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Eigenvalues of the p-Laplacian in R
N with indefinite weight

Yin Xi Huang

Abstract. We consider the nonlinear eigenvalue problem

− div(|∇u|p−2∇u) = λg(x)|u|p−2u

in R
N with p > 1. A condition on indefinite weight function g is given so that the

problem has a sequence of eigenvalues tending to infinity with decaying eigenfunctions
in W 1,p(RN ). A nonexistence result is also given for the case p ≥ N .

Keywords: eigenvalue, the p-Laplacian, indefinite weight, RN

Classification: Primary 35P30, 35J70

1. Introduction

We investigate the following nonlinear eigenvalue problem in R
N

(1) −∆pu = λg(x)|u|p−2u,

where ∆pu = div (|∇u|p−2∇u) is the p-Laplacian with p > 1, λ ∈ R, u ∈

W 1,p(RN ), and g ∈ L∞(RN ) is an indefinite weight function, i.e. g± = max(±g, 0)
6≡ 0. Here we consider only weak solutions, i.e. (λ, u) is a (nontrivial) solution of

(1) if λ ∈ R, u ∈ W 1,p(RN ) \ {0} and
∫

|∇u|p−2∇u∇ϕ = λ

∫

g(x)|u|p−2uϕ

for all ϕ ∈ C∞
0 (R

N ). Here and henceforth the integrals are taken over RN unless
otherwise specified.
In the case p = 2, the 2-Laplacian is the usual Laplace operator. The p-

Laplacian with p 6= 2 arises in, for example, the study of non-Newtonian fluids
(p > 2 for dilatant fluids and p < 2 for pseudoplastic fluids), in torsional creep
problems (p ≥ 2), as well as in glaciology (p ∈ (1, 4/3]). Eigenvalue problems of
the p-Laplacian on bounded domains have been studied extensively; we mention,
for example, the work of Anane [A], Azorezo and Alonso [AA], Lindqvist [Ln],
and Szulkin [Sz] and references therein. When dealing with eigenvalue problems
with indefinite weight on bounded domains, Otani and Teshima [OT] studied the
Dirichlet boundary condition, and Huang [H] treated the Neumann case. In both
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papers, only the properties of the first (positive) eigenvalue and eigenfunction
have been emphasized.
It is apparent that the eigenvalue problem of the p-Laplacian in R

N with
definite weight does not have solutions in W 1,p(RN ), as we have witnessed in the
case p = 2. Thus it is natural to study problem (1) with indefinite weight. This
paper is partly motivated by recent work of Brown, Cosner and Fleckinger [BCF],
and Li and Yan [LY], and partly by indefinite eigenvalue problems, and as such,
is a continuation of [OT] and [H]. In Section 2 we use a variational method to
prove the existence of a sequence of eigenvalues and study, in particular, some
properties of the first eigenvalue and eigenfunction which are enjoyed by regular
eigenvalue problems. A specific condition on the weight function g is introduced
there. In Section 3 we present a nonexistence result when p ≥ N .

2. Existence

We assume:

(H) There exist K > 0 and R′ > 0 such that g(x) ≤ −K for |x| ≥ R′.

We denote by G+ the set

(2) { u ∈ W 1,p(RN ) : pΨ(u) :=

∫

g|u|p = 1 },

and by BR(x) the ball in R
N centered at x with radius R. We define the following

functional on W 1,p(RN )

(3) I(u) =
1

p

∫

|∇u|p.

Clearly, the functional I is even and is bounded below on G+.

Lemma 1. The functional I satisfies the Palais-Smale condition on G+, i.e., for
{un} ⊂ G+, if I(un) is bounded and

(4) I ′(un)− anΨ
′(un)→ 0, where an =

〈I ′(un), un〉

〈Ψ′(un), un〉
,

then {un} has a convergent subsequence in W 1,p(RN ).

Proof: Let un ∈ W 1,p(RN ) be such a sequence. Clearly, {un} is bounded in
Lp(Ω) for any bounded domain Ω ⊂ R

N . We next show that {un} is bounded
in Lp(RN ). Suppose not, then there exists a sequence of bounded domains Ωn

containing BR′ , such that

∫

Ωn

|un|
p → ∞, and

∫

Ωn\BR′

|un|
p → ∞,
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as n → ∞. Noting that
∫

BR′
g|un|p is bounded by a constant c and using (H), we

have

1 =

∫

g|un|
p =

∫

BR′

g|un|
p +

∫

Ωn\BR′

g|un|
p +

∫

RN\Ωn

g|un|
p

≤ c − K

∫

Ωn\BR′

|un|
p → −∞,

as n → ∞, a contradiction. Thus {un} is bounded in W 1,p(RN ). Hence without

loss of generality, we can assume, for some u0 ∈ W 1,p(RN ), un → u0 weakly in

W 1,p(RN ), pointwise a.e. in R
N , and on any bounded domain Ω,

∫

Ω g|u0|
p =

limn→∞
∫

Ω g|un|p. In particular, by (H),

(5)

∫

BR′

g|u0|
p = lim

n→∞

∫

BR′

g|un|
p ≥ 1,

which implies that u0 6≡ 0.
It follows from (4) that for any ϕ ∈ C∞

0 (R
N ),

(6)n

∫

|∇un|
p−2∇un∇ϕ = an

∫

g|un|
p−2unϕ+ o(1).

