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Ergodic properties of contraction

semigroups in Lp, 1 < p < ∞

Ryotaro Sato

Abstract. Let {T (t) : t > 0} be a strongly continuous semigroup of linear contractions
in Lp, 1 < p < ∞, of a σ-finite measure space. In this paper we prove that if there
corresponds to each t > 0 a positive linear contraction P (t) in Lp such that |T (t)f | ≤
P (t)|f | for all f ∈ Lp, then there exists a strongly continuous semigroup {S(t) : t > 0}
of positive linear contractions in Lp such that |T (t)f | ≤ S(t)|f | for all t > 0 and f ∈ Lp.
Using this and Akcoglu’s dominated ergodic theorem for positive linear contractions
in Lp, we also prove multiparameter pointwise ergodic and local ergodic theorems for
such semigroups.

Keywords: contraction semigroup, semigroup modulus, majorant, pointwise ergodic

theorem, pointwise local ergodic theorem

Classification: 47A35

1. Introduction and the main result

Let (X,Σ, µ) be a σ-finite measure space and let Lp = Lp(X,Σ, µ),
1 ≤ p ≤ ∞, denote the usual Banach spaces of real or complex functions on
(X,Σ, µ). A linear operator T : Lp → Lp is called a contraction if ‖T ‖p ≤ 1,
‖T ‖p being the operator norm of T in Lp, positive if 0 ≤ f ∈ Lp implies Tf ≥ 0,
and majorizable if there exists a positive linear operator P : Lp → Lp such
that |Tf | ≤ P |f | for all f ∈ Lp. Any such P will be referred to as a majorant
of T . It is known (cf. [5, § 4.1]) that a bounded linear operator T in Lp possesses
a majorant P when p = 1 or ∞. But this is not the case when 1 < p < ∞. The
Hilbert transform serves as an example in Lp for all 1 < p < ∞ (see Starr [8]).
The following proposition is needed later, whose proof is omitted because it is
essentially the same as that of Theorem 4.1.1 in [5].

Proposition (cf. [5], Remark, p. 161). Let T be a bounded linear operator in
Lp, 1 < p < ∞, and let P be a majorant of T . Then there exists a unique positive
linear operator τ in Lp, called the linear modulus of T , such that

(i) ‖τ‖p ≤ ‖P‖p,

(ii) |Tf | ≤ τ |f | for all f ∈ Lp,

(iii) τf = sup{|Tg| : g ∈ Lp, |g| ≤ f} for all f ∈ L+p .

From now on let us fix p with 1 < p < ∞. Let {T (t) : t > 0} be a strongly
continuous semigroup of linear contractions in Lp, i.e.
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(i) each T (t) is a linear contraction in Lp,
(ii) T (t)T (s) = T (t+ s) for all t, s > 0,
(iii) limt→s ‖T (t)f − T (s)f‖p = 0 for all f ∈ Lp and s > 0.

Since the operators T (t) are not necessarily majorizable, it cannot be expected
that the semigroup {T (t) : t > 0} is majorizable by a positive semigroup, i.e.
there exists a strongly continuous semigroup {S(t) : t > 0} of positive linear
operators in Lp such that |T (t)f | ≤ S(t)|f | for all t > 0 and f ∈ Lp. But if each
T (t) possesses a majorant P (t) such that ‖P (t)‖p ≤ 1, then we can prove the
following main result in this paper.

Theorem 1 (cf. Theorem 1 in [7]). Let {T (t) : t > 0} be a strongly continuous
semigroup of linear contractions in Lp, 1 < p < ∞. Suppose each T (t) possesses
a majorant P (t) such that ‖P (t)‖p ≤ 1. Then there exists a strongly continuous
semigroup {S(t) : t > 0} of positive linear contractions in Lp, called the semigroup

modulus of {T (t) : t > 0}, such that

(i) |T (t)f | ≤ S(t)|f | for all t > 0 and f ∈ Lp,

(ii) S(t)f = sup{τ(t1) . . . τ(tn)f :
∑n

i=1 ti = t, ti > 0, n ≥ 1} for all f ∈ L+p ,

where τ(t) denotes the linear modulus of T (t),
(iii) τ(0) = strong- limt→+0S(t), where τ(0) denotes the linear modulus of

T (0) = strong- limt→+0T (t).

