ/(2m)− 1/an,

the values of f̃ differ just in the sign (i.e. for t ∈ [0, 1an
), f̃(xi +

ℓ
an
+ t) =

−f̃(xi+1 −
ℓ+1
an
+ t)). For the function f̃∗, the intervals (T j+iqn−10, T j+iqn−1x),

r ≤ i ≤ s, thus occur in pairs on which f̃∗ differ just in the sign (if it is nonzero).
From this and from (11) it follows that

s
∑

i=r

(

F (T j+iqn−10)− F (T j+iqn−1x)
)

= 0 for every x ∈ I0,

hence
∫

Bk,j

F (y) dy = λ(I0)
s

∑

ℓ=r

F (T j+ℓqn−10)

The function f is constant on the sets Bk,j , therefore

∫

Bk,j

f(y) dy = λ(I0)

s
∑

ℓ=r

f(T j+ℓqn−10).

By (9) we have
∫

Bk,j

F (x) dx =

∫

Bk,j

f(x) dx

for every 1 ≤ k ≤ m, 0 ≤ j ≤ qn−1 − 1, hence for every x ∈ I0,

s
∑

i=r

F (T j+iqn−1x) =
s

∑

i=r

f(T j+iqn−1x).

From this and Sqn(f) = 0 (recall f =
nf) it follows that Sqn(F )(x) = 0 for every

x ∈ I0, hence F is a coboundary with transfer function G (defined by (6′)). By
the definition of F we have |F | ≤ (1 + d)max |f | and by (i), λ(F 6= f) ≤ ǫ, hence
by (6), (6′) we get |G − g| ≤ ǫ(1 + d)max |f | · qn. From this, (iii) follows.

II. Next we shall prove the theorem for a general p.

Let us define a class of C∞ functions
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H = {h ∈ C∞ on R, h ≤ 1, h(0) = h′(0) = 0 = h(1) = h′(1), h(x) = 0

for x ∈ R \ (0, 1),
∫ 1
0 h(x) dx > 0}.

P is a set of positive integers p such that

(12) For all h ∈ H there exist numbers 0 < η1 < η2, η2 < t1 < t2 · · · < tk <

1− η2, ti+1 − ti ≥ η2 for i = 1, . . . , k − 1, ∃k0 ∈ N, K > 0, ∀an > k0q
p−1
n−1

∃ γ1, . . . , γk ∈ R, 0 < η1 < η < η2, anη ∈ N, such that for the function f̃
on [0, 1] defined by

f̃(t) =

k
∑

i=1

γih((t − ti)/η)

the p-th indefinite integral F of

(13) f̃∗(t) = (
1

an‖qn−1α‖
)p

qn−1−1
∑

i=0

χJi
(t)f̃(

T−it

an‖qn−1α‖
)

satisfies (i)-(iii):
(i) F = nf on a set of measure at least 1− ǫ and |F | ≤ (1 + ǫ)max |f̄ |,
(ii) ‖F‖Cp < Kq

p
n−1,

(iii) for transfer functions ng, G, of the cocycles nf , F , we have |ng −G| <
δ sup |ng| ≤ δqn.

In the first part of the proof we showed that 1 ∈ P . By induction we shall
prove that all positive integers belong to P .

Suppose that p ≥ 1, p ∈ P . Let h ∈ H,

h1(x) =











h(2x) for x ∈ [0, 1/2)

−h(2x − 1) for x ∈ [1/2, 1)

0 for x ∈ R \ (0, 1),

H(t) =

∫ t

0
h1(x) dx, t ∈ R.

Then H ∈ H. By the assumptions there exist numbers η > 0, η < t1 < · · · <
tk < 1− η, and γ1, . . . , γk ∈ R, such that for

f̃(t) =
k

∑

i=1

γiH((t − ti)/η)
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and f̃∗ derived from f̃ by (13), the p-th indefinite integral of f̃∗ satisfies (i)-(iii)
with a constant K = K(H) in (ii).
We have

f̃∗′ =
1

an‖qn−1α‖
f̃ ′∗,

hence the (p + 1)-st indefinite integral of f̃ ′∗/(an‖qn−1α‖) satisfies (i)-(iii); the
constant K in (ii) is less or equal to 2K(H) (cf. (2′)).

