
Commentationes Mathematicae Universitatis Carolinae

Salvador García-Ferreira; Angel Tamariz-Mascarúa
p-sequential like properties in function spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 35 (1994), No. 4, 753--771

Persistent URL: http://dml.cz/dmlcz/118717

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1994

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/118717
http://project.dml.cz


Comment.Math.Univ.Carolin. 35,4 (1994)753–771 753

p-sequential like properties in function spaces

Salvador Garćıa-Ferreira, Angel Tamariz-Mascarúa

Abstract. We introduce the properties of a space to be strictly WFU(M) or strictly
SFU(M), where ∅ 6= M ⊂ ω∗, and we analyze them and other generalizations of p-
sequentiality (p ∈ ω∗) in Function Spaces, such as Kombarov’s weakly and strongly M -
sequentiality, and Kocinac’s WFU(M) and SFU(M)-properties. We characterize these
in Cπ(X) in terms of cover-properties in X; and we prove that weak M -sequentiality
is equivalent to WFU(L(M))-property, where L(M) = {λp : λ < ω1 and p ∈ M},
in the class of spaces which are p-compact for every p ∈ M ⊂ ω∗; and that Cπ(X)
is a WFU(L(M))-space iff X satisfies the M -version δM of Gerlitz and Nagy’s prop-
erty δ. We also prove that if Cπ(X) is a strictly WFU(M)-space (resp., WFU(M)-space
and every RK-predecessor of p ∈ M is rapid), then X satisfies C′′ (resp., X is zero-
dimensional), and, if in addition, X ⊂ R, then X has strong measure zero (resp., X has
measure zero), and we conclude that Cπ(R) is not p-sequential if p ∈ ω∗ is selective. Fur-
thermore, we show: (a) if p ∈ ω∗ is selective, then Cπ(X) is an FU(p)-space iff Cπ(X) is
a strictly WFU(T (p))-space, where T (p) is the set of RK-equivalent ultrafilters of p; and
(b) p ∈ ω∗ is semiselective iff the subspace ω∪{p} of βω is a strictly WFU(T (P ))-space.
Finally, we study these properties in Cπ(Z) when Z is a topological product of spaces.

Keywords: selective, semiselective and rapid ultrafilter; Rudin-Keisler order; weakly M -
sequential, strongly M -sequential, WFU(M)-space, SFU(M)-space, strictly WFU(M)-
space, strictly SFU(M)-space; countable strong fan tightness, Id-fan tightness, property
C′′, measure zero

Classification: 04A20, 54C40, 54D55

0. Introduction and preliminaries

In this paper, space will mean a Tychonoff topological space, and Cπ(X) will
denote the space of all the continuous real valued functions defined on X and
endowed with the topology of pointwise convergence. For f ∈ Cπ(X) and δ > 0,
we put cozδ f = {x ∈ X : |f(x)| < δ}. ω is the set of natural numbers equipped
with the discrete topology and βω is the Stone-Čech compactification of ω which

can be viewed as the set of all ultrafilters on ω, where Â = {q ∈ βω : A ∈ q}
is a basic open neighborhood of p for each A ∈ p. The remainder ω∗ = βω \ ω
coincides with the set of free ultrafilters on ω and if f : ω → βω is a function, we
will denote by f : βω → βω the Stone extension of f .
We say that p ∈ ω∗ is selective if for every collection {An}n<ω of disjoint

infinite subsets of ω, with An /∈ p for every n < ω, there exists A ∈ p such
that |A ∩ An| ≤ 1 for every n < ω; p ∈ ω∗ is semiselective if for every sequence
{An}n<ω ⊂ p there is an ∈ An for each n < ω such that {an : n < ω} ∈ p; and
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p ∈ ω∗ is rapid if for every f ∈ ωω we can find A ∈ p such that |A ∩ f(n)| ≤ n
for each n < ω. It is not difficult to prove that every selective ultrafilter is
semiselective, and every semiselective is a rapid ultrafilter. The existence of these
sorts of ultrafilters is independent from the axioms of ZFC; the reader is referred
to [Bo], [Ku], [L] and [M].
The Rudin-Keisler (pre)-order in ω∗ is defined as follows: for p, q ∈ ω∗, p ≤RK q

if there is f : ω → ω such that f(q) = p. If p ≤RK q and q ≤RK p, then we say
that p and q are RK-equivalent (in symbols, p ≃RK q). It is not difficult to verify
that p ≃RK q iff there is a permutation σ of ω such that σ(q) = p. The type
of p ∈ ω∗ is the set T (p) of all RK-equivalent ultrafilters of p. Observe that the
Rudin-Keisler pre-order in ω∗ is an order in {T (p) : p ∈ ω∗}. Kunen showed (see
[CN, 9.6]) that selective ultrafilters on ω∗ are precisely the RK-minimal points
of ω∗.

For p ∈ ω∗, the p-sum of a sequence {pn : n < ω} of free ultrafilters on ω,
studied by Froĺık ([F]) and, in a more general context, by Vopěnka ([V]) and
Katětov ([K]), is the ultrafilter

Σppn = {A ⊂ ω × ω : {n < ω : {m < ω : (n, m) ∈ A} ∈ pn} ∈ p}.

Throughout this paper, Σppn will be viewed either as an ultrafilter on ω via
a bijection between ω × ω and ω, or as an ultrafilter on ω × ω. If p, q ∈ ω∗ and
pn = q for every n < ω, then Σppn is the usual tensor product p ⊗ q. Booth [Bo]
showed that the induced product T (p)⊗ T (q) = T (p⊗ q), for p, q ∈ ω∗, produces
a semigroup structure in the set of types in ω∗.

For each ν ∈ ω1, we choose an increasing sequence (ν(n))n<ω of ordinals in ω1
such that

(a) if 2 ≤ ν < ω, ν(n) = ν − 1;
(b) ω(n) = n for every n < ω;
(c) if ν is a limit ordinal, then ν(n)ր ν;
(d) if ν = µ+m where µ is a limit ordinal and m < ω, then ν(n) = µ(n) +m
for each n < ω.