Proof: For an f ∈ L+p and t > 0, define

(1) S(t)f = sup
{

τ(t1) . . . τ(tn)f :

n
∑

i=1

ti = t, ti > 0, n ≥ 1
}

.

Since ‖τ(t)‖p ≤ ‖P (t)‖p ≤ 1 and τ(t)τ(s) ≥ τ(t+ s) ≥ 0 for all t, s > 0, it follows
that

(2) ‖S(t)f‖p ≤ ‖f‖p

and that

(3) S(t)(cf) = cS(t)f and S(t)(f + g) = S(t)f + S(t)g

for a constant c > 0 and f, g ∈ L+p . Thus we may regard S(t) as a positive linear

contraction in Lp. From the definition of S(t) it easily follows that

(4) S(t)S(s) = S(t+ s) for all t, s > 0.

Since (i) is clear, to complete the proof it is enough to establish (iii), because
(iii) together with the fact that ‖S(t)‖p ≤ 1 for all t > 0 implies that for every
f ∈ Lp and s > 0

lim
t→+0

‖S(s)f − S(s+ t)f‖p ≤ lim
t→+0

‖S(s− t)‖p‖S(t)f − S(2t)f‖p

≤ lim
t→+0

(

‖S(t)f − τ(0)f‖p + ‖S(2t)f − τ(0)f‖p

)

= 0,
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and similarly limt→+0‖S(s)f − S(s − t)f‖p = 0; namely, {S(t) : t > 0} is
strongly continuous at each s > 0. For this purpose we first remark that T (0) =
strong- limt→+0T (t) exists. This is due to Lemma 1 in [6], because Lp is a reflexive
Banach space and ‖T (t)‖p ≤ 1 for all t > 0.
We next show that the linear modulus τ(0) of T (0) exists. To do this, define

(5) P (0)f = sup
{

|T (0)g| : g ∈ Lp, |g| ≤ f
}

for f ∈ L+p .

Since limt→+0‖T (t)g − T (0)g‖p = 0, it follows that there exists a sequence {tn}
of positive reals with tn ↓ 0 for which

T (0)g = lim
n

T (tn)g a.e. on X.

Then
|T (0)g| ≤ lim inf

n
τ(tn)|g| ≤ lim inf

n
τ(tn)f a.e. on X.

Since there are countable functions gi ∈ Lp, 1 ≤ p ≤ ∞, such that |gi| ≤ f and
P (0)f = supi |T (0)gi| a.e. on X , we apply the Cantor diagonal argument to infer
that there exists a sequence {tn} of positive reals with tn ↓ 0 for which

P (0)f ≤ lim inf
n

τ(tn)f a.e. on X.

Then, by Fatou’s lemma,

(6) ‖P (0)f‖p ≤ lim inf
n

‖τ(tn)f‖p ≤ ‖f‖p (f ∈ L+p ).

It also follows from the proof of Theorem 4.1.1 in [5] that if {B1, . . . , Bm} is
a finite measurable partition of X , then

(7)

m
∑

i=1

|T (0)(1Bi
f)| ≤ P (0)f a.e. on X,

where 1Bi
denotes the indicator function of Bi. Thus we see, as in the proof of

Theorem 4.1.1 in [5], that the linear modulus τ(0) of T (0) exists. (Incidentally
we note that τ(0)f = P (0)f for all f ∈ L+p .)

To prove (iii), let f ∈ L+p be fixed arbitrarily, and given an ε > 0 choose
gi ∈ Lp, 1 ≤ i ≤ n, so that

|gi| ≤ f and ‖τ(0)f −max
i

|T (0)gi|‖p < ε.

Since T (0) = strong- limt→+0T (t), choose δ > 0 so that

0 < t < δ implies ‖T (0)gi − T (t)gi‖p < ε/n (1 ≤ i ≤ n).
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Then, putting h0 = maxi |T (0)gi| and ht = maxi |T (t)gi| for t > 0, we get

|h0 − ht| ≤ max
i

|T (0)gi − T (t)gi| ≤

n
∑

i=1

|T (0)gi − T (t)gi|,

and hence ‖h0 − ht‖p ≤
∑n

i=1 ‖T (0)gi − T (t)gi‖p < ε for 0 < t < δ. Thus

‖τ(0)f −max
i

|T (t)gi|‖p ≤ ‖τ(0)f − h0‖p + ‖h0 − ht‖p

< ε+ ε = 2ε for 0 < t < δ,

and since S(t)f ≥ τ(t)f ≥ maxi |T (t)gi|, it follows that

(τ(0)f − S(t)f)+ ≤ (τ(0)f −max
i

|T (t)gi|)
+ .

