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Free ℓ-groups and free products of ℓ-groups

Ton Dao-Rong

Abstract. In this paper we have given the construction of free ℓ-groups generated by
a po-group and the construction of free products in any sub-product class U of ℓ-groups.
We have proved that the U-free products satisfy the weak subalgebra property.

Keywords: lattice-ordered group (ℓ-group), free ℓ-group, free product of ℓ-groups, sub-
product class of ℓ-groups

Classification: 06F15

1. Introduction

We use the standard terminologies and notations of [1], [2], [5]. The group
operation of an ℓ-group is written by additive notation. A po-group is a partially
ordered group [G, P ] where P = {x ∈ G | x ≥ 0} is the positive semigroup
of G. Let G and H be two po-groups. A map ϕ : G → H is called a po-group
homomorphism, if ϕ is a group homomorphism and x ≥ y implies ϕ(x) ≥ ϕ(y)
for any x, y ∈ G. A po-group homomorphism ϕ is called a po-group isomorphism,
if ϕ is an injection and ϕ⊣ is also a po-group homomorphism.
A partial ℓ-group G is a set with partial operations corresponding to the usual

ℓ-group operations ·, ⊣, | , ∨ and ∧ such that whenever the operations are defined
for elements of G, the the ℓ-group laws are satisfied. Suppose [G, P ] is a po-group.
Then G has implicit partial operations ∨ and ∧ as determined by the partial order.
That is,

x ∨ y = y ∨ x = y if and only if x ≤ y

and

x ∧ y = y ∧ x = x if and only if x ≤ y.

Using these partial lattice operations together with the full group operations, G
can be considered as a partial ℓ-group. Then we have the following definition as
a special case of the U-free algebra generated by a partial algebra.

Definition 1.1. Let U be a class of ℓ-groups and [G, P ] be a po-group. The ℓ-
group FU [G, P ] is called the U-free ℓ-group generated by [G, P ] (or U-free ℓ-group
over [G, P ]) if the following conditions are satisfied:
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(1) FU ([G, P ]) ∈ U ;
(2) there exists a po-group isomorphism α : G → FU ([G, P ]) such that α(G)
generates FU ([G, P ]) as an ℓ-group;

(3) if K ∈ U and β : G → K is a po-group homomorphism, then there exists
an ℓ-homomorphism γ : FU ([G, P ])→ K such that γα = β.

A[G,P ] FU ([G,P ])

K

α

β

γ

Definition 1.2. Let U be a class of ℓ-groups and {Gλ | λ ∈ Λ} be a family of

ℓ-groups in U . The U-free product of Gλ is an ℓ-group G, denoted by U
∐

λ∈ΛG,
together with a family of injective ℓ-homomorphisms αλ : Gλ → G (called copro-
jections) such that

(1) U
∐

λ∈ΛGλ ∈ U ;

(2)
⋃

λ∈Λ αλ(Gλ) generates
U

∐

λ∈ΛGλ as an ℓ-group;
(3) if K ∈ U and {βλ : Gλ → K | λ ∈ Λ} is a family of ℓ-homomorphisms,
then there exists a (necessarily) unique ℓ-homomorphism γ : G → K

satisfying βλ = γαλ for all λ ∈ Λ.

A family U of ℓ-groups is called a sub-product class, if it is closed under taking
(1) ℓ-groups and (2) direct products. All our sub-product classes of ℓ-groups are
always assumed to contain along with a given ℓ-group all its ℓ-isomorphic copies.
Clearly, all varieties of ℓ-groups are sub-product classes of ℓ-groups. Let L, R and
A be the varieties of all ℓ-groups, representable ℓ-groups and abelian ℓ-groups,
respectively.

In this paper we will discuss the existence and constructions of free ℓ-groups
generated by a po-group and free products in any sub-product classes of ℓ-groups.
In what follows, U is always denoted a sub-product class of ℓ-groups.

2. Construction for a U-free ℓ-group generated by a po-group

In 1963 and 1965, E.C. Weinberg initially considered the A-free ℓ-group gener-
ated by a po-group [G, P ]. He has given a necessary and sufficient condition for
existence and a simple description of FA([G, P ]) in [17], [18].

In 1970, P. Conrad generalized Weinberg’s result as follows.

Lemma 2.1 ([3]).