Taking ϕ = un − um in (6)n − (6)m (via diagonal arguments if necessary) we
obtain ∫

(|∇un|
p−2∇un − |∇um|p−2∇um)∇(un − um)

≤

∫

g(an|un|
p−2un − am|um|p−2um)(un − um) + o(1)

=

∫

BR′

gan(|un|
p−2un − |um|p−2um)(un − um)

+

∫

RN\BR′

gan(|un|
p−2un − |um|p−2um)(un − um)

+ (an − am)

∫

g|um|p−2um(un − um) + o(1).

Note here that an =
∫

|∇un|p, thus is bounded. Observe that, by monotonicity

of the function |t|p−2t and assumption (H), the integral on R
N \BR′ is negative.

Thus we have

(7)

∫

(|∇un|
p−2∇un − |∇um|p−2∇um)∇(un − um)

≤

∫

BR′

gan(|un|
p−2un − |um|p−2um)(un − um)

+ (an − am)

∫

g|um|p−2um(un − um) + o(1).
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It is clear that
∫

BR′

gan(|un|
p−2un − |um|p−2um)(un − um)→ 0

as (a subsequence of) n, m → ∞, since (a subsequence of) un converges to u0 in
Lp(BR′ ). Furthermore, Hölder’s inequality implies that the integral
∫

g|um|p−2um(un − um) is bounded, and we can again choose a subsequence of
n, m, so that an − am → 0. Therefore we conclude that the right hand side of (7)
approaches 0 as (a subsequence of) n, m → ∞. On the other hand, observe that
for any a, b ∈ R

N ,

|a − b|p ≤ c · {(|a|p−2a − |b|p−2b) · (a − b)}s/2 · (|a|p + |b|p)1−s/2,

where s = p if p ∈ (1, 2) and s = 2 if p ≥ 2. We thus have

|∇un −∇um|p ≤ c · {(|∇un|
p−2∇un − |∇um|p−2∇um)∇(un − um)}

s/2

(|∇un|
p + |∇um|p)1−s/2.

By applying Hölder’s inequality we obtain

∫

|∇un −∇um|p ≤ c1 ·
{

∫

(|∇un|
p−2∇un − |∇um|p−2∇um)∇(un − um)

}s/2

(

∫

|∇un|
p +

∫

|∇um|p
)1−s/2

.

We then derive from the above inequality and (7) that un → u0 in W 1,p(RN ).
The lemma is thus proved. �

Write

Γk = {A ⊂ G+ : A is symmetric, compact, and γ(A) = k },

where γ(A) is the genus of A, i.e. the smallest integer k such that there exists an

odd continuous map from A to R
k \ {0}.

Now, by the Ljusternik-Schnirelmann theory, see e.g. [AA], [St], [Sz], we have

Theorem 2. For any integer k > 0, λk = infA∈Γk
supu∈A pI(u) is a critical

value of I restricted on G+. More precisely, there exist uk ∈ Ak ∈ Γk such
that λk = pI(uk) = supu∈Ak

pI(u) and (λk, uk) is a solution of (1). Moreover,
0 < λ1 ≤ λ2 ≤ · · · ≤ λk → ∞ as k → ∞.

Proof: We need only to show that λk → ∞ as k → ∞. Since W 1,p(RN ) is

separable, there is a biorthogonal system {em, e∗m} such that em ∈ W 1,p(RN );
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e∗m ∈ (W 1,p(RN ))∗, the dual space of W 1,p(RN ); em are linearly dense in

W 1,p(RN ); and e∗m are total for W 1,p(RN ), see, e.g. [Sz]. We denote

En = span { e1, e2, · · · , en },
and

E⊥
n = span { en+1, en+2, · · · }.

Observe that A ∩ E⊥
j−1 6= ∅ for any A ∈ Γj (by (g) of Proposition 2.3 of [Sz]).

Now we claim that

µj := inf
A∈Γj

sup
A∩E⊥

j−1

pI(u)→ ∞, as j → ∞.

