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A note on Boolean algebras

Isaac Gorelic

Abstract. We show that splitting of elements of an independent family of infinite regular
size will produce a full size independent set.
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Let us note that a family {bα : α < κ} of elements of a Boolean algebra is
called independent if for any finite disjoint sets I, J ⊆ K the meet

∧

α∈I

bα ∧
∧

β∈J

(−bβ) 6= 0 .

The following theorem gives a positive answer to a question raised by P. Koszmi-
der.

Theorem. Let κ be an infinite regular cardinal and suppose that in a Boolean

algebra A there is an independent family {aα : α < κ} of size κ. Suppose also

that we have {bα : α < κ}, {cα : α < κ}, subsets of A, s.t. ∀α < κ bα ∨ cα =
aα, bα∧cα = 0. Then there exist I ∈ [κ]

κ and ϕ : I → B∪C with ϕ(α) ∈ {bα, cα}
such that {ϕ(α) : α ∈ I} is independent in A.

Proof: We may assume that A is a field of sets, A ⊂ P(X) for some set X . For
every x ∈ X , define fx : κ → 2 by fx(α) = 1 ⇔ x ∈ aα. Let F = {fx : x ∈ X}.
Then F is a dense subspace of the Cantor Cube 2κ.
Let Aα = {f ∈ F : f(α) = 1} = {fx : x ∈ aα}, similarly Bα = {fx : x ∈ bα},

Cα = {fx : x ∈ cα}. Then {Aα : α < κ} is an independent family of subsets of F
(and of 2κ) and ∀α Aα = Bα∪̇Cα.
We notice that it is sufficient to find an I ∈ [κ]κ and ϕ ∈

∏
i∈I{Bi, Ci} such that

{ϕ(α) : α ∈ I} is an independent family of subsets of F . These I = {iα : α < κ}
and ϕ we will construct by induction on α so that if we stop at some stage α < κ,
we will have the required I and ϕ at once.
At a stage α < κ we have selected Iα = {iβ : β < α} and ϕα ∈

∏
i∈Iα

{Bi, Ci}
so that, denoting by Kα the set of all Boolean independence combinations from
{ϕ(i) : i ∈ Iα}, ∀K ∈ Kα K̄ ⊃ some UK ← a clopen (basic) subset of 2

κ, and we
fix the family Uα = {UK : K ∈ Kα}. This is our induction hypothesis.
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At the stage α we choose iα and ϕ(iα) to satisfy our inductive hypothesis on
the larger sets

Iα+1, Kα+1, Uα+1 .

Suppose we cannot. Let J ∈ [κ]κ be disjoint from all indices of subbasic sets
mentioned in the definitions of members of Uα. (So that e.g. ∀U ∈ Uα U ↾ J =

2J ). Then every i in J is a “bad” index, and for such i we must have

∃K1 ∈ Kα ∃K2 ∈ Kα s.t.

either K1 ∩Bi is nowhere dense in 2
κ or K2 ∩ Ci is nowhere dense in 2

κ.
Then either

UK1 ⊂ Int(K̄1) ⊂ Ci ∪ (F \Ai)

or
UK2 ⊂ Int(K̄2) ⊂ Bi ∪ (F \Ai) ,

and similarly for every i in J .
But since |Kα| = | [α]

<ω | < κ and κ is regular, there is I ∈ [J ]κ, a fixed
K ∈ Kα and a function ϕ ∈

∏
i∈I{Bi, Ci} s.t. for every i ∈ I

UK ⊂ Int(K̄) ⊂ ϕ(i) ∪ (F \Ai) .

Then {ϕ(i) : i ∈ I} is an independent family of size κ.
Indeed, let L be a Boolean independence combination from this family, and let

L̃ be the same combination with Ai’s replacing ϕ(i)’s.

Then ∅ 6= L̃ ∩ UK is an elementary basic open set in F ⊂ 2κ such that (L̃ ∩
UK) \ L is nowhere dense in F .
Hence L 6= ∅, as required. �

The author is very grateful to Doctor Piotr Koszmider for introducing him
to the question, to Professor Petr Simon for an important suggestion, and to
Professor Bohuslav Balcar for pointing out that the regular uncountable case is
covered by Talagrand theorem (see p. 1072 in [NE]) and in Boolean setting by
Theorem 9.16, p. 136 of [Ko].
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