It remains to show that f̃ ′ can be expressed like in (12). Suppose that anη/2 ∈
N (here we have to increase k0) and define η′ = η/2. We define

t′i = t(i+1)/2 for i odd, t′i = ti/2 +
η

2
for i even,

γ′i = ηγ(i+1)/2 for i odd, ηγ′i = ti/2 +
η

2
for i even,

1 ≤ i ≤ 2k.
Then

f̃ ′(t) =

k
∑

i=1

γiH
′((t − ti)/η)

=

k
∑

i=1

(1

η
h(2(t − ti)/η)χ{0≤(t−ti)/η≤1/2}−

−
1

η
h(2(t − (ti + η/2))/η)χ{1/2≤(t−ti)/η≤1}

)

=

2k
∑

i=1

γ′ih((t − t′i)/η′).

Therefore, p+ 1 ∈ P . This finishes the proof. �

Proof of Theorem 2: All functions used here are to be understood as 1-
periodic functions on R. Let

P (x) =

s
∑

ℓ=−s

cℓe
2πiℓx,

where c0 = 0, c−ℓ = c̄ℓ, i.e. P is a real, zero mean trigonometric polynomial. P
is chosen so that

λ(|P − f̄ | ≥ ǫ) < ǫ/2, |P | ≤ (1 + ǫ)max |f̄ |.

There exists k0 such that if log qn/qn−1 > k0, then (ii
′) Mesqn−1/qn < δ, where

M =
∑s

ℓ=−s |cℓ|, and also

if log qn/qn−1 > k0, then 4sqn−1M < ǫqn and 2qn−1 sup |f̄ | < ǫqn.

The function F is defined by

F (x) = P (xqn−1) =

s
∑

ℓ=−s

cℓe
2πiℓqn−1x.
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For f̃(x) = f̄(xqn−1) we thus have

λ(|F − f̃ | ≥ ǫ) < ǫ/2, |F | ≤ (1 + ǫ)max |f̄ |.

Each of the functions f , f̃ , has at most qn−1(m + 1) points of discontinuity. By
[Khinchine],

|α −
pn

qn
| <

1

qnqn+1
,

hence the points {iα}, 0 ≤ i ≤ qn − 1 differ from ipn/qn by less than 1/qn ({x}

denotes the fractional part of x, i.e. x− [x]). The points of discontinuity of f , f̃ ,
are thus distant by less than 1/qn, hence

λ(|f − f̃ | ≥ ǫ) < qn−1
2(m+ 1)

qn
;

for n sufficiently big we have

λ(|F − f | ≥ ǫ) < ǫ,

i.e. (i′) holds.

It is well known that for trigonometric polynomials the equation F = G−G◦T
has a solution

G(x) =

s
∑

ℓ=−s

cℓ

1− e2πiℓα
e2πiℓx,

hence F is a coboundary.
We are going to prove (iii), i.e. to give an upper estimate for |G − g|.
Recall that

(7)

sup
m
sup |Sm(F )| ≤ 2 sup |G|,

sup |G| ≤ sup
m
sup |Sm(F )|.

We shall prove that

∀m ∃ 0 ≤ m′ ≤ qn − 1 |Sm(F )− Sm′(F )| ≤ 4sqn−1M,(14)

∀u ∃ 0 ≤ u′ ≤ qn − 1 |g − g ◦ T u−u′

| ≤ 2qn−1 sup |f | = 2qn−1 sup |f̄ |.(15)

Then we can estimate |G − g| using suprema of the sums Sk(F ), Sk(f), 0 ≤ k ≤
qn − 1.
Let us prove (14):

From the equalities qm = amqm−1+ qm−2 it follows that for every integer u ≥ qn

there exist denominators qn+r−1 ≤ u < qn+r and 0 ≤ u′ ≤ qn−1 and nonnegative
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integers 0 ≤ b1 ≤ an+1, 0 ≤ b2 ≤ an+2,. . .,0 ≤ br ≤ an+r where ai are partial
quotients of α and 1 ≤ r, such that

u = u′ + b1qn + · · ·+ brqn+r−1

(this is a special case of the Ostrowski’s formula, cf. also [Herman, p. 101]).
Because |1 − e2πiqmα| ≤ 1/qm+1 (see [Kuipers, Niederreiter, pp. 122–123]), for
any positive integer m ≥ n, −sqn−1 ≤ j ≤ sqn−1, and 0 ≤ v ≤ am+1, we have

|1− e2πijvqmα| ≤
sqn−1am+1

qm+1
,

hence

|Sv·qm+ℓ(e
2πijx)− Sℓ(e

2πijx)| = |
1− e2πijvqmα

1− e2πijα
| ≤

1

|1− e2πijα|

sqn−1am+1

qm+1
.