For each p ∈ ω∗, we can define the right powers and the left powers of T (p) as
follows (see [Bo] and [GT2]):

T (p)2 = T (p)⊗ T (p) = 2T (p);

If T (p)λ and λT (p) have already been defined for every λ < ν < ω1, then

T (p)ν = T (p)µ ⊗ T (p) and µT (p) = T (p)⊗ µT (p)

for ν = µ+ 1; and, if ν is a limit ordinal,
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T (p)ν = T (f(p)) and νT (p) = T (g(p)),

where f, g ∈ ω → ω∗ are embeddings defined in such a way that f(n) ∈ T (p)ν(n)

and g(n) ∈ ν(n)T (p) for n < ω.
Observe that, by the associativity of ⊗, nT (p) = T (p)n for every n < ω, and

therefore ωT (p) = T (p)ω. On the other hand, it is proved in [Bo, Corollary 2.23]
that T (p)ω+1 <RK

ω+1T (p).
If 0 < ν < ω1 and p ∈ ω∗, then pν and νp stand for arbitrary points in T (p)ν

and νT (p), respectively.
The basic properties of these products are the following:

0.1. (1) If p ∈ ω∗ and o < µ < ν < ω1, then pµ <RK pν ([Bo]) and µp <RK
νp

([GT 2]).

(2) For each 0 < µ < ω1 there are θ, τ < ω1 such that pµ ≤RK θp and
µp ≤RK pτ ([GT2]).

0.2 Notation. For ∅ 6= M ⊂ ω, we set L(M) = {λp : λ < ω1, p ∈ M} and
R(M) = {pλ : λ < ω1, p ∈ M}.

Bernstein introduced in [B] the notion of p-limit of a sequence for p ∈ ω∗:
Let (xn)n<ω be a sequence in X . Then x ∈ X is a p-limit point of (xn)n<ω

(in symbols, x = p - limxn or x = p - limn→∞ xn if it is necessary to emphasize
what the indexes of the sequence are being considered) if for each V ∈ N (x),
{n < ω : xn ∈ V } ∈ p. This notion suggests the following definitions which are
natural generalizations of the concepts of sequentiality and Fréchet-Urysohn.

0.3 Definitions. Let ∅ 6=M ⊂ ω∗ and let X be a space.
(1) (Kombarov [Km]) X is said to be weakly M -sequential if for each non-

closed subset A of X there are a sequence (xn)n<ω in A, p ∈ M and x ∈ X \ A
such that x = p - limxn.

(2) (Kombarov [Km]) X is said to be strongly M -sequential if for each non-
closed subset A of X there are a sequence (xn)n<ω in A and x ∈ X \A such that
x = p - lim xn for all p ∈ M .

(3) (Kocinac [Ko]) X is a WFU(M)-space if for every A ⊂ X and x ∈ clA,
there are p ∈ M and a sequence (xn)n<ω in A such that x = p - lim xn.

(4) (Kocinac [Ko]) X is a SFU(M)-space if for A ⊂ X and x ∈ clA, there is
a sequence (xn)n<ω in A such that x = p - lim xn for every p ∈ M .

Observe that, for p ∈ ω∗, weakly {p}-sequential = strongly {p}-sequential and
WFU({p})-space = SFU({p})-space; in this case, we simply say p-sequential and
FU(p)-space, respectively (the concept of FU(p)-space was discovered by Comfort
and Savchenko independently). We remark that for a space X we have: (a) X is
strongly ω∗-sequential if and only if X is sequential; (b) X is weakly ω∗-sequential
if and only if X has countable tightness if and only if X is a WFU(ω∗)-space; and
(c) X is a SFU(ω∗)-space if and only if X is Fréchet-Urysohn.
Moreover, if p ∈ M ⊂ ω∗, then
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SFU(M)-space =⇒ FU(p)-space =⇒ WFU(M)-space

⇓ ⇓ ⇓

strong M -sequentiality =⇒ p-sequentiality =⇒ weak M -sequentiality

Next we give examples to show that the arrows cannot be reversed.
Let p, q ∈ ω∗ be such that p <RK q, then ξ(q) is a FU(q)-space and is not p-

sequential (see [GF2]); the sequential space S2 (see [AF]) is not Fréchet-Urysohn,
and its p-version S2(p) (see [GF2]) is p-sequential and is not a FU(p)-space.
If p ≤RK q, then every p-limit point is also a q-limit point, as it is stated in the

next lemma.

0.4 Lemma. Let (xn)n<ω be a sequence in a space X such that p - limxn = x ∈
X . If f : ω → ω is a function such that f(q) = p, then x = q − lim

n→∞
xf(n).

As a consequence of the previous lemma and 0.1, we have that if ∅ 6=M ⊂ ω∗,
then

(a) weak R(M)-sequentiality ⇔ weak L(M)-sequentiality;
(b) strong R(M)-sequentiality ⇔ strong L(M)-sequentiality;
(c) WFU(R(M))-space ⇔ WFU(L(M))-space;
(d) SFU(R(M))-space ⇔ SFU(L(M))-space.

We observe next that strong M -sequentiality and weak M -sequentiality imply
SFU(N)-space and WFU(N)-space for a suitable N ⊂ ω∗, respectively. The proof
of our result resembles the one given in Theorems 3.6 and 3.8 in [GT2]. We recall
that a space X is p-compact, where p ∈ ω∗, if every sequence in X has a p-limit
point in X .

0.5 Theorem. For ∅ 6=M ⊂ ω∗, we have that every weakly M -sequential space
is a WFU(L(M))-space. In addition, if X is p-compact for every p ∈ M, then X
is a WFU(L(M))-space if and only if X is weakly M -sequential.

If p ∈ ω∗, then ξ(p ⊗ p) is a WFU(L(p))-space, but it is not p-sequential.
Also, as pointed out by the referee, ξ(p⊗ p) is an example of a p2-sequential non
SFU(L(p2))-space.
Theorem 0.5 leads us to ask:

0.6 Problem. For ∅ 6=M ⊂ ω∗ and X a space, if Cπ(X) is a WFU(L(M))-space
(resp. SFU(L(M))-space) must Cπ(X) be weakly (resp. strongly) M -sequential?

0.7 Definitions. Let ∅ 6=M ⊂ ω∗.
(a) A space Y is a strictly WFU(M)-space if for every sequence (Fn)n<ω of

subsets of Y and every y ∈
⋂

n<ω clY Fn, there exist yn ∈ Fn for each n < ω, and
p ∈ M such that y = p - lim yn.

(b) A space Y is a strictly SFU(M)-space if for every sequence (Fn)n<ω of
subsets of Y and every y ∈

⋂
n<ω clY Fn, there exists yn ∈ Fn for each n < ω

such that y = p - lim yn for every p ∈ M .
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(c) ([S]) A space Y has countable strong fan tightness if for every y ∈ Y and
every sequence (An)n<ω of subsets of Y such that y ∈

⋂
n<ω clAn, there exists

yn ∈ An for each n < ω, such that y ∈ cl{yn : n < ω}.

