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Applications of the spectral

radius to some integral equations

Miros lawa Zima

Abstract. In the paper [13] we proved a fixed point theorem for an operator A, which
satisfies a generalized Lipschitz condition with respect to a linear bounded operator A,
that is:

m(Ax −Ay) ≺ Am(x − y).

The purpose of this paper is to show that the results obtained in [13], [14] can be
extended to a nonlinear operator A.
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1. Fixed point theorem

Let X be a Banach space. An operator A : X → X is said to be linearly
bounded if (analogously to a linear operator)

∃M>0 ∀x∈X ‖Ax‖ ≤ M‖x‖.

This definition implies that A vanishes at zero. The number

‖A‖ = inf{M > 0 : ‖Ax‖ ≤ M‖x‖, x ∈ X}

we call the norm of A. Since, as in the case of linear operator,

‖An+m‖ ≤ ‖An‖ ‖Am‖,

there exists the limit

(1) r(A) = lim
n→∞ ‖An‖1/n.

We call r(A) the generalized spectral radius of A. If we assume additionally that
A is a positively homogeneous operator then the following formula holds:

(2) ‖A‖ = sup
‖x‖=1

‖Ax‖.

Let (X, ‖ · ‖,≺, m) denote a Banach space of elements x ∈ X , with a binary
relation ≺ and a mapping m : X → X . We shall assume that:

1◦ the relation ≺ is transitive,
2◦ θ ≺ m(x) and ‖m(x)‖ = ‖x‖ for all x ∈ X ,
3◦ the norm ‖ · ‖ is monotonic, that is, if θ ≺ x ≺ y then ‖x‖ ≤ ‖y‖.

Now we can formulate a variant of Banach’s contraction principle.
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Theorem 1. In the Banach space considered above, let the operators A : X →
X , A : X → X be given with the following properties:

4◦ A is linearly bounded and r(A) < 1,
5◦ A is positively increasing, that is, if θ ≺ x ≺ y then Ax ≺ Ay,

6◦ m(Ax −Ay) ≺ Am(x − y) for all x, y ∈ X .

Then the equation
Ax = x

has a unique solution in the set X .

The proof of Theorem 1 is analogous to that of Theorem 1 [13], so it can be
omitted. Similar theorems can be found in [5], [8], [9], [11].

2. An integral-functional equation

In this section we shall show an application of Theorem 1 to an integral-
functional equation. Consider the equation

(3) x(t) =

∫ t

0
f
(

s, max
[0,

√
s]
{x(τ)}

)

ds, t ∈ [0, T ], T ≥ 1.

We show that under suitable assumptions the equation (3) has exactly one solution
in the set of continuous functions on the interval [0, T ].

Remark. The equation (3) can be considered with connection to the Cauchy
problem

x′(t) = f
(

t, max
[0,

√
t]
{x(τ)}

)

, t ∈ [0, T ], T ≥ 1,

x(0) = 0.

Differential equations with maxima or suprema were studied for example in the

papers [3], [6] and in the monograph [1].

Theorem 2. Suppose that

7◦ f : [0, T ] × R → R is a continuous function and satisfies the Lipschitz

condition
|f(t, x)− f(t, y)| ≤ L(t)|x − y|,

where L is continuous and non-negative function on the interval [0, T ],
8◦ max[0,T ] L(t) < 2.

Under the assumptions 7◦–8◦ the equation (3) has a unique solution in the set of
continuous functions on the interval [0, T ].

Proof: We set the Banach space (X, ‖·‖,≺, m) from Theorem 1 as follows: let X
be a set of continuous functions on [0, T ], ‖x‖ = max[0,T ] |x(t)| and (m(x))(t) =
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|x(t)| for t ∈ [0, T ]. Moreover, we say that x ≺ y if and only if x(t) ≤ y(t) for all
t ∈ [0, T ]. Obviously, the conditions 1◦–3◦ are satisfied in this case. Consider the
operator

(4) (Ax)(t) =

∫ t

0
f
(

s, max
[0,

√
s]
{x(τ)}

)

ds, t ∈ [0, T ], T ≥ 1.

