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On local and global injectivity of noncompact vector

fields in non necessarily locally convex vector spaces
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Abstract. We give in this paper conditions for a mapping to be globally injective in
a topological vector space.
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Introduction

Using the relative fixed point index of compact reducible mappings in [1], we
give in this paper conditions for a mapping to be globally injective whenever the
mapping is locally injective.
Our results do not follow from the well-known theorem of Banach-Mazur [3],

because our assumptions on the range of the mapping are more simple.
Furthermore, we prove a uniqueness theorem for the fixed point in the Schauder

fixed point theorem for (ϕ, γ)-condensing mappings in topological vector spaces.
This result generalizes a theorem of Talmann [16] and a theorem of Alex/Hahn
[2] for a special case. In [2] we proved the following

Theorem A. Let E be an admissible topological vector space, a ∈ E,W an open

and connected neighbourhood of a and F :W → E a compact mapping. Suppose

(a) Fx 6= βx+ (1− β) · a (x ∈ W, β ≥ 1),
(b) f = I − F is locally injective on W .

Then F has a unique fixed point.

Our uniqueness theorem implies the following

Proposition. Let E be a complete, locally convex and metrizable vector space,
K ⊆ E nonempty, closed and convex. M ⊆ E nonempty, open andMK :=M∩K
connected, a ∈ MK . Let F : clK MK → K be a condensing mapping with respect
to a measure of noncompactness γ (e.g. γ can be the measure of noncompactness
of Kuratowski). Suppose

(a)′ Fx 6= βx+ (1− β) · a (x ∈ ∂KMK , β ≥ 1),
(b)′ f = I − F is locally injective on MK ,

(c)′ F (clK MK) + f(clK MK) ⊆ K.



240 H.Alex

Then F has a unique fixed point.

In the following example, we give a mapping for which the assumptions of the
proposition hold, but not the assumptions of Theorem A.

Example. Let E = R2, M = {(x, y) : x2 + y2 < 1}, F :M → E with

F (x, y) = (xy, 12xy) ((x, y) ∈ M).
Obviously F has the unique fixed point (0, 0), however we cannot apply The-

orem A:
With f = I − F we obtain f(x, y) = (x − xy, y − 12xy) ((x, y) ∈ M).
Using the derivative of f , it is easy to show that f is locally injective on

M \ {(x, y) ∈ M : y = −x
2 + 1, 0 < x < 4

5}.

However, we have f(12 ,
3
4+ε) = f(12 − 2ε,

3
4 ) for each ε ∈ R and hence f is not

locally injective in (12 ,
3
4 ) ∈ M . The assumption (b) of Theorem A does not hold

for F .
Now we set K = {(x, y) : 0 ≤ 2y ≤ x} and MK := M ∩ K. With F | clK MK

and f | clK MK we denote the restriction on clK MK of F and f , respectively.
Clearly, the assumptions of the proposition for M , K and MK hold.
Since K is a cone, we have K +K ⊆ K.
FurthermoreMK∩{(x, y) : y = −x

2+1, 0 < x < 4
5} = ∅ and we have f is locally

injective on MK . Obviously we have F (clK MK) ⊆ MK and f(clK MK) ⊆ K.
Hence the assumptions of the proposition hold for F | clK MK and the uniqueness
of the fixed point follows from the proposition.

1. Notations and definitions

We use all notations and definitions of the paper of Alex, Hahn, Kaniok [1] in
this journal in the same kind.
Furthermore we need the following notations. Let X be a real, separated

topological space; X is called connected if and only if X = X1 ∪ X2, X1 6= ∅,
X2 6= ∅ and X1, X2 open in X implies X1 ∩ X2 6= ∅.

X is called pathwise connected, if for each x1, x2 ∈ X there exists a continuous
mapping s = [0, 1]→ X with s(0) = x1, s(1) = x2.

X is called locally (pathwise) connected, if for each x ∈ X there exists a (path-
wise) connected neighbourhood U of x with U ⊆ X . It is well known that if X
is connected and locally pathwise connected, then X is pathwise connected (see
[14, p. 162]). This implies

Lemma 1. Let E be a topological vector space, K ⊆ E nonempty, convex. If
M ⊆ K is connected and open in K, then M is pathwise connected.