Indeed, if not, then for j large, there exists a uj ∈ E⊥
j−1, with

∫

g|uj|
p = 1, such

that µj ≤ pI(uj) ≤ M for some M > 0 independent of j. Thus
∫

|∇uj |
p is

bounded. By our choice of E⊥
j−1, we have uj → 0 weakly in W 1,p(RN ) and that

contradicts the fact that
∫

g|uj |
p = 1. (Cf. [AA] and [Sz].)

Since λj ≥ µj , the conclusion follows. �

Definition. λk and uk are called the k th (variational) eigenvalue and eigenfunc-
tion of (1) respectively.

Next we establish some regularity for solutions of (1).

Lemma 3. Let u ∈ W 1,p(RN ) be a weak solution of (1). Then u ∈ L∞(RN ).

The proof of this lemma can be carried out using a device due to Brezis and
Kato [BK], and is thus omitted.
From Proposition 3.7 of Tolksdorf [T], we have

Corollary 4. If u is a solution of (1), then for any bounded domain Ω, u ∈
C1+α(Ω) for some α ∈ (0, 1).

We remark that in general u /∈ C2 for p 6= 2 (see [L] for an example). We
further note that, for the eigenvalue problem of the p-Laplacian on a bounded
interval, one can show that, even though the eigenfunction u may not be in C2,
|u′|p−2u′ ∈ C1 (cf. [HM]), and the equation is satisfied pointwise.
Next we study properties of the first eigenvalue λ1 > 0 and the corresponding

eigenfunction u1. Apparently u1 is of one sign. Next we prove that u1 can be
chosen positive in R

N .

Lemma 5. If u ≥ 0, u 6≡ 0 is a solution of (1), then u > 0 in R
N .

Proof: Suppose u(x0) = 0. Take a ball B around x0 and u ≥ 0 in B. Clearly,
u is a supersolution of the problem

−∆pu = λg(x)|u|p−2u in B,

u = 0 on ∂B.

Then Theorem 1.2 of [TR] implies that u ≡ 0 in B, which is impossible. This
completes the proof. �

From now on we can assume that u1 > 0.
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Lemma 6. (i) λ1 is simple, i.e. the positive eigenfunction corresponding to λ1 is
unique up to a constant multiple.
(ii) λ1 is unique, i.e. if v ≥ 0 is an eigenfunction associated with an eigenvalue λ
with

∫

g|v|p = 1, then λ = λ1.

Proof: Let u > 0 and v > 0 be the eigenfunction associated with λ1 and λ
respectively. It is easy to see

∫

(−∆pu,
up − vp

up−1 )− (−∆pv,
up − vp

vp−1 ) = (λ1 − λ)

∫

g(up − vp) = 0.

Proposition 2 of [A] then implies that u = v. Consequently λ1 = λ and this
completes the proof. �

We now consider the asymptotic behavior of solutions of (1). A scrutiny on the
proof of Theorem 3.1 (ii) of [LY] shows that the continuity requirement of c(x) is
not necessary (we take f ≡ 0), provided u ∈ L∞, and (H) implies that the other

assumption on c is satisfied. Thus applying Theorem 3.1 (ii) of [LY] to R
N \BR′ ,

we have

Lemma 7. The solution u of (1) satisfies

|u(x)| ≤ c · e−ε|x|, |x| ≥ R

for some c > 0, ε > 0, and R > 0.

Summarizing the above results, we can state

Theorem 8. Assume that g ∈ L∞(RN ), g+ 6≡ 0, and (H) holds. Then
(i) (1) has a sequence of solutions (λk, uk) with

∫

g|uk|
p = 1 and 0 < λ1 < λ2 ≤

· · · ≤ λk → ∞ as k → ∞, and |uk| decays exponentially at infinity.
(ii) The first eigenfunction u1 can be taken positive in R

N . Moreover, λ1 > 0 is
simple and unique.

Remarks. 1. We observe that conditions (h3) and (h4) of [LY] cannot be fulfilled
for our problem. In fact they only treat the bifurcation problem there.
2. Even in the case p = 2, this result seems new.

3. Nonexistence

In this section, we give a nonexistence result, along the line of Theorem 3.2 of
[BCF].

First we give an estimate of λ1. Define, for any bounded domain B ⊂ R
N ,

(9) δ1(B) = inf
u∈G+

B,0

∫

|∇u|p, µ1(B) = inf
u∈G+

B

∫

|∇u|p,

where
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G+B,0 = {u ∈ W 1,p
0 (B) :

∫

B g|u|p = 1},

G+B = {u ∈ W 1,p(B) :
∫

B g|u|p = 1}.