To prove Theorem 2 we shall show that A has a unique fixed point in X . From
7◦ it follows that

(5)

|(Ax)(t) − (Ay)(t)| ≤

∫ t

0
L(s)| max

[0,
√

s]
{x(τ)} − max

[0,
√

s]
{y(τ)}| ds

≤

∫ t

0
L max
[0,

√
s]
|x(τ) − y(τ)| ds,

where L = max[0,T ] |L(t)|. Let

(6) (Ax)(t) =

∫ t

0
L max
[0,

√
s]
|x(τ)| ds, t ∈ [0, T ].

The operator (6) maps X into X and it is linearly bounded. Moreover, in view
of (5), the condition 6◦ of Theorem 1 is fulfilled. It remains to show that the
spectral radius of the operator (6) is less than 1. Observe that

(A2x)(t) =

∫ t

0
L max
[0,

√
s]

∣

∣

∣

∫ τ

0
L max
[0,

√
s1]

|x(τ1)| ds1

∣

∣

∣
ds

= L2
∫ t

0

∫

√
s

0
max
[0,

√
s1]

|x(τ1)| ds1 ds.

Continuing this process, we get

(Anx)(t) = Ln
∫ t

0

∫

√
s1

0
· · ·

∫

√
sn−1

0
max
[0,

√
sn]

|x(τ)| dsn dsn−1 . . . ds1.

Thus

‖Anx‖ ≤ Ln 2

3
·
4

7
· . . . ·

2n−1

2n − 1
T
2
n
−1

2n−1 ‖x‖

and

‖An‖1/n ≤ L
(2

3
·
4

7
· . . . ·

2n−1

2n − 1
T
2
n
−1

2n−1

)1/n
.

Therefore r(A) ≤ L
2 . By the assumption 8

◦, r(A) < 1. Hence, in virtue of
Theorem 1, the operator (4) has a unique fixed point in X . This completes the
proof of Theorem 2. �
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3. A method of evaluation of the generalized spectral radius

Evaluation of the spectral radius of a linearly bounded operator by defini-
tion (1) is not easy. It is known that if A is a linear bounded operator then we
can use the formula

(7) r(A) = lim
n→∞

‖Anx0‖
1/n,

where x0 is a suitably chosen element of a Banach space (see [2], [4]). We shall
show that (7) holds also for some nonlinear operators.
Let S(X) denote a class of linearly bounded operators A : X → X satisfying

the following implication

(8)
(

lim sup
n→∞

‖Anx‖1/n ≤ a
)

=⇒ (r(A) ≤ a), x ∈ X.

Particularly, the linear bounded operators belong to S(X) (see [10]). It is easy to
show that the linearly bounded and positively homogeneous operators for which
there exists x ∈ X , ‖x‖ = 1 such that for n ∈ N ‖An‖ = ‖Anx‖, belong to S(X),
too. Indeed, if A is linearly bounded and positively homogeneous then (2) holds.

Suppose, on the contrary, that lim supn→∞ ‖Anx‖1/n ≤ a and r(A) > a, that is,
there exists δ > 0 such that r(A) ≥ a + δ. Then there exists N1 ∈ N such that
for n > N1

‖An‖ ≥
(

a+
δ

2

)n
.

On the other hand, it follows from lim supn→∞ ‖Anx‖1/n ≤ a that for x there
exists N2 ∈ N such that for n > N2

‖Anx‖ ≤
(

a+
δ

4

)n
.

Put n0 = max(N1, N2) + 1. Then

(9) ‖An0‖ = sup
‖x‖=1

‖An0x‖ = ‖An0 x‖ ≥
(

a+
δ

2

)n0
.

and

‖An0 x‖ ≤
(

a+
δ

4

)n0
,

contrary to (9).
Let K be a solid and normal cone in a Banach space X . For x0 ∈ int K we

define ‖ · ‖x0-norm of an element x ∈ X as follows (see [4], [12])

(10) ‖x‖x0 = inf{t > 0 : −tx0 ≺K x ≺K tx0},

where the relation ≺K is generated by K.
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Lemma. Suppose that the operator A : X → X belongs to S(X). Suppose
further that A is positive, subadditive, positively increasing (with respect to the
relation ≺K) and positively homogeneous. Then r(A) ≤ ‖Ax0‖x0 .