Proof: With the relative topologyM is a topological space. We must show, that
M is locally pathwise connected. Let a ∈ M . Then there exists a neighbourhood
V of a, which is starshaped relative a, with V ∩K ⊆ M , becauseM is open in K.
Since K is convex, U := V ∩ K is a starshaped neighbourhood of a in K. Hence
U is pathwise connected and M locally pathwise connected. �
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It is also well known that the continuous image of a (pathwise) connected set
is also (pathwise) connected.
Let X, Y be topological spaces, M ⊆ X nonempty, open. A continuous map-

ping f :M → Y is called

(1) locally injective, if for each x ∈ M there exists a neighbourhood U ⊆ M
of x such that f is injective on U ,

(2) locally topological, if for each x ∈ M there exist neighbourhoods U ⊆ M
of x and V ⊆ Y of f(x) such that f is a homeomorphism of U onto V ,

(3) open, if N ⊆ M open in M implies f(N) is open in f(M),
(4) proper, if K ⊆ Y compact implies f−1(K) is compact.

Remark. If f is a locally injective and open mapping, then f is locally topolog-
ical.

The local index of (ϕ, γ)-condensing vector fields.
The notions ϕ-measure of noncompactness γ on K and (ϕ, γ)-condensing map-

ping are defined such as in [1]. The partially ordered set A and the system M
of subsets of coK we use in the same kind. Furthermore we need the following
properties of γ and ϕ.

(N4) If 0 ∈ A, 0 ≤ a (a ∈ A), then γ(M) = 0⇔ M is compact (M ∈ M).
(N5) If M, N ∈ M implies M +N ∈ M, then γ(M +N) ≤ γ(M) whenever N

is compact.
(N6) If a1, a2 ∈ A, a1 ≤ a2, then a1 ≤ ϕ(a1) ≤ ϕ(a2).

Now we give an example of a nontrivial ϕ-measure of noncompactness γ with the
properties (N1)–(N6).
Let E be a complete metric space, M ⊆ E a bounded subset of E. The

Kuratowski measure of noncompactness L(M) of the set M is defined by

L(M) := inf{ε > 0 : there exists a finite cover {Bj}j∈J ofM such that
diam (Bj) < ε (j ∈ J)}.

It is well known that L has the properties (N1), (N3), (N4) and (N5). If E
is a complete metrizable and locally convex vector space, then L has also the
property (N2) with ϕ(t) = t (t ∈ A = [0,∞)). If E is non locally convex, L does
not have this property with ϕ(t) = t.
Hadzic proved that L is a ϕ-measure of noncompactness on special subsets of

a paranormed space [6].

Proposition. Let (E, ‖·‖∗) be a complete paranormed space, ϕ : [0,∞)→ [0,∞)
a continuous monotone nondecreasing mapping with f(t) ≥ t (t ∈ [0,∞)), K ⊆ E
a nonempty, bounded and convex subset of E which is of Zϕ-type, e.g. for each
neighbourhood of zero Vr = {x ∈ E : ‖x‖∗ < r} is co (Vr ∩ (K − K)) ⊆ Vϕ(r).

Then L is a ϕ̃ = ϕ ◦ ϕ-measure of noncompactness with the properties (N1)–
(N6).
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Remark. 1. Obviously the properties (N1), (N3), (N4) and (N5) hold for L and
the assumptions for ϕ imply (N6) also for ϕ̃. Property (N2) is proved by Hadzic
in [6, Lemma 2].
2. IfK is a convex set of Zϕ-type and inft>0 ϕ(t) = 0, thenK is a locally convex

set. (This follows from the remarks following Definition 2 in [6] and Proposition 3
in [5, p. 30].)
3. We can find a subset of Zϕ-type in the paranormed space S[0, 1] of finite

real measurable functions on [0, 1] by Hadzic [6].
In this paper the ϕ-measure of noncompactness γ has always the properties