Note that, for p ∈ ω∗, a space Y is a strictly WFU({p})-space⇔ Y is a strictly
SFU({p})-space; so, in this case, we say that Y is a strictly FU(p)-space.
Observe also that: (a) Y is a strictly SFU(ω∗)-space ⇔ Y is strictly Fréchet-

Urysohn; (b) Y is strictly WFU(ω∗)-space ⇔ Y has countable strong fan tight-
ness; and (c) for p ∈ M ⊆ ω∗, Y is a strictly SFU(M)-space ⇒ Y is a strictly
FU(p)-space ⇒ Y is a strictly WFU(M)-space ⇒ Y has countable strong fan
tightness.
A collection G of subsets of a space X is an ω-cover of X if for every finite

subset F of X there exists G ∈ G such that F ⊂ G.
The following definition was introduced in [GN2].
A space X is said to have property γ if for every open ω-cover G of X , there is

a sequence (Gn)n<ω in G such that

X = limGn =
⋃

n<ω

⋂

n<m

Gm.

It is shown in [GN2] and [G] that the following statements are equivalent:

(a) Cπ(X) is a Fréchet-Urysohn space.
(b) Cπ(X) is a strictly Fréchet-Urysohn space .
(c) Cπ(X) is sequential.
(d) X satisfies γ.

The equivalence (a) ⇔ (b) was proved by Pytkeev ([Py]) as well, and Nyikos
([N]) showed that every Fréchet-Urysohn topological group is strictly Fréchet-
Urysohn.
In this paper, we principally study the p-sequentiality and the FU(p)-property

on function spaces, and their effects on the base space. This leads us to consider
the following generalization of property γ.

0.8 Definition ([GT1]). X satisfies property γp if for each open ω-cover G of
X there is a sequence (Gn)n<ω in G such that X = limp Gn, where limp Gn =⋃

A∈p

⋂
n∈A Gn.

It is natural to ask whether the p-limit version of the statements (a), (b), (c)
and (d), quoted above, are also equivalent for each p ∈ ω∗. The authors proved
in [GT1] the following.

0.9 Theorem. Let X be a space and let p ∈ ω∗. Cπ(X) is a FU(p)-space if and
only if X satisfies γp.

Unfortunately, the next problem remains unsolved.

0.10 Problem ([GT1]). If Cπ(X) is p-sequential, must X satisfy γp?



758 S.Garćıa-Ferreira, A.Tamariz-Mascarúa

The equivalence between the p-Fréchet-Urysohn property and strictly p-Fréchet-
Urysohn property does not hold, in general, on function spaces. In fact, we showed
in [GT1] that Cπ(R) is a FU(q)-space for some q ∈ ω∗, meanwhile Cπ(R) cannot
be a strictly FU(p)-space for all p ∈ ω∗ (see Corollary 2.5 below).
Before finishing this section we will give some results concerning limit of sets,

sum of ultrafilters and RK-order which will be fundamental for our purposes; their
proofs are not difficult, so we have omitted them. If q is an ultrafilter on ω × ω
and (Gn,m)n,m is a bisequence of sets, then the symbol limq Gn,m has a clear
meaning (see 0.8).

0.11 Lemma. Let p ∈ ω∗, {qn}n<ω ⊂ ω∗ and let (Gn,m)n,m<ω be a bisequence

of subsets of a space X . Then

lim
Σpqn

Gn,m = lim
n→∞

p ( lim
m→∞

qnGn,m).

(Observe that the symbol limΣpqn
Gn,m makes sense because Σpqn can be

considered as an ultrafilter on ω × ω.)

0.12 Lemma. Let p, q ∈ ω∗ and let (Gn)n<ω be a sequence of subsets of

a space X . If f : ω → ω is a function satisfying f(q) = p, then limp Gn =
lim

n→∞
qGf(n).

In the next section of this article we give some necessary and sufficient condi-
tions on a space X in order that its function space Cπ(X) be either WFU(M)-
spaces or SFU(M)-spaces, for ∅ 6= M ⊂ ω∗. We also prove that Cπ(R) is not
p-sequential if p ∈ ω∗ is selective. In Section 2 we study the strictly WFU(M)
and strictly SFU(M)- function spaces, and we characterize the semiselective ul-
trafilters in terms of these properties. In the last section we study the product of
spaces having one of the cover-properties analyzed in this work.

1. Weakly and strongly Fréchet-Urysohn function spaces and rapid

ultrafilters

We are going to characterize the WFU(M) and SFU(M)-properties on a func-
tion space Cπ(X) in terms of cover-properties in X .

1.1 Definitions. Let ∅ 6=M ⊂ ω∗.
(1) A space X satisfies property WγM if for each open ω-cover G of X , there

exist a sequence (Gn)n<ω in G and p ∈ M such that limp Gn = X .

(2) A space X satisfies property SγM if for each open ω-cover G of X , there is
a sequence (Gn)n<ω such that limp Gn = X for every p ∈ M .

(3) A space X satisfies property WΓM if X has ε and for each sequence
(Gn)n<ω, where Gn = {Gn

k : k < ω} for n < ω, of open ω-covers of X satis-

fying Gn+1
k ⊂ Gn

k for each n, k < ω, there exists p ∈ M and a sequence (km)m<ω

of positive integers such that X = lim
m→∞

pG
n
km
for each n < ω.
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(4) A spaceX satisfies property SΓM ifX has ε and for each sequence (Gn)n<ω,

where Gn = {Gn
k : k < ω} for n < ω, of open ω-covers of X satisfying Gn+1

k ⊂ Gn
k

for each n, k < ω, there is a sequence (km)m<ω of positive integers such that, for
every p ∈ M , X = lim

m→∞
pG

n
km
for each n < ω.

If p ∈ ω∗, then we denote by Γp the equivalent properties WΓ{p} and SΓ{p}.

We recall that a space X satisfies property ε if for each open ω-cover G of X
we can find a countable ω-subcover. It is shown in [GN 2] and [Ar 3] that X has
ε ⇔ Xn is Lindelöf for every n < ω ⇔ Cπ(X) has countable tightness.
Observe that, if p ∈ M ⊂ ω∗, then SγM ⇒ γp ⇒ WγM ⇒ ε and SγM ⇒

Γp ⇒ WΓM ⇒ ε.
In [GT1] we proved the following four lemmas which will be useful.

1.2 Lemma. Let ∅ 6= Φ ⊂ Cπ(X) and f ∈ clΦ, and let ̺ > 0. Then G =
{coz̺(g − f) : g ∈ φ} is an open ω-cover of X .

1.3 Lemma. Let f ∈ Cπ(X), let ̺ > 0 and let H be an open ω-cover of X with
X /∈ H. If Φ = {g ∈ Cπ(X) : coz̺(g−f) ⊂ H for some H ∈ H}, then f ∈ cl Φ\Φ.

