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k-Ramsey classes and dimensions of graphs

Jan Kratochv́ıl

Abstract. In this note, we introduce the notion of k-Ramsey classes of graphs and we
reveal connections to intersection dimensions of graphs.
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1. Intersection dimensions

All graphs considered are finite, undirected and without loops or multiple edges.
The key notion is the intersection dimension of a graph: Given a class A of graphs
and a graph G = (V, E), the A-dimension of G is

dimAG = min
{

k | ∃E1, . . . , Ek ⊂
(

V
2

)

s.t. (V, Ei) ∈ A for each i and E=
k
⋂

i=1
Ei

}

.

This general definition was introduced in [1], but several authors have studied
the same for particular graph classes A (e.g. [3], [12] for circular dimension and
[13], [14] for interval dimension, also called boxicity). In [8], we have introduced
and studied relative intersection dimension: Given two classes A and B, we set

dimA(B) = sup
G∈B

dimAG

(

= sup
G

dimAG

dimBG

)

.

The purpose of this definition is clarified by the following observation ([8]): if
dimA(B) < ∞ then it is the smallest real number x such that dimAG ≤ x·dimBG
holds for any graph G, otherwise no such x exists. In [8], we have considered
the relative dimensions for several classes of graphs listed below (for most of
these classes the intersection dimension was studied before, others are important
generalizations of such classes). See [4] as a general reference to most of these
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classes.

INT = interval graphs (intersection graphs of intervals on a line),
CA = circular-arc graphs (intersection graphs of intervals on a circle),
CI = circle graphs (intersection graphs of chords of a circle),
SP = split graphs (graphs whose vertex sets split into a clique

and a stable set),
CHOR = chordal graphs (also called triangulated or rigid circuit graphs),
PER = permutation graphs (intersection graphs of straight line segments

with end points on two parallel lines),
FUN = function (= co-comparability) graphs (intersection graphs

of graphs of continuous real functions on a closed interval).

The results on relative dimensions which were obtained in [8], [5] are summa-
rized in the following table (the number dimA(B) is placed in the intersection of
the A-th row and B-th column, the items marked by asterix will be proved in this
paper).

INT CA CI SP CHOR PER FUN
INT 1 ∞ ∞ ∞ ∞ ∞ ∞
CA 1 1 ∞ ∞ ∞ ∞ ∞
CI ∞ ∞ 1 ∞ ∞ 1 ∞
SP ∞ ∞ ∞ 1 ∞ ∞ ∞
CHOR 1 ∞ ∞ 1 1 ∞ ∞
PER ∞ ∞ ∞ ∞ ∞ 1 ∞
FUN 1 2∗ 2∗ 2∗ 2∗ 1 1

Table 1: Relative dimensions
When we started to work on relative dimensions, we hoped to find cases of

nontrivial dependence between the dimensions. It turned out, however, that in
most of the cases either dimA(B) = 1 (i.e. A ⊂ B), or dimA(B) = ∞. The only
exception to this ‘rule of triviality’ is the FUN dimension. The purpose of this
note is to shed light on this fact.
In the next section, we introduce the notion of k-Ramsey classes and we re-

veal the connection between this notion and the relative dimension. In technical
Section 3, we prove that complements of most of the considered classes are 1- or 2-
Ramsey. This explains why only numbers 1, 2 or∞ occur in our table. Note also
that these lines lead to simplification of some of the proofs from [8]. Finally, in
Section 4, we prove that the FUN dimension of all considered classes is bounded.