From this and from qm+1 ≥ qmam+1 (cf. (1)) we get

|Sv·qm+ℓ(e
2πijx)− Sℓ(e

2πijx)| ≤
1

|1− e2πijα|

sqn−1

qm
,

hence

|Su(e
2πijx)− Su′(e2πijx)| ≤

sqn−1

|1− e2πijα|
(
1

qn
+
1

qn+1
+ . . . ).

For a positive constant L = 1/qn+1/qn+1+ . . . we thus have |Su(F )−Su′(F )| ≤
sqn−1Mqn(1/qn + 1/qn+1 + . . . ) ≤ Lsqn−1M . From (1) it follows that L ≤ 4.
This finishes the proof of (14).

Proof of (15):
Recall that f is suppposed to be constant on the sets Ii, 0 ≤ i ≤ qn − 1 and

(6)

g(T vx) = −
v−1
∑

i=0

f(T ix) for x ∈ I0, v = 0, . . . , qn − 1

g(x) = 0 for x ∈ [0, 1) \

qn−1
⋃

i=0

Ii.

We have |Su(f)− Su′(f)| = |g ◦ T u − g ◦ T u′

| = |g − g ◦ T u−u′

|.
Following [Stewart]

‖(b1qn + · · ·+ brqn+r−1)α‖ ≤ ‖qn−1α‖.

Therefore, x 7→ T u−u′

x = x+ β mod 1 where β ≤ ‖qnk−1α‖ ≤ 1/qnk
.

For x ∈ I0 we have
∑qn−1

i=0 f(T ix) = 0, Ii and Ii+qn−1
are adjacent, 0 ≤ i ≤
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qn− qn−1−1, and the sets from the smaller Rokhlin tower are adjacent to Ii with
i ≤ qn−1 − 1 or i ≥ qn − qn−1 − 1.
Therefore, |Su(f)− Su′(f)| ≤ 2qn−1 sup |f |, which proves (15).

Because |F − f | ≤ ǫ,

max
0≤k≤qn−1

|Sk(F − f)(x)| ≤ qnǫ.

From this, (14), and (15), it follows that

max
0≤k

|Sk(F − f)(x)| ≤ qnǫ+ 4sqn−1M + 2qn−1 sup |f̄ |.

For k0 ≤ log qn/qn−1 we have 4sqn−1M < ǫqn and 2qn−1 sup |f̄ | < ǫqn, hence
max0≤k |Sk(F − f)(x)| ≤ 3qnǫ, which proves (iii) and thus finishes the proof of
the theorem. �

3. Applications

The set of applications of Theorems 1 and 2 which we exhibit here is rather
aimed to show the possibilities than to exhaust them.
The coboundary nf defined by (5) has a specific feature: If k < jqn−1,

nf ◦T k

is the function nf shifted by less than j/qn (cf. (2
′)), hence for k/qn small, Sk(

nf)
is close to knf .

Theorem 3. Let the irrational number α satisfy one of the assumptions:

(3) lim supn→∞ qn+1/qp
n =∞ where p is a positive integer,

(3′) lim supn→∞ qn+1/q
p
n =∞ for all positive integers p,

(4) lim supn→∞ log qn+1/qp
n =∞.

Then there exists a cocycle F such that the distributions of the partial sums
Sn(F ) weakly converge along subsequences (nk) to all probability laws. If (3

′)
holds, F can be found in Cp, and if (4) holds, F can be found real analytic.