Proof: In view of (10) we get

Ax0 ≺K ‖Ax0‖x0x0.

Let x ∈ K. Then Ax ∈ K and, by (10),

Ax ≺K ‖Ax‖x0x0.

Put u(x) = ‖Ax‖x0 . Since A is positively increasing and positively homogeneous,
we get for x ∈ K and n ∈ N:

(11) Anx ≺K u(x)An−1x0 ≺K u(x)‖Ax0‖
n−1
x0 x0.

The cone K is normal, so there exists M > 0 such that

‖Anx‖ ≤ Mu(x)‖Ax0‖
n−1
x0 ‖x0‖.

Moreover, K is generating (since int K 6= ∅). Therefore for every x ∈ X there
exist x1, x2 ∈ K such that x = x1 − x2. Thus, by positive homogeneity and
subadditivity of A we have

‖Anx‖ ≤ ‖Anx1‖+ ‖Anx2‖ ≤ 2max{‖Anx1‖, ‖A
nx2‖}.

Hence
‖Anx‖1/n ≤

(

2max{‖Anx1‖, ‖A
nx2‖}

)1/n
.

But, in view of (11), for x1, x2 ∈ K there exist the constants u(x1), u(x2) such
that

‖Anx1‖ ≤ Mu(x1)‖Ax0‖
n−1
x0 ‖x0‖

and
‖Anx2‖ ≤ Mu(x2)‖Ax0‖

n−1
x0 ‖x0‖.

Thus

‖Anx‖1/n ≤
(

2max{Mu(x1)‖Ax0‖
n−1
x0 ‖x0‖, Mu(x2)‖Ax0‖

n−1
x0 ‖x0‖}

)1/n

and consequently

(12) lim sup
n→∞

‖Anx‖1/n ≤ ‖Ax0‖x0 .

Since the operator A belongs to S(X), we conclude from (12) that r(A) ≤
‖Ax0‖x0 , which ends the proof of the lemma. �
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Theorem 3. Let K be a normal and solid cone in a Banach space X and let

x0 ∈ int K. If the assumptions of the lemma are satisfied then (7) holds.

Proof: It is easily seen that

Anx0 ≺K ‖Anx0‖x0x0.

Hence, in virtue of the lemma, we get

r(An) ≤ ‖Anx0‖x0 ,

but
r(An) = [r(A)]n.

Thus

(13) r(A) ≤ lim inf
n→∞ ‖Anx0‖

1/n
x0 .

On the other hand, since the norms ‖ · ‖, ‖ · ‖x0 are equivalent (see for example
[12]), there exists a constant m > 0 such that

‖Anx0‖x0 ≤ m‖Anx0‖ ≤ m‖An‖ ‖x0‖.

Hence

(14) lim sup
n→∞

‖Anx0‖
1/n
x0 ≤ r(A).

Combining (13) with (14) we obtain

r(A) = lim
n→∞

‖Anx0‖
1/n
x0 .

Finally, we apply equivalence of the norms ‖ · ‖, ‖ · ‖x0 again, which gives (7).
This ends the proof of Theorem 3. �

Remark. The proof of Theorem 3 is similar to that of Theorem 9.1 [4].

4. The generalized spectral radius of the sum of two operators

In applications of Theorem 1 it may occur that the operator A has the form
A = A1+A2. It is known that if A1 and A2 are linear, bounded and commutative
then ([4], [7])

(15) r(A1 +A2) ≤ r(A1) + r(A2).

