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A property of B2-groups

K.M. Rangaswamy

Abstract. It is shown, under ZFC, that a B2-group has the interesting property of being
ℵ0-prebalanced in every torsion-free abelian group in which it is a pure subgroup. As
a consequence, we obtain alternate proofs of some well-known theorems on B2-groups.
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Introduction

All groups considered here, unless otherwise stated, are additively written
torsion-free abelian groups. For unexplained terminology and notations, we refer
to Fuchs [F-1]. A torsion-free abelian group G of infinite rank is called a B2-group
if, for some ordinal τ , G is the union of a continuous well-ordered ascending chain
of pure subgroups,

(∗) 0 = G0 ⊂ G1 ⊂ · · · ⊂ Gα ⊂ . . . . . . , (α < τ) . . . . . .

such that, for each α < τ , Gα+1 = Gα +Bα, where Bα is a finite rank pure sub-
group of a completely decomposable group. Such groups Bα are also called Butler
groups. Recently Fuchs [F-2] made striking advances in the study of B2-groups
by employing the concept of ℵ0-prebalancedness introduced in [BF]. In this note
we prove that a B2-group has the interesting property of being ℵ0-prebalanced in
every torsion-free group in which it is a pure subgroup. A noteworthy corollary
is that a B2-group A is a pure subgroup of index ≤ ℵ1 in a B1-group G, then G
itself becomes a B2-group. Taking A = 0 leads to a well-known theorem ([DHR])
that a B1-group of cardinality ≤ ℵ1 is a B2-group. An adaptation of our methods
also leads to a direct and simple proof of a theorem of Hill and Megibben ([HM])
that completely decomposable groups are absolutely separative.

Preliminaries

A torsion-free group G is called a B1-group if Bext
1(G, T ) = 0 for all torsion

groups T . (Here Bext1 denotes the subfunctor of Ext1 consisting of all the bal-
anced extensions.) The chain of subgroups (∗) defined above for a B2-group G is
called a B2-filtration of G. Let A be a pure subgroup of a torsion-free group G.
A is called decent (prebalanced) in G if whenever L/A is a finite rank (rank one)
pure subgroup of G/A, then L = A + B, for some finite rank Butler group B.
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A is a TEP subgroup of G if, for any torsion group T , every homomorphism from
A to T extends to a homomorphism from G to T . A is said to be ℵ0-prebalanced
([BF]) in G if, for each g ∈ G\A there is a countable subset {a1, a2, . . . } ⊂ A such
that for each a ∈ A, there is an n < ω with t(g+a) ≤ sup{t(g+a1), . . . t(g+an)}
where t(x) denotes the type of x. In the last definition, if A satisfies the stronger
condition that χ(g+a) ≤ χ(g+ai) for some i < ω, then A is said to be separative
(or in the terminology of [HM], separable) in G, where, as usual, χ(x) denotes
the characteristic of x. An ℵ0-prebalanced chain for a group G is a continuous
well-ordered ascending chain of ℵ0-prebalanced subgroups

0 = G0 ⊂ G1 ⊂ . . . ⊂ Gα ⊂ . . . Gτ = G (for some ordinal τ)

where all the factors Gα+1/Gα are of rank one. A key result of Fuchs ([F-2,
Corollary 2.4]) is that if G has an ℵ0-prebalanced chain, then G is of the form
G = C/K, where C is completely decomposable andK is a balancedB2-subgroup.
Another useful idea that we need from [BF] is the balanced-projective resolution
of a group G relative to a pure subgroup A. To form this, consider all the rank-1
pure subgroups Jα in G\A and let C be the direct sum of all these Jα’s. Then the
map C → B induced by the inclusion of the Jα in G together with the inclusion
of A in G induces a balanced exact sequence

0 −→ K −→ A ⊕ C −→ G −→ 0

which is called the balanced-projective resolution ofG relative to A. An important
result of Bican-Fuchs ([BF, Theorem 3.2]) that we shall be using asserts that if
G/A is countable, then A is ℵ0-prebalanced in G exactly when K is a B2-group.
We shall also need a result from [R] that if A is a TEP subgroup of B and if both
A and B are B2-groups, then so is B/A. The reader is referred to [BF], [F-2]
and [R] for background details.

The results

We shall begin with the following simple lemma.

Lemma 1. Let A and S be subgroups of a torsion-free group G. If A∩S is pure
and decent in A, then S is pure and decent in A+ S.

Proof: We first show that given any finite subset X of A + S, there is a finite
rank Butler subgroup B such that B+S is pure in A+S and contains X . Without
loss of generality, we may assume that X ⊂ A. By the decency of A ∩ S, there
is a finite rank Butler subgroup B of A such that B + (A ∩ S) is pure in A and
contains X . It is then readily seen that both B + S and S are pure in A + S.
From this the decency of S follows. �

Bican and Fuchs [BF] showed, under V = L, that every B1-group is “absolutely
ℵ0-prebalanced”, that is, it is an ℵ0-prebalanced subgroup of every group in which
it is a pure subgroup. The next theorem says that this holds for any B2-group
and we prove this under ZFC.
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Theorem 2. Every B2-group is absolutely ℵ0-prebalanced.