Proof: The set of all probability measures on R with finite supports is a dense
set in the space of all probability measures on R equipped with the topology of
weak convergence. The space is separable, hence there exists a sequence f̄k, k =

1, 2, . . . , of step functions on [0, 1) the distributions λ◦ f̄−1
k of which form a dense

set. For a sequence nk → ∞ of positive integers, let the functions nkfk be defined
by (5). We shall simplify the notation and denote them by fk. J0, . . . , Jqn−1−1

are the sets on T defined by (2). Define λJj
by λJj

(E) = λ(Jj ∩E)/λ(Jj). Then

the distributions λJj
◦ f−1

k are the same as the distributions λ ◦ f̄−1
k . For ank

big, the smaller Rokhlin tower (see the Introduction) has small measure. For hk

converging in the measure to h, the distributions λ◦h−1k weakly converge to λ◦h−1

(cf. e.g. [Billingsley]). For ank
→ ∞ and ǫk → 0, for λ(hnk

= nkfk) > 1 − ǫk,

the sequence λ ◦ h−1nk
, k = 1, 2, . . . , is thus dense in the space of all probability

measures.
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Let 1 ≤ p < ∞. We shall recursively costruct sequences of numbers nk → ∞,
ǫk → 0, and coboundaries Fk, such that (16.1)-(16.4) hold.

Theorem 1 guarantees the existence of γk such that if qn/qp−1
n−1 > γk, then there

exists a number Kk > 0 and a coboundary Fk for which

(i) Fk =
nf on a set of measure at least 1− ǫk,

(ii) ‖Fk‖Cp < Kkq
p
n−1, and

(iii) for transfer functions ngk, Gk, of
nfk, Fk, and δk = ǫ2k, we have

|ngk − Gk| < δk sup |
ngk| ≤ δkqn.

We choose γk > Kk/ǫ2k.
Let us put n1 = 1 = ǫ1 and F1 = 0. Suppose that k ≥ 2 and ǫ1, . . . , ǫk−1,
n1, . . . , nk−1, and coboundaries F1, . . . , Fk−1 were defined. G1, . . . , Gk−1 are
their transfer functions. We define ǫk, nk, so that

ǫk ≤ ǫk−1, ǫk ≤ 1/2k+1, ǫkǫk−1ank−1
qnk−1−1 < 1/2k(16.1)

ǫkank
is an integer.(16.2)

∑k−1
j=1 Fj is a coboundary with a transfer function

∑k−1
j=1 Gj , T ǫkank

qnk−1 rep-

resents a rotation by less than ǫk, hence we can choose ǫk sufficiently small so
that

(16.3) λ(|Sǫkank
qnk−1

(

k−1
∑

j=1

Fj

ǫjanjqnj−1
)| ≥ 1/2k) < 1/2k.

We choose nk such that

(16.4) nk > nk−1, qnk
/q

p
nk−1

> γk.

From this and qnk
≤ 2ank

qnk−1 (see (1)) it follows

‖
Fk

ǫkank
qnk−1

‖Cp ≤
Kkq

p
nk−1

ǫkank
qnk−1

≤
2Kkq

p
nk−1

ǫkqnk

≤
2Kk

ǫkγk
< 2ǫk,

hence the sum F =
∑∞

k=1 Fk/(ǫkank
qnk−1) converges in Cp. We also have

|Fk/(ǫkank
qnk−1)| ≤ 2ǫk. From this and from (16.1) we get

|Sǫkank
qnk−1

(

∞
∑

j=k+1

Fj

ǫjanjqnj−1
)| ≤

∞
∑

j=k+1

1

2j
≤
1

2k
.

From this inequality and from (16.3) it follows that

(17) λ(|Sǫkank
qnk−1

(F −
Fk

ǫkank
qnk−1

)| ≥
1

2k−1
) <

1

2k
.
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From the definition of fk (see (5)) and (2), (2
′) we get

(18) λ(Sǫkank
qnk−1

(fk) = ǫkank
qnk−1fk) ≥ 1− ǫk.

By Theorem 1 (iii) and (7),

(19) sup
m
sup

1

ǫkank
qnk−1

|Sm(fk − Fk)| ≤
δkqnk

ǫkank
qnk−1

≤ 2ǫk → 0,

hence the distributions of Sǫkank
qnk−1

(Fk/(ǫkank
qnk−1)) form a dense set in the

space of all probability measures.
Therefore (cf. (17)), the distributions of Sǫkank

qnk−1
(F ) form a dense set in the

space of all probability measures as well. This finishes the proof for 1 ≤ p < ∞.