1.4 Lemma. Let p ∈ ω∗, let X be a space and let f, f0, . . . , fn, · · · ∈ Cπ(X).
Then f = p - lim fn if and only if limp coz̺(fn − f) = X for every ̺ > 0.

1.5 Lemma. Let p, X , f, f0, . . . , fn, . . . as in the previous lemma. Let (̺n)n<ω

be a strictly decreasing sequence of positive real numbers converging to 0. If
X = limp coz̺n(fn − f), then f = p - lim fn.

1.6 Theorem. Let X be a space and let ∅ 6= M ⊂ ω∗. Then the following

statements are equivalent.

(a) Cπ(X) is a WFU(M)-space.
(b) X satisfies WγM .

(c) X satisfies WΓM .

Proof: (a) ⇒ (b). Let G be an open ω-cover of X . If X ∈ G, we take Gn = X
for every n < ω and, obviously, limp Gn = X for every p ∈ M . Now we assume
that X /∈ G, so 0 ∈ cl Φ \ Φ where Φ = {f ∈ Cπ(X) : coz1 f ⊂ G for some
G ∈ G} (Lemma 1.3). By hypothesis, there is p ∈ M and (fn)n<ω ⊂ Φ such that
limp fn = 0. It follows from Lemma 1.4 that limp coz1 fn = X . If, for each n < ω,
Gn ∈ G satisfies that coz1 fn ⊂ Gn, then limp Gn = X .

(b) ⇒ (c). We know that WγM implies ε. Let Gn = {Gn
k : k < ω} be an open

ω-cover of X , for each n < ω, such that Gn+1
k ⊂ Gn

k for each n, k < ω. We may
assume that X is infinite and hence choose {xn : n < ω} an infinite subset of X .
For each n < ω, define Fn = {Gn

k \ {xn} : k < ω} and put F =
⋃

n<ω Fn. It is
not hard to prove that F is an open ω-cover of X as well. By assumption, there
is a sequence (Fj)j<ω in F and p ∈ M for which X = limp Fj . For each j < ω,

we have that Fj = G
nj

kj
\ {xnj} for some nj < ω. We claim that X = lim

j→∞
pG

n
kj

for each n < ω. In fact, fix n < ω. First, observe that {j < ω : n ≤ nj} ∈ p.
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Otherwise, there would be s < n for which B = {j < ω : nj = s} ∈ p and so
X =

⋃
j∈B Fj ⊂

⋃
Fs, a contradiction. If x ∈ X , then {j < ω : x ∈ Fj} ∈ p

and hence {j < ω : n ≤ nj , x ∈ G
nj

kj
} ∈ p. Since G

nj

kj
⊂ Gn

kj
for n ≤ nj ,

{j < ω : x ∈ Gn
kj
} ∈ p. This proves our claim.

(c) ⇒ (a). Let Φ ⊂ Cπ(X) such that 0 ∈ clΦ \ Φ. Since X satisfies ε, Cπ(X)
has countable tightness, so we can find Ψ = {fn : n < ω} ⊂ Φ such that 0 ∈ clΨ.
We take, for each k < ω, Gk = {coz1/2k fn : n < ω}. According to Lemma 1.2,

each Gk is an open ω-cover of X . Besides, coz1/2k+1 fn ⊂ coz1/2k fn for every

k, n < ω. Thus, by hypothesis, there is p ∈ M and a sequence (ns)s<ω in ω such
that lim

s→∞
p coz1/2k fns = X for every k < ω. Therefore, 0 = p - lims→∞ fns (by

Lemma 1.4). �

Analogously, we can prove the strong version of the previous theorem:

1.7 Theorem. Let X be a space and let ∅ 6= M ⊂ ω∗. Then the following

statements are equivalent.

(a) Cπ(X) is a SFU(M)-space.
(b) X satisfies SγM .

(c) X satisfies SΓM .

A natural cover-property that is closely related to p-sequentiality in function
spaces is the p-version δp of property δ (δ was introduced and studied in [GN2]).
In order to define δp we need some notation:

Let X be a space, G ⊂ P(X) and p ∈ ω∗. We proceed by induction: Set
S(p,G, 0) = G and if S(p,G, λ) has been defined for all λ < µ < ω1, we put
S(p,G, µ) = {limp Gn : (Gn)n<ω is a sequence in

⋃
λ<µ S(p,G, λ)}. Finally, we

define Sp(G) =
⋃

λ<ω1
S(p,G, λ).

1.8 Definition. Let ∅ 6= M ⊂ ω∗. A space X satisfies property δM if for every
open ω-cover G, X belongs to Sp(G) for some p ∈ M .

We will write δp instead of δ{p} for each p ∈ ω∗.

We will prove that δM is the translation in X of WFU(L(M))-property in
Cπ(X), where L(M) is the set defined in 0.2. First we will give some lemmas.

1.9 Lemma. (a) If λ < µ < ω1, then S(p,G, λ) ⊂ S(p,G, µ);
(b) if p ≤RK q, then S(p,G, λ) ⊂ S(q,G, λ) for every λ < ω1;
(c) if γ < µ < ω1, then S(γp,G, λ) ⊂ S(µp,G, λ).

Proof: (a) is trivial and (c) is a consequence of (b) and 0.1 (2).
The proof of (b) is by induction. The containment S(p,G, 1) ⊂ S(q,G, 1)

follows from Lemma 0.12. Suppose now that S(p,G, λ) ⊂ S(q,G, λ) for all λ <
µ. Thus, S(p,G, µ) = {limp Gn : (Gn)n<ω ⊂

⋃
λ<µ S(p,G, λ)} ⊂ {limp Gn :

(Gn)n<ω ⊂
⋃

λ<ω S(q,G, λ)}. It follows from Lemma 0.12 that S(p,G, µ) ⊂
{limq Gn : (Gn)n<ω ⊂

⋃
λ<µ S(q,G, λ)} = S(q,G, µ). �
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1.10 Lemma. Let X be a space, A ⊂ P(X) and p ∈ ω∗. Then

(a) for every ν < ω1, S(p,A, ν) ⊂ S(ν+1p,A, 1);
(b) for every ν < ω1, S(

νp,A, 1) ⊂ S(p,A, ν).

Proof: We proceed by transfinite recursion.