Proof: Let A be a B2-group with and axiom-3 family C of pure decent subgroups
so chosen that for each Y ∈ C, A/Y is again a B2-group (see [AH] for the
construction of C). Suppose A is a pure subgroup of a torsion-free group B
with B/A countable. Then B = A + S, where S is a countable pure subgroup.
Moreover, by the usual back and-forth argument, we could assume that A ∩ S =
Y ∈ C. By Lemma 1, S is decent and pure in B. Moreover, B/S ∼= A/Y is
a B2-group. Since S is decent and countable, the pre-image of a B2-filtration of
B/S gives rise to an ℵ0-prebalanced chain in B. In order to show that A is ℵ0-
prebalanced in B, consider a relative balanced-projective resolution (as explained
in the Preliminaries)

0 −→ K −→ A ⊕ X −→ B → 0

where X is completely decomposable. Let

0 −→ M −→ X ′ −→ A −→ 0

be a balanced-projective resolution of A with X ′ completely decomposable. Then
the obvious epimorphism X ′ ⊕ X → A ⊕ X induces the following commutative
diagram:

0 0




y





y

M M




y





y

0 −−−−→ L −−−−→ X ′ ⊕ X −−−−→ B −−−−→ 0




y





y

∥

∥

∥

0 −−−−→ K −−−−→ A ⊕ X −−−−→ B −−−−→ 0




y





y

0 0

Here all the rows and columns are balanced exact. Since B has an ℵ0-prebalanced
chain, Corollary 2.4 of [F-2] implies that L is a B2-group. Since A ⊕ X is
a B2-group, the middle column is TEP exact and, moreover, by [F-2] and [R], M
is a B2-group. Clearly the first column is now TEP exact and Theorem 3 of [R]
then yields that K is also a B2-group. An appeal to Theorem 3.2 of [BF] (alluded
to in the Preliminaries) leads to the conclusion that A is ℵ0-prebalanced in B.

�
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Corollary 3. Suppose A is a B2-group which is a pure subgroup of a torsion-free
group B with B/A having cardinality ≤ ℵ1. Then

(a) B has an ℵ0-prebalanced chain and Bext
2(B, T ) = 0 for all torsion groups T .

(b) If B is a B1-group, then B is also a B2-group.

Proof: (a) Now B is a union of a smooth ascending chain of pure subgroups

(1) A = A0 ⊂ A1 ⊂ . . . ⊂ Aα ⊂ . . . , α < ω1, . . . . . .

where, for each α, Aα+1/Aα is countable. Since a countable extension of an abso-
lutely ℵ0-prebalanced subgroup is again absolutely ℵ0-prebalanced, the
chain (1) gives rise to a ℵ0-prebalanced chain for B. By Corollary 2.3 of [F-2],
Bext2(B, T ) = 0.

(b) Follows from the fact (Theorem 4.1 of [F-2]) that a B1-group with an ℵ0-
prebalanced chain is a B2-group.

�

In Corollary 3 (b) if we take A = 0, then we obtain the following

Corollary 4 ([DHR]). A B1-group of cardinality ≤ ℵ1 is a B2-group.

Corollary 5. If A is a pure B2-subgroup of a finitely Butler group B with B/A
countable, then B itself is a B2-group.

Proof: Since B is finitely Butler, the countable subgroup S in the first part of
the proof of Theorem 2 is Butler and decent in B with B/S a B2-group. Clearly
B is then a B2-group. �

Note: The group ΠZ, the direct product of ℵ0 copies of the group Z of integers,
shows that Corollary 5 is false if B/A is uncountable.

If A is a completely decomposable group, then the subgroup S in the proof of
Theorem 2 can actually be a direct summand, as the following lemma shows.

Lemma 6. Suppose A is a completely decomposable group and is a pure sub-
group of a torsion-free group B with B/A countable. Then B = A′ ⊕ S, where
A′ ⊂ A and S is countable.

Proof: Now B = A + X , where X is a suitable countable pure subgroup of
B. Then we can write A = A′ ⊕ Y , where Y is countable and X ∩ A ⊂ Y . If
S = Y +X , then clearly B = A′+S. Moreover, A′∩S = A′∩A∩S ⊂ A′∩Y = 0,
so that B = A′ ⊕ S. �

As an application we get a direct and simpler proof of theorem of Hill and
Megibben ([HM]) that completely decomposable are absolutely separative.
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Theorem 7 ([HM]). A completely decomposable group A is separative in every
torsion-free group containing A as a pure subgroup.

Proof: Let A be a pure subgroup of a torsion-free group G. Let g ∈ G \ A.
If B = 〈A, g〉∗, the pure subgroup generated by A and g, then by Lemma 6
B = A′ ⊕ S, A = A′ ⊕C, where S is countable and C = A∩ S. Write g = a′ + s,
where a′ ∈ A′ and s ∈ S. Clearly, H = {−a′ + c : c ∈ C} is a countable subset
of A. We claim that for any a ∈ A, there is an h ∈ H such that χ(g+a) ≤ χ(g+h).
Indeed if a = x + y, with x ∈ A′ and y ∈ C, then we have χ(g + a) = χ(a′ + s+
x + y) = χ((a′ + x) + (s + y)) ≤ χ(s + y) = χ(g + h), where h = −a′ + y ∈ L.
Thus A is separative in G. �
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