If lim supn→∞ qn+1/qp
n = ∞ for all positive integers p, we can construct

the functions Fk so that as before, the distributions of Sǫkank
qnk−1

(F ) weakly

converge to all probability measures and for each positive integer p we have
∑∞

k=1 ‖Fk‖Cp < ∞, hence F ∈ C∞.

If the assumption (4) holds, Theorem 2 enables us to construct similarly as
before a sum F of trigonometric polynomials Fk such that the distributions of the
partial sums Sn(F ) weakly converge along subsequences to all probability laws:
For nk → ∞ and ǫk → 0 we approximate the functions nkfk by real trigonometric
polynomials Fk(x) =

∑sk

ℓ=−sk
cℓe
2πiℓx and define

F (x) =
∑∞

k=1 Fk(x)/(ǫkank
qnk−1).

By Theorem 2 (ii′) forMk =
∑sk

ℓ=−sk
|cℓ|,Mkeskqnk−1/qnk

< ǫk, we can choose

ǫk and nk so that F (x) =
∑∞

k=1 Fk(x) =
∑∞

ℓ=−∞ cℓe
2πiℓx where

∑∞
ℓ=−∞ |cℓ|e

|ℓ| <
∞, hence F is real analytic.
Similarly as before, choosing recursively the numbers ǫk we can guarantee

|Sǫkank
qnk−1

(
∞
∑

j=k+1

Fj

ǫjanjqnj−1
)| ≤

1

2k
.

Any trigonometric polynomial (of zero mean) is a coboundary, hence we can
similarly as before guarantee (16.3). Therefore, (17) holds. We have (18) and by
Theorem 2 (iii) we get (19). The distributions of Sǫkank

qnk−1
(Fk/(ǫkank

qnk−1))

thus form a dense set in the space of all probability measures, hence the same
holds for F . �

In the case (3), F can be found absolutely continuous (but not Lipschitz) or
Lipschitz (but not C1). An easy way of doing so is to use in the proof of Theorem 1
step or integrable functions for h (instead of a C∞ function). As it was said in the
introduction, for absolutely continuous, Lipschitz, and Cp, 1 ≤ p ≤ ∞, cocycles
the result was proved in [Liardet, Volný]. The construction is based on the same



760 D.Volný

ideas there. It can be, moreover, easily proved that the cocycles whose existence
is given by Theorem 3, form in the spaces Cp, 1 ≤ p ≤ ∞, as well as in the spaces
of absolutely continuous and of Lipschitz functions, a dense Gδ set. (The proof is
based on the fact that in those spaces, the coboundaries are dense; the same idea
was used for Lp spaces in [Volný].) As shown in [Liardet, Volný], Theorem 3 has
immediate implication to the rate of convergence in the ergodic theorem. It is
shown there, moreover, that the bounds given by Theorem 3 are the best possible.
This gives an impression that in cases where Theorem 3 cannot be applied (e.g.
for rotations with bounded partial quotients), the result does not hold. The same
might be the case of the next theorem as well.

Theorem 4. Let the assumption (3) or (3′) or (4) of Theorem 3 hold. Then
there exists a cocycle F of type III0; if (3

′) holds, F can be found in C∞, and if
(4) holds, F can be found real analytic. In the case (3), F can be found absolutely
continuous (but not Lipschitz) or Lipschitz (but not C1).

Theorem 5. Let the assumption (3) or (3′) or (4) of Theorem 3 hold. Then
there exists a coboundary F with non-integrable transfer function; if (3′) holds,
F can be found in C∞, and if (4) holds, F can be found real analytic. In the case
(3), F can be found absolutely continuous (but not Lipschitz) or Lipschitz (but
not C1).

Remark. In [Liardet, Volný, Theorem 5, (13)], it is shown that if for a positive
integer p we have lim supn→∞ qn+1/qp

n < ∞, then for F ∈ Cp with zero mean the

integrals
∫ 1
0 (Sn(F ))

2 dλ are uniformely bounded, hence (see [Parry, Tuncel]) F is
a coboundary with a square integrable transfer function. Hence, for 1 ≤ p ≤ ∞,
in Cp there exists a nontrivial cocycle if and only if there exists a coboundary with
a nonintegrable transfer function.

Proof of Theorem 4: We shall construct the cocycles as sums of coboundaries
F =

∑∞
k=1 Fk.