(a) The statement is true when ν = 1 because of Lemma 1.9. Suppose that, for
every ν < µ, S(p,A, ν) ⊂ S(ν+1p,A, 1). Let G ∈ S(p,A, µ); so G = limp Gn with
(Gn)n<ω a sequence in

⋃
ν<µ S(p,A, ν). Thus, we obtain that {Gn : n < ω} ⊂

S(µp,A, 1) (by Lemma 1.9). So, for each n < ω, there is a sequence (Gn,m)n,m<ω

in A such that Gn = lim
m→∞

µp(Gn,m). Because of Lemma 0.11, we must have

G = lim
n→∞

p( lim
m→∞

µpGn,m) = limµ+1p Gn,m. Thus, G ∈ S(µ+1p,A, 1).

(b) This is evidently true when ν = 1. Suppose that, for every ν < µ,
S(νp,A, 1) ⊂ S(p,A, ν). Let G ∈ S(µp,A, 1), so G = lim µpGn for some se-
quence (Gn)n<ω in A. If µ = λ+1, then there is a bisequence (Gn,m)n,m<ω ⊂ A
such that G = limλ+1p Gn = lim

n→∞
p( lim

m→∞ λp
Gn,m) (Lemmas 0.11 and 0.12).

By induction hypothesis lim
m→∞ λp

Gn,m ∈ S(p,A, λ) for each n < ω. Therefore,

G ∈ S(p,A, µ).

If µ is a limit ordinal, then µp ≃RK Σp
µ(n)p and so, using the results in 0.11 and

0.12 again, we obtain thatG= lim µpGn = limΣp
µ(n)p Gn= lim

n→∞
p lim

m→∞
µ(n)pGn,m

for some bisequence (Gn,m)n,m<ω in A. But lim
m→∞

µ(n)pGn,m ∈
⋃

ν<µ S(p,A, ν)

for every n < ω. Hence, G ∈ S(p,A, µ). �

To prove the following theorem we only need to observe that a space X satisfies
WγL(M), for ∅ 6= M ⊂ ω∗, if and only if for every open ω-cover G of X , X ∈⋃

ν<ω1
S(νp, 1,G) for some p ∈ M , and apply the previous lemma.

1.11 Theorem. Let ∅ 6= M ⊂ ω∗. A space X satisfies δM if and only if X
satisfies WγL(M) (iff Cπ(X) is a WFU(L(M))-space).

The following lemma follows from Lemma 0.12.

1.12 Lemma. Let ∅ 6= M , N ⊂ ω∗. If for each p ∈ M there is q ∈ N such

that p ≤RK q, then every space having δM has δN , and every space having WγM
satisfies WγN .

From 0.1, 1.11 and 1.12 it follows that:

1.13 Corollary. Let p ∈ ω∗ and µ, ν < ω1. All the properties δp, δpν , δµp,

WγL(p), WγL(pν), WγL(µp), WγR(p), WγR(pν) and WγR(µp) are equivalent.

Now we are going to study the properties WγM on R. In particular we will
give some results related to question 0.10.
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1.14 Definition. Let Y be a p-sequential space. σp(Y ) will denote the degree
of p-sequentiality of Y which is defined to be the least ordinal µ ≤ ω1 such that
for every A ⊂ Y , clY A =

⋃
λ<µ A(p, λ), where

A(p, 0) = A, and

A(p, λ) = {y ∈ Y : ∃ (yn)n<ω ⊂
⋃

η<λ

A(p, η) (y = p - lim yn)},

for λ ≤ ω1.

Observe that σp(Y ) is defined iff Y is p-sequential.
As a consequence of Theorem 3.6 in [GT2] we obtain:

1.15 Theorem. Let p ∈ ω∗. If σp(Cπ(X)) = µ < ω1, then Cπ(X) is a FU(
µ+1p)-

space.

1.16 Corollary. Let p ∈ ω∗. If σp(Cπ(X)) = µ < ω1, then X satisfies γµ+1p.

The next result is a generalization of, and its proof is similar to, Lemma 3.15
in [GT1].

1.17 Lemma. Let p ∈ ω∗ be selective. Then, for λ < ω1, the RK-predecessors
of λp are rapid.

The previous results and Theorem 3.6 in [GT1] imply, in particular, that Cπ(R)
does not have a degree of p-sequentiality < ω1 if p is selective. We will obtain
a stronger result in 1.20: if p is selective, then Cπ(R) is not p-sequential.
The following theorem can be proved in a similar way as Theorem 3.6 in [GT1].

1.18 Theorem. Let M ⊂ ω∗ such that every RK-predecessor of any element of
M is rapid. If X ⊂ R satisfies WγM , then X has measure zero.

Because of 1.11, 1.17 and 1.18 we obtain

1.19 Theorem. Let p ∈ ω∗ be selective and X ⊂ R. If X has δp, then X has
measure zero.

1.20 Corollary. Let p ∈ ω∗ be selective and letX ⊂ R. If Cπ(X) is p-sequential,
then X has measure zero. In particular, Cπ(R) is not p-sequential.

2. Strictly Fréchet-Urysohn (M)-function spaces and semiselective
ultrafilters

2.1 Definitions. Let ∅ 6=M ⊂ ω∗.
(a) A space X has strictly WγM if for each sequence (Gn)n<ω of open ω-covers

of X , there are p ∈ M and, for each n < ω, Gn ∈ Gn such that X = limp Gn.

(b) A space X has strictly SγM if for each sequence (Gn)n<ω of open ω-covers
of X , there is Gn ∈ Gn for each n < ω such that X = limp Gn for every p ∈ M .
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In particular, we say that a space X has strictly γp if X has strictly Wγ{p}
(or, equivalently, if X has strictly Sγ{p}).

With a slight modification in the proof of the equivalence (a) ⇔ (b) of Theo-
rem 1.6, we can show the following result.

2.2 Theorem ([GT 1]). Let X be a space and p ∈ ω∗. Cπ(X) is a strictly
FU(p)-space if and only if X has strictly γp.

By applying the same techniques used so far, it is not difficult to prove the
following generalization of Theorem 2.2.

2.3 Theorem. Let X be a space, and let ∅ 6=M ⊂ ω∗. Then

(a) Cπ(X) is a strictly WFU(M)-space if and only if X has strictly WγM .

(b) Cπ(X) is a strictly SFU(M)-space if and only if X has strictly SγM .

We recall that a space X has property C′′ provided that for each sequence
(Gn)n<ω of open covers of X , there is a sequence (Gn)n<ω, with Gn ∈ Gn and
X =

⋃
n<ω Gn. A space Y has Id-fan tightness if for every y ∈ Y and every

sequence (An)n<ω of subsets of Y such that y ∈
⋂

n<ω clAn, there is Fn ∈ [An]
≤n

for each n < ω, such that y ∈ cl
⋃

n<ω Fn. This concept was introduced in
[GT3] and the authors pointed out that the following result holds (the equivalence
between (a) and (c) was shown by Sakai in [S]).