2. Induced Ramsey property

We say that a class A of graphs is k-Ramsey if for every G ∈ A and every
positive integer m, there is a graph H ∈ A such that for each coloring φ of the
edges of H by m colors, H contains an induced subgraph G′ isomorphic to G such
that φ uses at most k distinct colors on G′. A 1-Ramsey class is called simply
Ramsey.
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Ramsey classes of graphs were studied by Erdös, Deuber, Nešetřil, Rödl and
others. Let us remark that already the proof that the class of all graphs is Ramsey
is quite nontrivial [2], [9]. Nešetřil and Rödl [9] applied Ramsey arguments to
product dimensions of graphs.
For every positive integer k, there are classes that are k-Ramsey but not (k−1)-

Ramsey. For an easy example, consider the class of disjoint unions of at most k
complete graphs.
Given a classM of graphs, we denote by M the class of the complements of

the graphs inM, i.e.M = {G | G ∈ M}.

Theorem 2.1. Let A and B be classes of graphs such that (i) A is hereditary
(i.e. closed on induced subgraphs), and (ii) B is k-Ramsey. Then dimA(B) ≤ k
or dimA(B) =∞.

Proof: Suppose dimA(B) > k and let G be a graph such that G ∈ B and
dimA(G) > k. Fix a positive integer m, and let H be a big graph guaranteed by
the k-Ramsey property of B. Set H ′ = H . Obviously, H ′ ∈ B. We claim that
dimAH ′ > m.

Suppose that dimAH ′ ≤ m. Then there are sets E1, E2, . . . , Em ⊂
(V (H′)
2

)

such that (a) E(H ′) =
⋂m

i=1 Ei, and (b) each graph Gi = (V (H
′), Ei) is in A.

Define a coloring of the nonedges of H ′ (that is, of the edges of H) by setting
φ(xy) = i s.t. xy /∈ Ei (the existence of at least one such i follows from (a),
in case of ambiguity we choose e.g. the smallest possible i). By the k-Ramsey
Property, there exist an I ⊂ {1, 2, . . . , m}, |I| ≤ k and an induced subgraph G′

of H isomorphic to G s.t. φ(E(G′)) = I. Hence, its complement G′′ = G′ is an

induced subgraph of H ′ isomorphic to G, and E(G′′) =
⋂

i∈I E(Gi) ∩
(V (G′′)
2

)

=
⋂

i∈I E(Gi | V (G′′)). It follows from (b) that Gi ∈ A, and since A is closed on

induced subgraphs, Gi | V (G′′) ∈ A and dimAG′′ ≤ k. This contradicts the
choice of G such that dimA(G) > k. �

Proposition 2.2 ([9]). The classes INT, PER and FUN are Ramsey.

Corollary 2.3. All entries of Table 1 in columns labeled INT, PER and FUN
are either 1 (if A ⊂ B) or ∞ (otherwise).

We will prove in Theorem 3.1 that the classes CA, CI and SP are 2-Ramsey.
Thus we obtain the following corollary.

Corollary 2.4. All entries of Table 1 labeled CA, CI and SP are either 1 or 2
or ∞.

It follows that in order to show dimA(B)=∞ for someA and B ∈ {CA, CI, SP},
it suffices to give one example of a graph G ∈ B such that dimAG ≥ 3. This ob-
servation provides a simplification to some of the proofs in [8].
The only column which is so far not taken care of by Corollaries 2.3 and 2.4

is the CHOR column. Here Theorem 2.1 does not apply, since one can show
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that complements of chordal graphs are not k-Ramsey (for any k). However,
SP ⊂ CHOR and hence dimA(SP ) = ∞ implies dimA(CHOR) = ∞ for A ∈
{INT, CA, CI, PER} and the only ‘nontrivial’ infinity in the CHOR column
stands for dimSP (CHOR).

3. Circular arc graphs and circle graphs

Theorem 3.1. The classes SP , CI and CA are 2-Ramsey.