(1) There exists an L-free ℓ-group FL([G, P ]) generated by [G, P ], if and only
if there exists a po-group isomorphism of [G, P ] into an ℓ-group, if and only if P

is the intersection of right order on G.
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(2) Suppose that P =
⋂

λ∈Λ Pλ where {Pλ | λ ∈ Λ} is the set of all right orders
ofG such that Pλ ⊇ P . If Gλ isG with one such right order, then denote by A(Gλ)
the ℓ-group of order preserving permutations of Gλ. Each x ∈ G corresponds to

an element ρx of A(Gλ) defined by ρxg = g+x. Then FL([G, P ]) is the sublattice
of

∏

λ∈ΛA(Gλ) generated by the long constants 〈g〉 (g ∈ G).

By Grätzer existence theorem on a free algebra generated by a partial algebra
(Theorem 28.2 of [6]) we have

Theorem 2.2. There exists a U-free ℓ-group FU ([G, P ]) generated by a po-group
[G, P ] if and only if [G, P ] is po-group isomorphic to an ℓ-group in U .

Lemma 2.3 (Lemma 11.3.1 of [5]). Let L and L′ be ℓ-groups and M be a sub-

group of L which generates L as a lattice. Let ϕ : M → L′ be a group ho-

momorphism such that for each finite subset {xjk | j ∈ J, k ∈ K} of M ,
∨

j∈J

∧

k∈K xjk = 0 implies
∨

j∈J

∧

k∈K ϕ(xjk) = 0. Then ϕ can be uniquely

extended to an ℓ-homomorphism ϕ′ : L → L′.

Let U be a sub-product class of ℓ-groups. An ℓ-homomorphic image H of an
ℓ-group G is said to be a U-homomorphic image, if H ∈ U . Suppose that a po-
group [G, P ] is po-group isomorphic into an ℓ-group F0 ∈ U with the po-group
isomorphism δ. By Lemma 2.1 (1) there exists the L-free ℓ-group FL([G, P ])
generated by [G, P ] with the po-group isomorphism α : [G, P ]→ FL([G, P ]). By
Definition 1.1 there exists an ℓ-homomorphism γ : FL([G, P ]) → F0 such that
γα = δ. Let D = {Fλ | λ ∈ Λ} be the set of all U-homomorphic images of
FL([G, P ]) with the ℓ-homomorphisms γλ (λ ∈ Λ). Thus γ(FL([G, P ])) ∈ D and
D is not empty.

A[G,P ] G′⊆F
Q

λ∈Λ
Fλ

FL([G,P ])F0

L

π

β

α

γ

δ γλ

β′ β∗

γo

For each λ ∈ Λ, γλα is a po-group homomorphism of [G, P ] into Fλ. Then the
direct product

∏

λ∈Λ Fλ is an ℓ-group in U . Let π be the natural map of G onto

the subgroup G′ of long constants of
∏

λ∈Λ Fλ. That is,

π(g) = (. . . , γλα(g), . . . )

for g ∈ G. Since γα = δ is a po-group isomorphism, π is a po-group isomorphism.
Let F be the sublattice of

∏

λ∈Λ Fλ generated by G′. Then F is an ℓ-subgroup
of

∏

λ∈Λ, and so F ∈ U .
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Theorem 2.4. Suppose that a po-group [G, P ] is po-group isomorphic into an
ℓ-group in a sub-product class of ℓ-groups. Then the U-free ℓ-group FU ([G, P ])
generated by [G, P ] is the sublattice F of the direct product

∏

λ∈Λ Fλ generated by

the po-group isomorphic image G′ of G where {Fλ | λ ∈ Λ} are all ℓ-homomorphic
images of the L-free ℓ-group FL([G, P ]) generated by [G, P ].

Proof: We have already known that F ∈ U and [G, P ] is po-group isomorphic
into F . Suppose that β is a po-group homomorphism of [G, P ] into an ℓ-group
L ∈ U . Then there exists an ℓ-homomorphism γo : FL([G, P ]) → L such that
γoα = β. So γ′(FL([G, P ])) ∈ D. For g′ = π(g) ∈ G′ (g ∈ G), put

β′(g′) = β(g).

Then β′ is a group homomorphism of G′ into L and β′π = β. By Lemma 2.3
we only need to show that for each finite subset {gjk | j ∈ J, k ∈ K} ⊆ G,
∨

j∈J

∧

k∈K β′π(gjk) 6= 0 implies
∨

j∈J

∧

k∈K π(gjk) 6= 0. In fact,
∨

j∈J

∧

k∈K

γoα(gjk) =
∨

j∈J

∧

k∈K

β(gjk) =
∨

j∈J

∧

k∈K

β′π(gjk) 6= 0.