(N1)–(N6). Let E be a topological vector space, K ⊆ E nonempty, convex,
closed and locally convex, M ⊆ E nonempty, open and MK :=M ∩ K.
Let F : clK MK → K be a (ϕ, γ)-condensing mapping with respect to a ϕ-

measure of noncompactness γ on K:
The mapping f := I − F is called a (ϕ, γ)-condensing vector field.
If x 6= Fx (x ∈ ∂KMK), then the relative fixed point index of F , i(F, MK), is

defined [1].
A point x0 ∈ MK is called an isolated point of zero of the (ϕ, γ)-condensing

vector field f := I −F , if there exists a neighbourhood U of x0 with U ⊆ M such
that f(x) = o (x ∈ clK UK , UK := U ∩K) implies x = x0. (x0 is an isolated fixed
point of F .) In this case, the relative fixed point index i(F, UK) is independent
of the choice of U .
We define the local index of the isolated point of zero x0 of f , i(x0, f, o), with

i(x0, f, o) := i(F, UK).

Now let F (clK MK)+f(clK MK) ⊆ K, y ∈ f(MK). A point x0 ∈ MK is called an
isolated y-point of f , if there exists a neighbourhood U of x0 such that f(x) = y
(x ∈ clK UK) implies x = x0. Then x0 is an isolated point of zero of fy with
fy(x) = f(x)− y (x ∈ clK MK). Since y+Fx ∈ K (x ∈ clK MK), the local index
of the isolated y-point of f is well defined with

i(x0, f, y) := i(x0, fy, o).

If the set Y = {x ∈ clK MK : f(x) = y} = {x1, . . . , xn} ⊆ MK is finite, then by
[1, Theorem 3 (I6)] we obtain

(I7) i(Fy, MK) =

n∑

j=1

i(xj , f, y)

with Fy(x) = F (x) + y (x ∈ clK MK).

2. Local and global injectivity of (ϕ, γ)-condensing vector fields
In this chapter we give conditions for the global injectivity of a (ϕ, γ)-conden-

sing vector field, whenever the vector field is locally injective. Then, with a simple
additional assumption, the vector field is a homeomorphism.
A well-known theorem of Banach-Mazur [3], [13] implies the following
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Theorem 1. Let E be a topological vector space, f : E → E a locally topological
and proper mapping of E onto E. Then f is a homeomorphism of E onto E.

The assumption f(E) = E in this theorem is essential. Plastock proved a the-
orem which guarantees that f is a homeomorphism of D onto f(D) where D is
a connected open subset of a Banach space. However, Plastock needed a compli-
cated assumption on the range f(D) (see [12]). Plastock investigated the question
of the global injectivity of f when we have not exact informations about f(D).
Our results are an answer to this question for a special class of mappings.

Theorem 2. Let E be a topological vector space, K ⊆ E nonempty, closed,
M ⊆ K nonempty, closed.
Let F : M → K be a (ϕ, γ)-condensing mapping with respect to a ϕ-measure

of noncompactness γ on K, f := I − F . Then f is a proper mapping.

Proof: Let A ⊆ E be compact. f−1(A) := N is closed, because f is continuous.
(I − F )(N) = A implies N ⊆ F (N) + A. Hence, by the properties of ϕ and γ,
γ(N) ≤ γ(F (N) +A) ≤ γ(F (N)) ≤ ϕ(γ(F (N))).

Since F is (ϕ, γ)-condensing, F (N) is compact and hence N = N is compact.
�

Now we prove the following

Lemma 2. Let E be a topological vector space, K ⊆ E nonempty, closed and
convex,M ⊆ E nonempty, open andMK :=M∩K. Let f :MK → E be a locally
injective mapping. Then for each x ∈ MK there exists an open neighbourhood

U ⊆ E of x, UK := U ∩ K, such that we have

(1) U ⊆ M and f | clK UK is injective,

(2) f(UK) is pathwise connected,
(3) f(UK) ∩ f(∂KUK) = ∅.