Proof: 1. Split graphs. Since the class of split graphs is closed under com-
plementation, it is enough to prove that SP is 2-Ramsey. Suppose we are given
a number m and a split graph G = (Q ∪ S, E) such that Q induces a clique and
S a stable set. Denote by G′ = (Q ∪ S, E′) the bipartite graph with color classes
Q and S induced by G. Since bipartite graphs are Ramsey ([9]), there exists
a bipartite graph H ′ = (Q′ ∪ S′, F ′) such that for every m-coloring of the edges
of H ′, there are Q′′ ⊂ Q′ and S′′ ⊂ S′ such that H ′ | (Q′′ ∪ S′′) is isomorphic to
G′ and monochromatic.
Denote q′ = |Q′| and s′ = |S′| and set q′′ = R2m(q

′), i.e. q′′ is the least
number such that in every m-coloring of the edges of a complete graph on q′′

vertices, one always finds a monochromatic clique of size q′. Construct a graph
H = (Q′′′ ∪S′′′, F ) by taking a clique on Q′′′ of size q′′, and hanging a copy of H ′

on each q′-element subset of Q′′′ (thus H has q′′ +
(q′′

q′

)

s′ vertices). Given an m-

coloring of the edges of H , we first find a subset Q′ ⊂ Q′′′ of size q′ which induces
a monochromatic clique (say of black color), and then in the particular copy of
H ′ hanging on this Q′, we find an induced bipartite subgraph G‘ on Q‘ ⊂ Q′

and S‘ ⊂ S′′′ which is isomorphic to G′ and monochromatic (say of white color).
Then H | (Q‘ ∪ S‘) is isomorphic to G and its edges are colored by at most two
colors.

2. Circle graphs. It is useful to view circle graphs as overlap graphs (cf.
e.g. [4]): Every circle graph G = (V, E) with n vertices has an interval repre-
sentation such that (i) every vertex v is represented by a closed interval Iv with
endpoints among {1, 2, . . . , 2n}, (ii) intervals corresponding to distinct vertices
have distinct endpoints, and (iii) vertices u and v are adjacent in G if and only
if the intervals Iu, Iv overlap (i.e. their intersection is nonempty, but none is
a subinterval of the other one).
We denote by OVn the graph whose vertices are all intervals with distinct

endpoints in {1, 2, . . . , n} and edges connect intervals [a, b], [c, d] such that a ≤
c ≤ b ≤ d or c ≤ a ≤ d ≤ b. Then OVn ∈ CI for every n, and each circle graph
on n vertices is an induced subgraph of OV2n. Thus it suffices to prove that for
every n and m, there exists an N such that for every m-coloring of the nonedges
of OVN , one can find a bichromatic OVn.
We show that N ≤ Rn

me(n)(2n−4), where e(n) denotes the number of nonedges

of OVn (e(n) < n4) and Rp
k
(q) is the least number R such that for every k-coloring

of the p-element subsets of an R-element set X , one can find a q-element subset
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of X whose all p-tuples receive the same color (this R is finite by the Ramsey
theorem).
Consider an m-coloring f of the edges of OVN , with N ≥ Rn

me(n) (2n− 4). For

a subset A = {a1 < a2 < . . . < an} ⊂ {1, 2, . . . , N}, define a coloring fA of OVn

by fA([i, j][r, s]) = f([ai, aj ][ar, as]) (there are at mostm
e(n) different colorings of

OVn), and define a coloring φ of n-element subsets of {1, 2, . . . , N} by φ(A) = fA.
It follows that there is a coloring g ofOVn and a (2n−4)-element subsetB = {b1 <
b2 < . . . < b2n−4} ⊂ {1, 2, . . . , N} such that fA = g for every A ⊂ B, |A| = n.
We show that in OVN , C = {b1, b2, . . . , bn} induces a bichromatic copy of OVn.

Indeed, if i < j, r < s are such that i ≤ r and [bi, bj ][br, bs] ∈ E(OVN | C), then
either j < r, or i < r and s < j. Consider A = {bi, bj , br, bs, bn+1, . . . , b2n−4}.
Since fA = g, we have f([bi, bj ][br, bs]) = g([1, 2][3, 4]) in the former case and
f([bi, bj ][br, bs]) = g([1, 4][2, 3]) in the latter case.