Hence
∨

j∈J

∧

k∈K

π(gjk) =
∨

j∈J

∧

k∈K

(. . . , γoα(gjk), . . . )

= (. . . ,
∨

j∈J

∧

k∈K

γoα(gjk), . . . ) 6= 0.

Therefore β′ can be uniquely extended to an ℓ-homomorphism β∗ : F → L. �

3. Construction of U-free products

Let U be a sub-product class of ℓ-groups and {Gλ | λ ∈ Λ} be a family of

ℓ-groups in U . By Corollary 2 of Theorem 2 of [6] the U-free product U
∐

λ∈ΛGλ

always exists. Specifically, there exists an L-free product L
∐

λ∈ΛGλ with the
coprojection αλ. In [7]–[14] J. Martinez, W. Powell and C. Tsinakis have given
several descriptions and some properties for the free products in the varieties R
and A. W.C. Holland and E. Scrimger have given a description for L-free product.
Let H be the group free product of {Gλ | λ ∈ Λ}. Let P = {h ∈ H | h be a sum

of conjugates in H of elements of
⋃

λ∈ΛG+λ } and P ′ = {Q | Q is the positive

cone of a right order on H with P ⊆ Q}. Then [H, P ′] is a po-group and its L-
free extension FL([H, P ′]) by the ℓ-ideal generated by {g− ∧ g+ | g ∈

⋃

λ∈ΛGλ}

(Theorem 3.7 of [4]). There exists a group homomorphism α : H → L
∐

λ∈ΛGλ

which extends every αλ (λ ∈ Λ).
It is clear that the cardinal sum ⊞Gλ is an ℓ-group in U and every Gλ (λ ∈ Λ)

can naturally be embedded into ⊞λ∈ΛGλ as an ℓ-group with embedding δλ. Hence
there exists a group homomorphism δ : H → ⊞λ∈ΛGλ which extends each δλ
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AH H′⊆F
Q

i∈I
Fi

L
`

λ∈Λ
Gλ⊞λ∈ΛGλ

LGλ

π

β

α

αλ

γo

δ γi

β′ β∗

f

δλ

(λ ∈ Λ) and there exists an ℓ-homomorphism γo :
L

∐

λ∈ΛGλ → ⊞λ∈ΛGλ such
that γoαλ = δλ for each λ ∈ Λ. Let D = {Fi | i ∈ I} be the set of all U-

homomorphic images of L
∐

λ∈ΛGλ with the ℓ-homomorphisms γi (i ∈ I). Thus,
⊞λ∈ΛGλ ∈ D and D is not empty. For each λ ∈ Λ and each i ∈ I, γiαλ is an
ℓ-homomorphism of Gλ into Fi. The direct product

∏

i∈I Fi is an ℓ-group in U .
For each λ ∈ Λ, let πλ be the natural ℓ-homomorphism of Gλ onto the ℓ-subgroup
G′

λ of
∏

i∈I Fi. That is,

πλ(gλ) = (. . . , γiαλ(gλ), . . . )

for gλ ∈ Gλ. Let H ′ be the subgroup of
∏

i∈I Fi generated by
⋃

λ∈ΛG′
λ. Let π

be the group homomorphism of H onto H ′ which extends every πλ (λ ∈ Λ). That
is,

π(h) = (. . . , γiα(h), . . . )

for h ∈ H . Since ⊞λ∈ΛGλ ∈ D and every δλ (λ ∈ Λ) is an ℓ-isomorphism, πλ is
an ℓ-isomorphism for each λ ∈ Λ. Let F be the sublattice of

∏

i∈I Fi generated

by H ′. For each h ∈ H , put h′ = π(h). Since
∏

i∈I Fi is a distributive lattice,

F =







∨

j∈J

∧

k∈K

h′jk | hjk ∈ H, J and K finite







.

Then we have the following construction theorem for U
∐

λ∈ΛGλ.

Theorem 3.1. Suppose that {Gλ | λ ∈ Λ} is a family of ℓ-groups in a sub-

product class of ℓ-groups. Then the U-free product U
∐

λ∈ΛGλ is the sublattice

F of the direct product
∏

i∈I Fi generated by the group homomorphic image H ′

of the group free product H of Gλ, where {Fi | i ∈ I} are all U-homomorphic

images of the L-free product L
∐

λ∈ΛGλ.