Let us suppose that (3) holds, 1 ≤ p < ∞.

Let k be a positive integer. Take n such that qn > q
p
n−1 and define mn = [an/2k]

where [x] denotes the integer part of x. Define

f̄k,n =











1 on [0, mn/an)

−1 on [[an/2]/an, [an/2]/an +mn/an)

0 otherwise.

Then we can define fk,n in the same way as in (5); fk,n is then constant on the
sets Ii, 0 ≤ i ≤ qn − 1, from the Rokhlin tower, and zero out of their union.

Moreover,
∑qn−1

i=0 fk,n(x) = 0 for all x ∈ I0, hence

fk,n = gk,n − gk,n ◦ T
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where

(6′)

gk,n(T
vx) = −

v−1
∑

i=0

fk,n(T
ix) for x ∈ I0, v = 0, . . . , qnk

− 1

gk,n(x) = 0 for x ∈ [0, 1) \

qnk
−1

⋃

i=0

Ii.

Let ǫk = 1/12
k. Similarly as in the proof of Theorem 1 we can define

B1,j = T j
mn−1

⋃

ℓ=0
Iqn−1ℓ,

B2,j = T j
[an/2]−1

⋃

ℓ=mn

Iqn−1ℓ,

B3,j = T j
[an/2]=mn−1

⋃

ℓ=[an/2]

Iqn−1ℓ,

B4,j = T j
an−1
⋃

ℓ=[an/2]+mn

Iqn−1ℓ,

j = 0, . . . qn−1 − 1.
For an sufficiently big we thus have

(20) λ(gk,n = mnqn−1) >
1

2
− ǫk, λ(gk,n = 0) >

1

2
− ǫk.

By Theorem 1 there exists a number Kk such that for an/q
p
n−1 sufficiently big

we can find Fk,n ∈ Cp
0 , Fk,n = Gk,n − Gk,n ◦ T ,

(i) λ(Fk,n = fk,n) > 1− ǫk,

(ii) ‖Fk,n‖Cp < Kkqp
n−1,

(iii) |Gk,n − gk,n| < ǫkqn.

Let n0 = 1 and for k = 1, 2, . . . let nk be the smallest n for which 12kKk <
qn/qp

n−1, and (20) holds true. Define

dk = 6
k/qnk

, Fk = dkFk,nk
, Gk = dkGk,nk

, fk = dkfk,nk
, gk = dkgk,nk

.

We then have

‖Fk‖Cp ≤ Kkq
p
nk−1

6k

qnk

≤
1

2k

and for the transfer function gk = dkgk,nk
of fk we have

|Gk − gk| < dkǫkqnk
=
1

2k
.
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The sum F =
∑∞

k=1 Fk converges in Cp. In the case (3′) we can have ‖Fk‖Ck ≤

1/2k, hence F ∈ C∞.

Recall (see [Schmidt]) that a real number a is an essential value of the cocycle
F iff for every ǫ > 0 and every set B ⊂ [0, 1) of positive measure there exists a
positive integer n such that

λ(B ∩ T−nB ∩ {Sn(F ) ∈ Uǫ(a)}) > 0

(where Uǫ(a) denotes the ǫ-neighbourhood of a).
Let us consider the set

B = {x : ∀k (gk(x) = mnk
qnk−1 or gk(x) = 0)}.

From (20) it follows that λ(B) > 0. From the definition of gk it follows that on B,

gk ∈ (−
1

2k−1
,
1

2k−1
) ∪ (3k −

1

2k−1
, 3k +

1

2k−1
);

from this and Theorem 1 (iii) we get

Gk ∈ (−
1

2k−2
,
1

2k−2
) ∪ (3k −

1

2k−2
, 3k +

1

2k−2
).

It is well known (see [Schmidt]) that two cohomologous cocycles (i.e. differing in
a coboundary) have the same sets of essential values.
Since each of the cocycles Fk is a coboundary, we can consider the essential
values of F(k) =

∑∞
j=k Fj instead of F . We have Sn(Fj) = Gj − Gj ◦ T n, hence

on B ∩ T−nB the sum |Sn(F(k))| is either smaller than 1/2
k−3 or bigger than

3k − 1/2k−2, hence F cannot have any finite essential value other than 0. On
the other hand, along a rigid sequence (rk = [ank

/2]qnk−1) F is attaining values

bigger than 3k/2 on the sets Ij+iqnk−1
, 0 ≤ j ≤ qnk−1 − 1, 0 ≤ i ≤ [ank

/2]. By

the EVC criterium from [Aaronson, Lemańczyk, Volný], ∞ is thus an essential
value of F . Therefore, F is of the type III0.