2.4 Theorem. For a space X , the following are equivalent.

(a) Cπ(X) has countable strong fan tightness.
(b) Cπ(X) has Id-fan tightness.
(c) Each finite product of X has property C′′.

Since every strictly WFU(M)-space, for ∅ 6=M ⊂ ω∗, has countable strong fan
tightness, then we obtain the following corollary of Theorem 2.4.

2.5 Corollary. Let ∅ 6= M ⊂ ω∗ and let X be a space. If X satisfies strictly
WγM , then Xn has C′′ for every n < ω. In particular, if X is a subset of R

having strictly WγM , then X has strong measure zero.

We may also obtain the conclusions in Corollary 2.5 by developing a proof sim-
ilar to that given in [D, p. 100] of the fact that γ implies Rothberger property C′′

(see [GN2]).
Corollary 2.5 implies that γp and strictly WγT (p) are not necessarily equiva-

lent because R satisfies γp for some p ∈ ω∗ (Theorem 2.15, [GT1]), but R does
not satisfy strictly WγT (p). Nevertheless, the two concepts coincide when p is

selective:

2.6 Theorem. If p ∈ ω∗ is selective, then a space X has γp if and only if X has
strictly WγT (p).

Proof: It is not difficult to verify that strictly WγT (p) implies property γp for

every p ∈ ω∗. Let p ∈ ω∗ be selective and assume that X has γp. Let (Gm)m<ω



764 S.Garćıa-Ferreira, A.Tamariz-Mascarúa

be a sequence of open ω-covers of X . If X is finite, there is nothing to prove,
so we suppose that we can take {xn : n < ω} ⊂ X such that xi 6= xj if i 6= j.
For each m < ω, we put Fm = {G − {xm} : G ∈ Gm}. Then F =

⋃
m<ω Fm

is an open ω-cover of X . Since X satisfies γp, there is a sequence (Fn)n<ω in F
such that X = limp Fn. The sets Ak = {n < ω : Fn ∈ Fk \

⋃
i<k Fi}, for k < ω,

constitute a partition of ω. Besides, Ak /∈ q for every k < ω because, on the
contrary, if Ak ∈ q for some k < ω, then X =

⋃
n∈Ak

Fn which is in contradiction
with the construction of Fk. Hence, since q is selective, there is A ∈ q such that
|A ∩Ak| ≤ 1 for every k < ω. By adding points if it is necessary, we may assume
that A ∩ Ak = {nk} for each k < ω and hence A = {nk : k < ω}. Thus, the
function f : ω → ω defined by f(i) = ni is injective and f [ω] = A ∈ p. Let

q ∈ ω∗ satisfying f(q) = p. Then, by 0.12, X = lim
k→∞

qFnk
. Since f is one-to-one,

q ≃RK p (see [CN] or [C 1]). Now, for each k < ω we choose Gk ∈ Gk so that
Fnk

⊂ Gk. Then X = limq Gk and q ∈ T (p). This completes our proof. �

2.7 Corollary. Let p ∈ ω∗ be selective. Then Cπ(X) is an FU(p)-space if and
only if Cπ(X) is a strictly WFU(T (p))-space.

2.8 Problem. Are γp and strictly γp the same property whenever p is selective?

2.9. In the following diagrams we summarize some of the results that we have
already proved in this article and in [GT1] concerning generalizations of the FU-
property in Cπ(X) and cover-properties in X . The expression p ≤∗

RK q, for

p, q ∈ ω∗, will mean that λp ≤RK q (equivalently, pλ ≤RK q) for every λ < ω1.

Cπ(X) is strictly SFU(T (p))-space ⇐⇒ X has strictly SγT (p)

⇓ ⇓

strictly FU(p)-space ⇐⇒ strictly γp

⇓ ⇓

strictly WFU(T (p))-space ⇐⇒ strictly WγT (p)

⇓ ⇓

FU(p)-space ⇐⇒ γp

⇓ ⇓

p-sequential space =⇒ δp

⇓ ⇓

WFU(L(p))-space ⇐⇒ WγL(p)

⇓ ⇓

FU(q)-space ∀ p ≤∗
RK q ⇐⇒ γq∀ p ≤∗

RK q
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Moreover, if p ∈ M ⊂ ω∗, then

X has Cπ(X) is X has

strictly SγM ⇐⇒ strictly SFU(M)-space ⇐⇒ strictly SγM

⇓ ⇓ ⇓ ⇓

SγM ⇐⇒ SFU(M)-space strictly FU(p) ⇐⇒ strictly γp

⇓ ⇓ ⇓ ⇓ ⇓

γp ⇐⇒ FU(p)-space strictly WFU(M) ⇐⇒ strictly WγM

⇓ ⇓ ⇓ ⇓

WγM ⇐⇒ WFU(M)-space ⇐⇒ WγM

⇓ ⇓

δM δM

2.10 Problems. (1) Under what conditions on p ∈ ω∗, and on M ⊂ ω∗ (and on
N ⊂ ω∗), does WγM imply γp (resp., WγM implies WγN )?

(2) Is p-sequentiality a consequence of δp if p is selective?

Now we are going to see that semiselective ultrafilters can be characterized in
terms of strictly WFU(M)-properties in ξ(p)-type spaces, where p ∈ ω∗ and ξ(p)
is the subspace ω ∪ {p} of βω.

2.11 Lemma. (a) Let ∅ 6=M ⊂ ω∗ and p ∈ ω∗. If ξ(p) is a strictly WFU(M)-
space, then p is semiselective.
(b) Let p, q ∈ ω∗. If ξ(p) is a strictly FU(q)-space, then p is semiselective and

p <RK q.
(c) For every p ∈ ω∗, ξ(p) is not a strictly FU(q)-space for every q ∈ T (p).

Proof: (a) Let {An}n<ω ⊂ p. For each n < ω there are xn ∈ An and q ∈ M such
that p = q - limxn, because p ∈ clξ(p)An for all n < ω. Take A = {xn : n < ω}.

If A /∈ p, then ω \ A ∈ p, and so ∅ = {n < ω : xn ∈ ω \ A} ∈ q, a contradiction.
Therefore, A ∈ p.

(b) By (a), p is semiselective. Let An ∈ p such that n /∈ An for n < ω. Then,
there is xn ∈ An, for n < ω, such that p = q - limxn. If f(n) = xn for each n < ω,
then f(q) = p. Suppose that f is one-to-one. Let Bn be such that f(n) /∈ Bn

for each n < ω. By assumption, there is g : ω → ω such that g(n) ∈ Bn, for all
n < ω, and g(q) = f(q). By [G-F 1, Lemma 2.1], {n < ω : g(n) = f(n)} ∈ p
which is a contradiction. Thus, p <RK q.