This yields

‖(τ(0)f − S(t)f)+‖p ≤ ‖(τ(0)f −max
i

|T (t)gi|)
+‖p < 2ε

for 0 < t < δ. That is,

(8) lim
t→+0

‖(τ(0)f − S(t)f)+‖p = 0.

On the other hand, since T (t)T (0) = T (0)T (t) = T (t) implies τ(t)τ(0) ≥ τ(t)
and τ(0)τ(t) ≥ τ(t), it follows that

(9) S(t)τ(0) ≥ S(t) and τ(0)S(t) ≥ S(t) for all t > 0.

Therefore

(10)
(τ(0)f − S(t)f)− ≤ (τ(0)f − S(t)τ(0)f)−

≤ |τ(0)f − S(t)τ(0)f |

and

(11) (τ(0)f − S(t)τ(0)f)+ ≤ (τ(0)f − S(t)f)+ .

By (11) and (8),

lim
t→+0

‖(τ(0)f − S(t)τ(0)f)+‖p ≤ lim
t→+0

‖(τ(0)f − S(t)f)+‖p = 0.

Thus

(12) lim
t→+0

‖τ(0)f − (S(t)τ(0)f ∧ τ(0)f)‖p = 0,
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whence

(13) lim
t→+0

∫

(S(t)τ(0)f ∧ τ(0)f)p dµ = ‖τ(0)f‖p
p .

We now use the relations

0 ≤
[

S(t)τ(0)f − (S(t)τ(0)f ∧ τ(0)f)
]p

≤ (S(t)τ(0)f)p − (S(t)τ(0)f ∧ τ(0)f)p (because 1 < p < ∞)

and ∫

(S(t)τ(0)f)p dµ ≤ ‖τ(0)f‖p
p (because ‖S(t)‖p ≤ 1)

together with (13) to see that

(14) lim
t→+0

‖S(t)τ(0)f − (S(t)τ(0)f ∧ τ(0)f)‖p = 0.

Hence by (12), limt→+0‖τ(0)f − S(t)τ(0)f‖p = 0; and (10) gives

(15) lim
t→+0

‖(τ(0)f − S(t)f)−‖p ≤ lim
t→+0

‖τ(0)f − S(t)τ(0)f‖p = 0.

This and (8) imply that limt→+0‖τ(0)f − S(t)f‖p = 0 for all f ∈ L+p , completing
the proof. �

2. An application

Theorem 2 (cf. Theorem VIII.7.10 in [3] and Theorem 4.3 in [4]). Let {Ti(t) :
t ≥ 0}, i = 1, . . . , d, be strongly continuous semigroups of linear contractions
in Lp, 1 < p < ∞. Suppose each Ti(t) possesses a majorant Pi(t) such that
‖Pi(t)‖p ≤ 1. Then for every f ∈ Lp the averages

(16)

A(u1, . . . , ud)f(x)

=
1

u1 . . . ud

∫ u1

0
· · ·

∫ ud

0
T1(t1) . . . Td(td)f(x) dt1 . . . dtd

converge a.e. to T1(0) . . . Td(0)f(x) as maxi ui → 0, and also they converge a.e.
to E1 . . . Edf(x) as mini ui → ∞, where Ei is the operator in Lp defined by

Eif = lim
b→∞

1

b

∫ b

0
Ti(t)f dt in Lp-norm.

Proof: We first show that the function

(17) f∗(x) = sup
u1,...,ud>0

|A(u1, . . . , ud)f(x)| (x ∈ X)
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is in Lp and satisfies ‖f
∗‖p ≤ (p/(p − 1))d‖f‖p.