Let us suppose that (3′) holds. We can do the same construction. The functions
Fk are from C∞ and we can guarantee that for every 1 ≤ p < ∞,

∑∞
k=1 ‖Fk‖Cp <

∞, hence F ∈ C∞.

Let the assumption (4) be fulfilled. We then define fk,n and gk,n in the same
way as before. Theorem 2 guarantees the existence of n = nk and a real trigono-
metric polynomial

Fk,n(x) =

sk
∑

ℓ=−sk

cℓe
2πiℓqn−1x

with c−ℓ = c̄ℓ such that for ǫk = 1/12
k,



Constructions of smooth and analytic cocycles over irrational circle rotations 763

(ii′) for Mk =
∑sk

ℓ=−sk
|cℓ| we have Mkeskqn−1/qn < ǫk, and

(iii) for the transfer functions gk,n (of fk,n), and Gk,n (of Fk,n), we have
sup |gk,n − Gk,n| < ǫkqn.

We define dk = 6
k/qnk

and put F = Fk,nk
, fk = fk,nk

as before, hence Gk =
dkGk,nk

is a transfer function of Fk and gk = dkgk,nk
is a transfer function of fk.

Similarly as before we have

|Gk − gk| < dkǫkqnk
=
1

2k
.

where λ(gk = mnk
qnk−1) > 1/2 − ǫk, λ(gk = 0) > 1/2 − ǫk, mnk

qnk−1 >

[ank
/2k]qnk−1 > qnk

/2k − 2qnk−1. Using the same arguments as before, we
can see that F is of type III0. The function F =

∑∞
k=1 Fk is a trigonometric

polynomial F (x) =
∑∞

ℓ=−∞ cℓe
2πiℓx with c0 = 0, c−ℓ = c̄ℓ,

∑∞
ℓ=0 |cℓ|e

ℓ < ∞,
hence F is a real analytic function. �

Proof of Theorem 5: Similarly as in the proof of Theorem 4 we define

f̄k,n =











1 on [0, mn/an)

−1 on [(1 + k)mn/an, (1 + k)mn/an +mn/an)

0 otherwise,

fk,n is defined in the same way as in the previous case. The transfer function

gk,n of fk,n has a support of measure less or equal than (k + 2)/2
k (cf. (4′)). We

define the functions Fk, Gk in the same way as before. We have

λ(|Gk | > 1/2k) ≤
k + 2

2k
, λ(Gk ≥ 3k/2) ≥

k

2k
.

Hence, by the Borel-Cantelli Lemma, the sum G =
∑∞

k=1Gk converges almost

surely; F = G − G ◦ T (where F =
∑∞

k=1 Fk). From Gk ≥ 0, EGk ≥ (3/2)k/2 it
follows that G is not integrable. �

Remarks.
The type III0 cocycles are constructed also in the papers [Lemańczyk] and

[Hamachi] in this volume.
The constructions from [Kwiatkowski, Lemańczyk, Rudolph] and [Kwiatkowski,

Lemańczyk, Rudolph, II] allow to construct C∞ and analytic cocycles cohomol-
ogous to step cocycles. This way, analytic cocycles which are ergodic or of type
III0 can be constructed (see [Lemańczyk]). Analytic cocycles which are ergodic
and squashable can be constructed that way, too. The set of rotations for which
the results hold is in all cases smaller than when using Theorem 2 ([Lemańczyk
II]).
As M. Lemańczyk informed me, the existence of analytic coboundaries with

nonintegrable transfer functions is also proved in [Katok].
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tations, IHES Publications Math. 49 (1979), 5–234.

[7] Katok, Constructions in Ergodic Theory, manuscript.
[8] Khinchine, Continued Fractions, P. Noordhoff, Ltd., Groningen, 1963.
[9] Kuipers L., Niederreiter H., Uniform Distribution of Sequences, Wiley, New York, 1974.
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