In this section we give a sufficient condition for linearly bounded operators, dif-
ferent from the global commutativity, under which the inequality (15) holds.
Consider a Banach space (X, ‖ · ‖,≺) assuming that the conditions 1◦ and 3◦

are satisfied and moreover:

9◦ the relation ≺ is reflexive,
10◦ if x ≺ y then x+ z ≺ y + z.
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Theorem 4. In the Banach space considered above, let the linearly bounded

operators A1 : X → X , A2 : X → X be given. Suppose that if θ ≺ x then

θ ≺ A1x and θ ≺ A2x. Moreover, we assume that there exists an element x0 ∈ X ,

θ ≺ x0 such that:

11◦ r(A1 +A2) = limn→∞ ‖(A1 +A2)
nx0‖

1/n,

12◦ A2A
j
1A

k
2x0 ≺ A

j
1A

k+1
2 x0 for j = 1, 2, . . . , k = 0, 1, . . . .

Then (15) holds.

The proof of Theorem 4 is analogous to that of Theorem 1 [14], so it can be
omitted.
Finally we shall show an application of Theorems 1, 3 and 4. Consider the

integral-functional equation

(16) x(t) =

∫ t

0
f
(

s,max
[0,sa]

{x(τ)}, x(sa)
)

ds,

where t ∈ [0, T ], T ≥ 1, 0 < a < 1.

Theorem 5. Assume that:

13◦ f : [0, T ]× R
2 → R is continuous and satisfies the Lipschitz condition

|f(t, x1, x2)− f(t, y1, y2)| ≤ L1(t)|x1 − y1|+ L2(t)|x2 − y2|,

where the functions L1, L2 are continuous and non-negative on the interval

[0, T ],

14◦ max[0,T ]{L1(t)} +max[0,T ]{L2(t)} < 1
1−a .

Then the equation (16) has a unique solution in the set of continuous functions
on the interval [0, T ].

Proof: Let (X, ‖ · ‖,≺, m) be the Banach space from the proof of Theorem 2.
We shall show that the operator

(Ax)(t) =

∫ t

0
f
(

s,max
[0,sa]

{x(τ)}, x(sa)
)

ds, t ∈ [0, T ], T ≥ 1,

has exactly one fixed point in X . In view of our assumptions we have

|(Ax)(t) − (Ay)(t)| ≤

∫ t

0
L1 max
[0,sa]

|x(τ) − y(τ)| ds+

∫ t

0
L2|x(s

a)− y(sa)| ds,

where Li = max[0,T ]{Li(t)}, i = 1, 2. Let

(Ax)(t) =

∫ t

0
L1 max
[0,sa]

|x(τ)| ds +

∫ t

0
L2|x(s

a)| ds.
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Obviously, A is linearly bounded and positively increasing. To prove our theorem
it is sufficient to show that r(A) < 1. Observe that A = A1 +A2, where

(A1x)(t) =

∫ t

0
L1 max
[0,sa]

|x(τ)| ds

and

(A2x)(t) =

∫ t

0
L2|x(s

a)| ds.

It is easy to check that A, A1 and A2 belong to S(X). In the space of continuous
functions on the interval [0, T ] we choose the cone K of non-negative functions.
Such a cone is solid and normal and x0(t) ≡ 1 for t ∈ [0, T ] is its interior element.
Clearly, A, A1 and A2 satisfy the remaining assumptions of Theorem 3. Thus the
condition 11◦ of Theorem 4 is fulfilled. Moreover, for j = 1, 2, . . . , k = 0, 1, . . .
we have

(A2A
j
1A

k
2x0)(t) = L

j
1L

k+1
2

1

a1a2 . . . ak+j+1
tak+j+1 = (Aj

1A
k+1
2 x0)(t),

where a1 = a+ 1, an = a · an−1 + 1. Hence

A2A
j
1A

k
2x0 ≺ A

j
1A

k+1
2 x0, j = 1, 2, . . . , k = 0, 1, . . . .

Therefore, in virtue of Theorem 4

r(A) ≤ r(A1) + r(A2).

Using (7), we obtain
r(A1) = (1 − a)L1

and
r(A2) = (1− a)L2.

Thus, by 14◦, r(A) < 1. This ends the proof of Theorem 4. �
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