For this purpose let {Si(t) : t > 0}, 1 ≤ i ≤ d, denote the semigroup moduli of
the semigroups {Ti(t) : t > 0}, 1 ≤ i ≤ d. Write for u > 0 and 1 ≤ i ≤ d,

Ai(u)f(x) =
1

u

∫ u

0
Ti(t)f(x) dt and Bi(u)|f |(x) =

1

u

∫ u

0
Si(t)|f |(x) dt.

Since
|Ai(u)f(x)| ≤ Bi(u)|f |(x) a.e. on X

and
sup
u>0

Bi(u)|f |(x) = sup
u∈Q+

Bi(u)|f |(x),

where Q+ denotes the set of positive rationals, and for every u ∈ Q+

Bi(u)|f | = lim
n→∞

1

u(n!)

u(n!)−1
∑

m=0

Si(m/n!)|f | in Lp-norm,

it follows from the Cantor diagonal argument that there exists a subsequence {n′}
of the sequence of positive integers such that

sup
u>0

Bi(u)|f |(x) ≤ lim inf
n′→∞

f∗
i,n′(x) a.e. on X,

where

f∗
i,n(x) = sup

k≥1

1

k

k−1
∑

m=0

Si(m/n!)|f |(x) (n ≥ 1).

Thus, by Fatou’s lemma and Akcoglu’s dominated ergodic theorem [1] for positive
linear contractions in Lp with 1 < p < ∞,

(18) ‖ sup
u>0

Bi(u)|f |(x)‖p ≤ lim inf
n′→∞

‖f∗
i,n′‖p ≤

p

p − 1
‖f‖p .

Now, the equality A(u1, . . . , ud)f = A1(u1) . . . Ad(ud)f implies

f∗(x) = sup
u1,...,ud>0

|A1(u1) . . . Ad(ud)f(x)|

≤ sup
u1,...,ud>0

B1(u1) . . . Bd(ud)|f |(x)

≤ sup
u1,...,ud−1>0

B1(u1) . . . Bd−1(ud−1) (sup
u>0

Bd(u)|f |)(x),

and hence by induction

(19) ‖f∗‖p ≤

(

p

p − 1

)d−1

‖ sup
u>0

Bd(u)|f |‖p ≤

(

p

p − 1

)d

‖f‖p .
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We apply (19) to infer that the averages A(u1, . . . , ud)f(x) converge a.e. to
T1(0) . . . Td(0)f(x) [resp. E1 . . . Edf(x)] as maxi ui → 0 [resp. mini ui → ∞], as
follows.
We use an induction argument. Since the set

M =
{1

b

∫ b

0
T1(t)g(x) dt + h : b > 0, T1(0)g = g, T1(0)h = 0

}

is dense in Lp, there exists a sequence {fn} in M such that limn ‖fn − f‖p = 0.
Since fn ∈ M implies

lim
u→+0

A1(u)fn(x) = T1(0)fn(x) a.e. on X,

it follows that the function

(20) F (x) = lim sup
u→+0

|A1(u)f(x)− T1(0)f(x)| (x ∈ X)

satisfies

F (x) ≤ lim sup
u→+0

|A1(u)(f − fn)(x) − T1(0)(f − fn)(x)|

≤ sup
u>0

|A1(u)(f − fn)(x)| + |T1(0)(f − fn)(x)|.

Thus
‖F‖p ≤

p

p − 1
‖f − fn‖p + ‖f − fn‖p −→ 0 (n → ∞).

We get F (x) = 0 a.e. on X and hence limu→+0A1(u)f(x) = T1(0)f(x) a.e. on X .
Next, since Lp is a reflexive Banach space, we see by Eberlein’s mean ergodic

theorem (cf. [5, Theorem 2.1.5, p. 76]) that there exists a projection operator
E1 : Lp → Lp for which

E1f = lim
u→∞

A1(u)f in Lp-norm,

and that the set

M∼ = {g + (h − T1(s)h) : s > 0, T1(t)g = g for all t > 0}

is dense in Lp. If g + (h − T1(s)h) ∈ M∼, where T1(t)g = g for all t > 0, then

A1(u)[g + (h − T1(s)h)](x)

= g(x) +
1

u

∫ s

0
T1(t)h(x) dt −

1

u

∫ u+s

u
T1(t)h(x) dt,
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and

lim
u→∞

1

u

∫ s

0
T1(t)h(x) dt = 0 a.e. on X.

Letting n = [u] be the integral part of u and k be an integer such that s < k − 1,
we have

∣

∣

∣

1

u

∫ u+s

u

T1(t)h(x) dt
∣

∣

∣
≤
1

u

∫ u+s

u

S1(t)|h|(x) dt

≤
1

n

∫ n+k

n
S1(t)|h|(x) dt =

1

n
S1(n)h

∼(x),

where

h∼(x) =

∫ k

0
S1(t)|h|(x) dt (x ∈ X).

Define the functions

(21) Hn(x) =

∞
∑

m=n

( 1

m
S1(m)h

∼(x)
)p

(x ∈ X).