Proof: We have seen that F ∈ U and each Gλ (λ ∈ Λ) can be embedded into
F as an ℓ-group. Suppose that L ∈ U and {βλ : Gλ → L | λ ∈ Λ} is a family
of ℓ-homomorphisms. We must show that there exists a unique ℓ-homomorphism
β∗ : F → L such that β∗πλ = βλ. By the universal property of group free
product, there exists a group homomorphism β : H → L which extends every βλ

(λ ∈ Λ). For any h′ = π(h) ∈ H ′, put

β′(h′) = β(h).
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By the universal property of an L-free product, there exists a unique ℓ-homo-
morphism f : L

∐

λ∈ΛGλ → L such that βλ = fαλ for each λ ∈ Λ. Then

fα = β′π = β.

By Lemma 2.3 we only need to show that for each finite subset {hjk | j ∈ J, k ∈

K} ⊆ H ,
∨

j∈J

∧

k∈K β′π(hjk) 6= 0 implies
∨

j∈J

∧

k∈K π(hjk) 6= 0. In fact,

∨

j∈J

∧

k∈K

fα(hjk) =
∨

j∈J

∧

k∈K

β′π(hjk) 6= 0.

Because f(L
∐

λ∈ΛGλ) ∈ D,
∨

j∈J

∧

k∈K γiα(hjk) 6= 0 for some i ∈ I. So

∨

j∈J

∧

k∈K

π(hjk) =
∨

j∈J

∧

k∈K

(. . . , γiα(hjk), . . . )

= (. . . ,
∨

j∈J

∧

k∈K

γiα(hjk), . . . ) 6= 0.

Therefore β′ can be uniquely extended to an ℓ-homomorphism β∗ : F → L. �

By using the similar proof as the one for Theorem 3.1 we can get the following
result.

Theorem 3.2. Suppose that U is a sub-product class of ℓ-groups which is con-
tained in A and {Gλ | λ ∈ Λ} is a family in U . Then the U-free product
U

∐

λ∈ΛGλ is the sublattice of
∏

i∈I Fi generated by the group homomorphic

image H ′ of the group free product H of Gλ, where {Fi | i ∈ I} are all ℓ-

homomorphic images of the A-free product A
∐

λ∈ΛGλ.

4. The weak subalgebra property

Let U be a sub-product class of ℓ-groups. U-free products are said to have the
subalgebra property if for any family {Gλ | λ ∈ Λ} in U with ℓ-subgroups Hλ ∈

Gλ,
U

∐

λ∈ΛHλ is simply the ℓ-subgroup of U
∐

λ∈ΛGλ generated by
⋃

λ∈ΛHλ. It
is well known thatA-free products satisfy the subalgebra property (Theorem 3.2 of
[11]). U-free products are said to have the weak subalgebra property if {Gλ | λ ∈
Λ} is a family in U with ℓ-subgroupsHλ ⊆ Gλ and any family of ℓ-homomorphisms
σλ : Hλ → L ∈ U can be extended to a family of ℓ-homomorphisms σ′

λ : Gλ →

L′ ∈ U such that L is an ℓ-subgroup of L′ and σ′
λ|Hλ

= σλ, then
U

∐

λ∈ΛHλ is

the ℓ-subgroup of U
∐

λ∈ΛGλ generated by
⋃

λ∈ΛHλ.

Theorem 4.1. Suppose that U is a sub-product class of ℓ-groups which is con-
tained in A. Then U-free products satisfy the weak subalgebra property.

Proof: Suppose that {Gλ | λ ∈ Λ} is a family in U with ℓ-subgroups Hλ ⊆ Gλ

and any family of ℓ-homomorphisms σλ : Hλ → L ∈ U can be extended to a family
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of ℓ-homomorphisms σ′
λ : Gλ → L′ ∈ U such that L is an ℓ-subgroup of L′ and

σ′
λ|Hλ

= σλ. We see that
A

∐

λ∈ΛHλ is the ℓ-subgroup of A
∐

λ∈ΛGλ generated
by

⋃

λ∈ΛHλ.