(c) is a consequence of (b). �

2.12 Theorem. Let p ∈ ω∗. p is semiselective if and only if ξ(p) is a strictly
WFU(T (p))-space.

Proof: According to Lemma 2.11 (a), we only have to prove the necessity. As-
sume that p ∈ ω∗ is semiselective and let p ∈

⋂
n<ω clξ(p)An, where An ⊂ ξ(p)

for every n < ω. Let B = {n < ω : p ∈ An}. We have two cases:
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First case: B ∈ p.

In this case, for each n ∈ B we take xn = p, and for every n /∈ B we choose some

xn ∈ An. If W ∈ p, {n < ω : xn ∈ Ŵ} ⊃ B ∈ p; so p = p - limxn.

Second case: B /∈ p.

Let ω \ B = {nk : k < ω} such that ni < nj if i < j. By assumption, for every
k < ω, there is xnk

∈ Ank
such that A = {xnk

: k < ω} ∈ p. We take y0 = xn0
and

yk+1 =

{
xnk+1 if xnk+1 /∈ {xns : 0 ≤ s ≤ k}

x ∈ Ank+1 \ {xns : 0 ≤ s ≤ k} otherwise.

We have that A ⊂ {yk : k < ω} = A′ and so A′ ∈ p. Let f : ω → A′ defined by
f(n) = yk if n = nk and f(n) = y0 if n ∈ B. Let q ∈ ω∗ such that f(q) = p.
It follows that p = q - lim yk. On the other hand, since f |ω\B is a one-to-one

function and ω \ B ∈ p, p ≃RK q (see [C 1, Lemma 3.2 (c)]). So ξ(p) is a strictly
WFU(T (p))-space. �

Note that, according to 2.11 (b) and 2.12, for every semiselective ultrafilter p,
ξ(p) is a strictly WFU(T (p))-space which is not a strictly FU(p)-space.

2.13 Problem. Let p ∈ ω∗ be selective. Is there any q ∈ ω∗ such that p <RK q
and ξ(p) is a strictly FU(q)-space?

3. Products, subspaces and sums

For a nonempty subset M of ω∗, SM will denote one of the p-sequential like
properties that we have considered in this work so far: weakly and strongly M -
sequentiality, WFU(M) and SFU(M)-property and strictly WFU(M) and strictly
SFU(M)-property. Let I be the set of all SM with ∅ 6=M ⊂ ω∗ plus sequentiality
and Fréchet-Urysohn property. In a similar way, CM is one of the cover properties
WγM , SγM , δM , strictly WγM or strictly SγM , and C = {CM : ∅ 6= M ⊂
ω∗} ∪ {ε, γ}.
Properties in I are not invariants under continuous functions and products,

even the square of a space X having S ∈ I does not necessarily satisfy S. In fact,
there exists a Fréchet-Urysohn space X whose square X × X has uncountable
tightness ([AR 1], [AR 2]; see also Example 1 in [GN 1]).

On the other hand, the properties in C satisfy the following result, proof of
which is similar to that given for Theorem 2.1 in [GT1].

3.1 Theorem. Let C ∈ C.

(a) C is preserved under continuous functions.
(b) If F is an Fσ-subset of a space X having C, then F has C.
(c) If X has C, then Xn satisfies C for every n < ω.
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3.2 Remarks. (1) Every countable space has C for every C ∈ C.

(2) Let X, Y be two spaces and C ∈ C. X × Y has C if and only if the disjoint
sum X

`
Y has C. In fact, X

`
Y is homeomorphic to a closed subset of X × Y ,

and X × Y is homeomorphic to a closed subset of (X
`

Y )× (X
`

Y ).

(3) Malykhin and Shakhmatov have shown in [MS] that if we add a single
Cohen real to a countable model of MA +¬CH, then there exist two spaces X
and Y in the generic extension satisfying γ such that X×Y does not even have ε.
On the other hand, as was remarked by van Douwen (see p. 1222 in [C 2]), there
are (without assuming any additional set theoretic axioms) two spaces X and Y
of weight not bigger that 2ω satisfying ε such that X × Y is not Lindelöf. Thus,
because of Theorem 2.3 in [GT1], X and Y have γp for some p ∈ ω∗ but X × Y
does not satisfy any of the properties in C.

3.3 Theorem. If X satisfies C ∈ C and N is a countable space, then X × N
has C.

Proof: Without loss of generality we may suppose that X and N are infinite.
The proof for the case C = γp suffices here. Let {an : n < ω} be a faithful
indexation of N , let {xn : n < ω} ⊂ X such that xi 6= xj if i 6= j and let G be an
open ω-cover of X×N . For each n < ω set Hn = {V ⊂ X : V is open and there is
G ∈ G such that V ×{aj : j < n} ⊂ G} and H′

n = {V \{xn} : V ∈ Hn}. We claim
that H =

⋃
n<ω H′

n is an open ω-cover of X . In fact, if {y0, . . . , yr} ⊂ X there are
s < ω and G ∈ G such that xs /∈ {y0, . . . , yr} and {y0, . . . , yr} × {a0, . . . , as} ⊂
G. Then, there is an open subset V of X containing {y0, . . . , yr} such that
V × {a0, . . . , as} ⊂ G. So, V ∈ Hs and {y0, . . . , yr} ⊂ V \ {xs} ∈ H′

s. Thus, H is
an open ω-cover of X . By hypothesis, there is a sequence (H ′

k)k<ω in H such that
X = limp H ′

k, where H ′
k = Vk \ {xnk

} for some open subset Vk of X and some
natural number nk. For each k there is Gk ∈ G such that Vk×{aj : j < nk} ⊂ Gk.
Now, we are going to prove that X ×N = limp Gn. In order to achieve this goal,
we take a point (x, an) ∈ X×N . IfD = {k < ω : nk ≤ n} ∈ p, then there ism ≤ n
such that E = {k < ω : nk = m} ∈ p; but this implies that X =

⋃
k∈E Vk \ {xm},

which is a contradiction. So, {k < ω : x ∈ Vk \ {xnk
}, n < nk} ∈ p. It follows

that {k < ω : (x, an) ∈ Vk × {aj : j < nk} ⊂ Gk and n < nk} ∈ p. �

3.4 Corollary. Let S ∈ I \ {weakly M -sequentiality, strongly M -sequentiality :
∅ 6=M ⊂ ω∗}.

(a) If Cπ(X) satisfies S, then Cπ(X
n) satisfies S.