3. Circular arc graphs. Here the argument is similar to the previous one.
Denote CAn the graph whose vertices are intervals with endpoints in {1, 2, . . . , n},
and complements of such intervals. Two vertices of CAn are adjacent if the
corresponding sets are not disjoint. Every CA graph on n vertices is an induced
subgraph of CA2n (we obtain a representation of this kind from an ordinary
circular arc representation by cutting the circle in one point, arcs which are not
cut correspond to intervals, arcs which contain the cut point correspond to the
complements of intervals).
We again set N = Rn

me(n) (2n − 4), where now e(n) denotes the number of

nonedges of CAn and we show that for every m-coloring of the nonedges of CAN ,
one can find a bichromatic CAn. The proof is identical to the proof above, the

two kinds of nonedges in CAn are [i, j][r, s] for i < j < r < s and [i, j][r, s] for

r < i < j < s (here [r, s] = [1, r] ∪ [s, n]), there are no nonedges of type [i, j][r, s].
�

4. FUN dimension

Before we prove the FUN row of Table 1, we introduce another class of graphs
which generalizes several previously considered ones. This is the class CP, so called
circle polygon graphs, which are intersection graphs of convex polygons inscribed
in a circle. These graphs were suggested by M. Fellows [private communication] as
a natural generalization of circle graphs. A polynomial time recognition algorithm
was given by Koebe [7].

Lemma 4.1 ([6]). We have CI ⊂ CP, CA ⊂ CP, CHOR ⊂ CP and PER ⊂ CP,
but CA 6⊂ FUN, CI 6⊂ FUN and SP 6⊂ FUN (and, consequently, CHOR 6⊂ FUN
and CP 6⊂ FUN).

The remaining entries (in the FUN row) of Table 1 will be justified by the
following:

Proposition 4.2. dimFUN (CP ) ≤ 2.
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Proof: Suppose we are given a graph G = (V, E) ∈ CP and a representation
(Mu, u ∈ V ), where each Mu is a convex polygon with vertices lying on a given
circle C. Choose a point x on the circle which does not belong to any of the
polygons. For two disjoint polygons Mu, Mv, we consider the connected compo-
nents obtained by removing the vertices ofMu andMv from the circle C. We say
that u is above v if both endpoints of the component containing x are vertices
of Mu, and we say that u and v are indifferent if one endpoint of the component
containing x is a vertex of Mu and the other one is a vertex of Mv.
Define E1 = {uv | uv /∈ E and u and v are indifferent} and E2 = {uv | uv /∈ E

and u and v are not indifferent}. Then G1 = (V, E∪E2) is an interval (and hence
function) graph. Also G2 = (V, E ∪E1) is a function graph, since G2 = (V, E2) is
a comparability graph (‘being above’ is a partial order). Thus G = G1 ∩ G2 has
FUN dimension at most 2. �

Acknowledgement. The author thanks W. Trotter and J. Nešetřil for valuable
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[5] Hliněný P., Kuběna A., A note on intersection dimensions of graph classes, Commenta-
tiones Math. Univ. Carolinae 36 (1995).

[6] Jansen S., Kratochv́ıl J., Thresholds for classes of intersection graphs, Discrete Math. 108
(1992), 307–326.

[7] Koebe M., On a new class of intersection graphs, in: Graphs and Complexity (M. Fiedler
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[11] Rödl V., A generalization of Ramsey theorem, in: Graphs, Hypergraphs and Block Systems
(eds. M. Borowiecki, Z. Skupien and L. Szamkolowicz), Zielona Gora, 1976, pp. 211–220.

[12] Shearer J.B., A note on circular dimension, Discrete Math. 29 (1980), 103.
[13] Thomassen C., Interval representations of planar graphs, J. Combin. Th. Ser. B 40 (1986),

9–20.
[14] Trotter W.T., A characterization of Roberts’ inequality for boxicity, Discrete Math. 28

(1979), 303–314.
Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles
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