(1) First we show that any ℓ-homomorphism γ : A
∐

λ∈ΛHλ → L ∈ U can

be extended to an ℓ-homomorphism γ′ : A
∐

λ∈ΛGλ → L′ ∈ U such that L

is an ℓ-subgroup of L′ and γ′|A`
λ∈Λ

Hλ
= γ. In fact, any ℓ-homomorphism

γ : A
∐

λ∈ΛHλ → L ∈ U induces a family of ℓ-homomorphisms σλ : Hλ → L ∈ U
such that γαλ = σλ for each λ ∈ Λ where αλ is the inclusion map. Thus σλ can

A
Hλ Gλ

A
`

λ∈ΛHλ
A
`

λ∈ΛGλ

L′Lαλ α′
λ

σλ σ′
λ

γ γ′

be extended to a family of ℓ-homomorphisms σ′
λ : Gλ → L′ ∈ U such that L is

an ℓ-subgroup of L′ and σ′
λ|Hλ

= σλ. By the universal property there exists an

ℓ-homomorphism γ′ : A
∐

λ∈ΛGλ → L′ such that γ′α′
λ = σ′

λ for each λ ∈ Λ where

α′
λ is the inclusion map. Hence

σλ = σ′
λ|Hλ

= (γ′α′
λ)|Hλ

= γ′|Hλ

for each λ ∈ Λ. By the uniqueness γ′|A`
λ∈ΛHλ

= γ.

(2) Now we show that U
∐

λ∈ΛHλ is the ℓ-subgroup of U
∐

λ∈ΛGλ generated

by the
⋃

λ∈ΛHλ. Let G0 = ⊕λ∈ΛGλ, H0 = ⊕λ∈ΛHλ, G = A
∐

λ∈ΛGλ and

H = A
∐

λ∈ΛHλ. Then G0 and H0 are subgroups of G and H , respectively, and
H0 is a subgroup of G0, H is a subgroup of G. Let D = {Fi | i ∈ I} be the set of
all U-homomorphic images of G with the ℓ-homomorphisms γ′i (i ∈ I). For each

A
Q

i∈I
Ei

Q
i∈I

Fi

H G

H0 G0

H′
0 G′

0

U `
λ∈Λ

Hλ
U `

λ∈Λ
Gλ

π π′

i ∈ I, γ′i|H(H) is a U-homomorphic image of H . Conversely, if E is a U-
homomorphic image of H with the ℓ-homomorphism γ. It follows from (1) that
γ can be extended to an ℓ-homomorphism γ′ : G → F ∈ U such that E is an
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ℓ-subgroup of F and γ′|H = γ. Hence the set of all U-homomorphic images of H
is C = {Ei | i ∈ I} where Ei is an ℓ-subgroup of Fi and γ′i|H(H) = Ei for each

i ∈ I. By Theorem 3.2 we see that U-free product U
∐

λ∈ΛGλ is the sublattice

of the direct product
∏

i∈I Fi generated by the group homomorphic image G′
0

of G0 with the group homomorphism π′, and the U-free product U
∐

λ∈ΛHλ is
the sublattice of the direct product

∏

i∈I Ei generated by the group homomor-

phic image H ′
0 of H0 with the group homomorphism π. π′|Gλ

and π|Hλ
are all

ℓ-homomorphisms for λ ∈ Λ. Hence U
∐

λ∈ΛGλ is the ℓ-subgroup of
∏

i∈I Fi

generated by
⋃

λ∈ΛG′
λ where G′

λ = π′(Gλ) and
U

∐

λ∈ΛHλ is the ℓ-subgroup of
∏

i∈I Ei generated by
⋃

λ∈ΛH ′
λ where H ′

λ = π(Hλ). From the above we see that
∏

∈I Ei is an ℓ-subgroup of
∏

i∈I Fi and

π′|H0 = π.

Therefore U
∐

λ∈ΛHλ is the ℓ-subgroup of
∏

i∈I Fi generated by
⋃

λ∈ΛH ′
λ, and

so U
∐

λ∈ΛHλ is also the ℓ-subgroup of U
∐

λ∈ΛGλ generated by
⋃

λ∈ΛH ′
λ. �

5. An example

Theorem 2.4 and Theorem 2.1 are applicable to all varieties of ℓ-groups. But
here we give an example of a class of ℓ-groups which is not a variety.

An ℓ-group G is said to be weak Hamiltonian if each closed convex ℓ-subgroup
of G is normal. Let WH be the set of all weak Hamiltonian ℓ-groups. It is easy
to show that WH is a sub-product class of ℓ-groups (see [16]) and

A ⊆WH ⊆ R ⊆ L.

So we have the construction theorem for the WH-free product.

Theorem 5.1. Suppose that {Gλ | λ ∈ Λ} is a family inWH. ThenWH
∐

λ∈ΛGλ

is the sublattice of
∏

i∈I Fi generated by the group homomorphic image H ′ of the

group free product H of Gλ, where {Fi | i ∈ I} are all weak Hamiltonian ℓ-

homomorphic images of L
∐

λ∈ΛGλ.
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