(b) If Cπ(X) satisfies S, then Cπ(X)
ω has S.

(c) Cπ(X)× Cπ(Y ) has S if and only if Cπ(X × Y ) has S.
(d) If Y is a quotient space of a space X and Y satisfies C ∈ C, then X has C.

Proof: We obtain (a) as a consequence of Theorem 3.1; (b) follows from 3.1, 3.3
and the fact that C(X)ω ∼= C(X × ω) (see Corollary 2.4.7 in [MN]); 3.2 (2) and
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Cπ(X) × Cπ(Y ) ∼= Cπ(X
`

Y ) implies (c); and (d) results from Theorems 2.2.8
and 2.2.10 in [MN]. �

It is pointed out in [G, p. 258] that if a space X has γ, then X must be
zero-dimensional. For ∅ 6=M ⊂ ω∗, the following holds.

3.5 Corollary. If all RK-predecessors of each p ∈ M ⊂ ω∗ are rapid, then every

space X with WγM is zero-dimensional.

Proof: Assume that X has property WγM . Let x ∈ X and U an open
neighborhood of x. Choose a continuous function f : X → [0, 1] such that
f(x) = 0 and f(y) = 1 for all y ∈ X \ U . From 3.1 (a) and 1.18 it follows
that f [X ] has measure zero. Hence, there is r ∈ [0, 1] such that r /∈ f [X ]. Then
x ∈ f−1([0, r)) ⊂ f−1([0, r]) ⊂ U and f−1([0, r]) is a clopen subset of X . �

We know ([GT 1, Theorem 2.3]) that there is p ∈ ω∗ such that βω and ω∗

have property γp. However, if p ∈ ω∗ is selective, then βω and ω∗ cannot have
property γp since none of them have property C′′. In fact, by induction we may
define a partition {At(0),...,t(n−1) : t : n → {0, 1} is a function} of ω in infinite

subsets such that {At(0),...,t(n−1),0, At(0),...(n−1),1} is a partition of At(0),...,t(n−1)

in infinite sets, for each n < ω and each function t : n → {0, 1}. Now define, for

each n < ω, Gn = {Ât(0),...,t(n−1) : t : n → {0, 1} is a function}. We have that

Gn is a cover of βω. Assume that βω has property C′′. Then, for every n < ω

there is tn : n → {0, 1} such that βω =
⋃

n<ω Âtn(0),...,tn(n−1). We may find

σ : ω → {0, 1} so that σ(n − 1) 6= tn(n − 1) for all 1 < n < ω. We may choose

q ∈ [
⋂

n<ω Âσ(0),...,σ(n−1)] ∩ ω∗. It is then evident that q /∈ Âtn(0),...,tn(n−1) for

all 1 < n < ω, a contradiction. �

Using analogous proofs of those given for Theorems 3.18 and 3.20 in [GT1],
we have

3.6 Theorem. Let C ∈ C.

(1) the following are equivalent.

(a) R satisfies C.
(b) The Cantor space 2ω satisfies C.
(c) Every metrizable separable locally compact space has C.

(2) the following are equivalent.

(a) R
ω satisfies C.

(b) The set of irrational numbers ωω satisfies C.
(c) Every completely metrizable space has C.

If |X | > 1, then the Cantor set 2ω is homeomorphic to a closed subspace of Xω.
On the other hand, 2ω does not have γ ([GN 2, Theorem 6]). Thus, we obtain

3.7. If X has more than one point, then Xω does not satisfy γ.

Note also that if Xω has C ∈ C, then X has C, because X is homeomorphic to
some closed subset of Xω. But the converse is not necessarily true, for example
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the discrete space {0, 1} satisfies C for every C ∈ C but 2ω does not have γp if p
is semiselective ([GT 1, Theorems 3.9 and 3.18]). We obtain something different
when we take X into some convenient class of spaces:

3.8 Theorem. Let X be a compact second countable and non-countable space
and let C ∈ C \ {γ}, then X has C if and only if Xω has C.

Proof: Since X is second countable and non-countable, there is ∅ 6= F ⊂ X
which is perfect (see [E, p. 59, 1.7.11]). Furthermore, F is completely metrizable
because X is, then F contains a copy of the Cantor set ([E, p. 290, 4.5.5]). Thus,
2ω satisfies C. By Theorem 3.6, every compact metric space has C; in particular
Xω has C. �

3.9 Corollary. Let X be a compact second countable non-countable space, and
let S ∈ I \ {weakly M -sequentiality, strongly M -sequentiality : ∅ 6= M ⊂ ω∗}.
Then Cπ(X) has S if and only if Cπ(X

ω) satisfies S.

3.10 Problems. (1) Let C ∈ C. Does R
ω satisfy C if R does?

(2) Let p ∈ ω∗ be a P -point and letX be a space having γ. Does Xω satisfy γp?

3.11 Examples. Let C ∈ C.
(1) If X contains a closed discrete set of cardinality > ℵ0, then X does not

satisfy C. So, the Moore Plane and L × L, where L is the Sorgenfrey Line do
not satisfy C, and by Theorem 3.1, L does not satisfy C either. Also for every

cardinal α ≥ ω, α(α
+) does not have C. In particular, if X contains a closed copy

of ω, Xα does not satisfy C if α > ω.

(2) Let X be a space satisfying ε and such that X contains a point x0 with the
property that for every neighborhood V of x0, |X \V | ≤ ℵ0. Then X satisfies C.
Thus, the one point compactification of a discrete space and [o, ω1] (with the order
topology) satisfy C.

Because of Theorem 2.12 in [GT1] we know that 22
ω
has γp for some p ∈ ω∗.

So it is natural to ask:

3.12 Problem. Does 2(2
ω)+ satisfy γp for any p ∈ ω∗?

For a space X , n(X) denotes the Novak number of X (that is, n(X) is the
smaller power of a family of nowhere dense sets covering X). Our last result is
a consequence of Theorem 1 in [Ma].

3.13 Theorem (n(ω∗) > c). Let X be a space. The following statements are
equivalent.

(a) X satisfies γ.
(b) X satisfies γp for every p ∈ ω∗.

(c) X satisfies strictly γp for every p ∈ ω∗.

(d) Cπ(X) is p-sequential for every p ∈ ω∗.
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3.14 Problems. (1) Is it consistent with ZFC that every space satisfying δp for
every p ∈ ω∗ has γp for every p ∈ ω∗?

(2) Is it consistent with ZFC that there exists a space X satisfying γp (resp.,
δp, strictly γp) for every p ∈ ω∗ and ¬γ?

(3) Is it consistent with ZFC that R satisfies γp for every p ∈ ω∗?
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