Note that δ1 and µ1 are well defined provided g+ 6≡ 0, and correspond to the first
eigenvalue of (1) on B with Dirichlet boundary condition and Neumann boundary
condition respectively. By Theorem 1 of [H], µ1(B) > 0 if and only if

∫

B g < 0.

Lemma 9. (i) λ1 ≤ δ1(B). (ii) µ1(B) ≤ λ1 provided g(x) < 0 for all x /∈ B.

Proof: (i) results from the fact that G+B,0 ⊂ G+.

For u ∈ G+, clearly
∫

B g|u|p ≥ 1. Hence (ii) follows. �

Let Bn be the ball in R
N centered at the origin with radius n.

Lemma 10. δ1(Bn) is decreasing, and limn→∞ δ1(Bn) = λ1. If moreover (H)
holds, then µ1(Bn) is increasing.

Proof: Monotonicity of both δ1(Bn) and µ1(Bn) is obvious.
Let un ∈ G+ be such that I(un) → λ1 as n → ∞. By standard diagonal

arguments, we can select a sequence ϕn such that

ϕn ∈ W 1,p
0 (Bn),

∫

Bn

g|ϕn|
p = 1, lim

n→∞

∫

Bn

|∇ϕn|
p = λ1.

By the definition of δ1, we have
∫

Bn

|∇ϕn|
p ≥ δ1(Bn) ≥ λ1.

The proof is completed. �

The next lemma, which is crucial in our nonexistence result, is an extension of
Lemma 3.1 of [BCF], where the case p = 2, N = 1, 2 is treated.

Lemma 11. Assume that p ≥ N and g satisfies a weaker form of (H)

(H)∗ There exists R̃ > 0, g(x) < 0 for |x| > R̃.

If, in addition, 0 <
∫

g < ∞, then limn→∞ δ1(Bn) = 0.

Proof: We follow the proof of Lemma 3.1 of [BCF].

Denote M = min{1, 12
∫

g }. Choose R1 > 1 such that
∫

|x|≤R1

g ≥ M,

∫

|x|≥R1

g− ≤ M/2.

Fix ε > 0. For R2 > R1, we define a test function v as follows: v(x) = 1 if
|x| ≤ R1, v(x) = 0 if |x| ≥ R2, and for R1 ≤ |x| ≤ R2,

v(x) =

{

L − ε ln |x|, if p = N ;

L − ε|x|(p−N)/(p−1), if 1 ≤ N < p,
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where L and R2 are so chosen that v is continuous. It follows that

ε(lnR2 − lnR1) = 1, for p = N,

and
ε(R

(p−N)/(p−1)
2 − R

(p−N)/(p−1)
1 ) = 1, for 1 ≤ N < p.

For T > R2, a calculation shows that
(i) for p = N ,

∫

|x|≤T
|∇v|p = c1 ·

∫ R2

R1

εpr−1dr = c1 · ε
p(lnR2 − lnR1) = c1 · ε

p−1,

(ii) for 1 ≤ N < p,
∫

|x|≤T
|∇v|p = c3 ·

∫ R2

R1

εp
(p − N

p − 1

)p
r(1−N)/(p−1)dr = c3 · ε

p−1
(p − N

p − 1

)p−1
.

On the other hand,
∫

|x|≤T
gvp =

∫

|x|≤R1

g +

∫

R1≤|x|≤R2

gvp ≥ M −

∫

R1≤|x|≤R2

g− ≥ M/2.

It then follows that for n > T ,

δ1(Bn) ≤ c4 · ε
p−1 → 0.

This concludes the proof. �

As a direct consequence, we have the following nonexistence result:

Theorem 12. Assume that p ≥ N and g satisfies (H)∗. Then problem (1) has

no positive solution in W 1,p(RN ) for λ > 0.

Proof: Lemma 11 combined with Lemma 9 yields the theorem. �

Remark. In the case 1 < p < N , Hardy’s inequality
(

∫

|ϕ|p(1 + |x|p)−1dx
)1/p

≤
p

N − p

(

∫

|∇ϕ|p
)1/p

holds for all ϕ ∈ C∞
0 (R

N ). Let V be the completion of C∞
0 (R

N ) with the norm

‖ϕ‖p
V =

∫

|∇ϕ|p +

∫

|ϕ|p(1 + |x|p)−1.

Then we can prove, as in Lemma 1, that the functional I(u) = 1p
∫

|∇u|p, defined

on V , satisfies the Palais-Smale condition on G̃+ = { u ∈ V :
∫

g|u|p = 1 },
provided g satisfies

(H)′ |g(x)| ≤ c · (1 + |x|p)−α for some α > 1.

(We always assume that g+ 6≡ 0.) Consequently the results in Section 2 remain
valid in V for this case. We note that this result is compatible with Theorem 4.1
of [BCF].
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