Clearly we get Hn ≥ Hn+1 ≥ · · · ≥ 0 and

∫

Hn dµ =

∞
∑

m=n

m−p‖S1(m)h
∼‖p

p ≤
(

∞
∑

m=n

m−p
)

‖h∼‖p
p −→ 0 (n → ∞).

It follows that limn Hn(x) = 0 a.e. on X , and

lim
u→∞

∣

∣

∣

1

u

∫ u+s

u

T1(t)h(x) dt
∣

∣

∣
≤ lim

n→∞

1

n
S1(n)h

∼(x) = 0

a.e. on X . This proves that

lim
u→∞

A1(u)[g + (h − T1(s)h)](x) = g(x) = E1[g + (h − T1(s)h)](x)

a.e. on X . Using this and the density of M∼ in Lp, it follows as before that the
function

(22) F∼(x) = lim sup
u→∞

|A1(u)f(x)− E1f(x)| (x ∈ X)

satisfies F∼ = 0 a.e. on X . Thus limu→∞ A1(u)f(x) = E1f(x) a.e. on X .
We then use the relation

A(u1, . . . , ud)f = A(u1, . . . , ud−1)Ad(ud)f
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to complete the proof. Since the functions

(23) f∼(u;x) = sup
0<r≤u

|Ad(r)f(x) − Td(0)f(x)| (x ∈ X)

satisfy
0 ≤ f∼(v;x) ≤ f∼(u;x) ∈ Lp for 0 < v < u

and
lim

u→+0
f∼(u;x) = 0 a.e. on X,

and since

A(u1, . . . , ud)f − T1(0) . . . Td(0)f

= A(u1, . . . , ud−1)[Ad(ud)f − Td(0)f ]

+ [A(u1, . . . , ud−1)− T1(0) . . . Td−1(0)](Td(0)f),

it follows from the induction hypothesis that the function

(24) G(x) = lim sup
u1∨···∨ud→0

|A(u1, . . . , ud)f(x)− T1(0) . . . Td(0)f(x)| (x ∈ X)

satisfies

G(x) ≤ lim sup
u1∨···∨ud−1∨ud→0

|A(u1, . . . , ud−1)[Ad(ud)f − Td(0)f ](x)|

≤ sup
u1,...,ud−1>0

B1(u1) . . . Bd−1(ud−1)f
∼(ud; ·)(x)

a.e. on X . Hence we get ‖G‖p ≤ ( p
p−1 )

d−1‖f∼(ud; ·)‖p → 0 as ud → +0, by the

Lebesgue dominated converge theorem. This implies that A(u1, . . . , ud)f(x) →
T1(0) . . . Td(0)f(x) a.e. on X as maxi ui → 0.
Essentially the same proof can be applied to infer that A(u1, . . . , ud)f(x) →

E1 . . . Edf(x) a.e. on X as mini ui → ∞, and hence we omit the details. �

3. Concluding remarks

(a) In Theorem 1 the hypothesis that {T (t) : t > 0} is a contraction semigroup
cannot be omitted. In fact, given an ε > 0 there exists a strongly continuous
semigroup {T (t) : t > 0} of bounded linear operators in Lp, 1 < p < ∞, such that
each T (t) possesses a majorant P (t) satisfying ‖P (t)‖p < 1+ ε and also such that

lim
m→∞

‖(τ(1/m))m‖p =∞,

where τ(1/m) denotes the linear modulus of T (1/m), m ≥ 1. An example can be
found in [7].
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(b) In Theorem 2 the hypothesis that each Ti(t) possesses a majorant Pi(t)
such that ‖Pi(t)‖p ≤ 1 cannot be omitted. In fact, there are negative examples for
p = 2. More precisely, Akcoglu and Krengel [2] constructed a strongly continuous
semigroup {T (t) : t ≥ 0} of unitary operators in L2 with T (0) = identity such

that the averages 1u
∫ u
0 T (t)f(x) dt diverge a.e. as u → +0 for some f in L2.

Essentially the same idea can be applied to construct another strongly continuous
semigroup {T (t) : t ≥ 0} of unitary operators in L2 with T (0) = identity such

that the averages 1u
∫ u
0 T (t)f(x) dt diverge a.e. as u → ∞ for some f in L2. See

also [5, pp. 191–192].
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