Proof: Let x ∈ MK . Then there exists an open neighbourhood B ⊆ M of x
such that f | B ∩ K is injective.
Let U be an open starshaped neigbourhood of x with U ⊆ B.
Then UK := U∩K is starshaped with respect to x and hence f(UK) is pathwise

connected. Furthermore f | clK UK is injective, because clK UK ⊆ B ∩ K. Since
UK is open in K, we obtain UK ∩ ∂KUK = ∅. (∗)
Suppose that f(UK)∩f(∂KUK) 6= ∅. Then there exists z ∈ f(UK)∩f(∂KUK)

and x1 ∈ UK , x2 ∈ ∂KUK with z = f(x1) = f(x2). This implies x1 = x2,
because f | clK UK is injective. This is a contradiction to (∗).
Hence U has the properties (1)–(3). �

We denote by S(x) the system of all neighbourhoods of x for which (1)–(3)
from Lemma 2 hold.

Lemma 3. Let E be a topological vector space, K ⊆ E nonempty, convex, closed
and locally convex,M ⊆ E nonempty, open andMK :=M∩K be connected. Let
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F : clK MK → K be a (ϕ, γ)-condensing mapping with respect to a ϕ-measure of
noncompactness γ on K, f := I − F . Suppose that

(1) f is locally injective on MK ,

(2) F (clK MK) + f(clK MK) ⊆ K.

Then for each x1, x2 ∈ MK is i(x1, f, f(x1)) = i(x2, f, f(x2)).

Proof: By the assumptions, i(x, f, f(x)) is well defined for each x ∈ MK .
(1) Let x0 ∈ MK , U ∈ S(x0), y ∈ UK := U ∩ K.
We show that i(x0, f, f(x0)) = i(x0, f, f(y)) := i(F (·) + f(y), UK).
We define a mapping H : [0, 1]× clK UK → K with H(t, x) = Fx+ s(t)

(t ∈ [0, 1], x ∈ clK UK), where s : [0, 1]→ f(UK) is pathwise connected.
There is H([0, 1]×clK UK) ⊆ K, by the assumption (2), H(0, ·) = F (·)+f(x0)

and H(1, ·) = F (·) + f(y).
Now we show that H is a (ϕ, γ)-condensing mapping. We have for N ⊆ clK UK

H([0, 1] × N) ⊆ F (N) + s([0, 1]) and, hence, γ(H([0, 1] × N)) ≤ γ(F (N)), be-
cause s([0, 1]) is compact. If γ(N) ≤ ϕ(γ(H([0, 1]× N))), then we obtain by the
properties of ϕ and γ

γ(N) ≤ ϕ(γ(F (N))).

Since F is (ϕ, γ)-condensing, F (N) is compact and this implies H([0, 1]× N) is
compact. Furthermore f(∂KUK) ∩ f(UK) = ∅ implies z 6= H(t, z)⇔ f(z) 6= s(t)
for each z ∈ ∂KUK , t ∈ [0, 1], because s(t) ∈ f(UK) (t ∈ [0, 1]). Hence the
assumptions of (I3) (see [1, Theorem 3]) hold for H and we have

(1) i(x0, f, f(x0)) = i(F (·) + f(x0), UK) =

= i(F (·) + f(y), UK) = i(x0, f, f(y)).

(2) Now, let x0 ∈ MK , U ∈ S(x0), y ∈ UK , W ∈ S(y) and WK :=W ∩K. We
define B1 := clK(UK \ (UK ∩WK)) and B2 := clK(WK \ (UK ∩ WK)). Then we

have UK \B1 =WK \B2. The injectivity of f on UK and WK implies x 6= F̃ (x)

(x ∈ B1 ∪B2) with F̃ (x) = Fx+ f(y) (x ∈ clK MK). From (I6) ([1, Theorem 3])
we obtain

(2) i(x0, f, f(y)) = i(F̃ , UK) = i(F̃ , (UK \ B1)) =

= i(F̃ , (WK \ B2)) = i(F̃ , WK) = i(y, f, f(y)).

(1) and (2) imply

(3) i(x0, f, f(x0)) = i(y, f, f(y))

for x0 ∈ MK , U ∈ S(x0), y ∈ UK .
(3) Suppose there are x, y ∈ MK with

(4) i(x, f, f(x)) 6= i(y, f, f(y)).
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We define A1 := {z ∈ MK : i(z, f, f(z)) = i(x, f, f(x))} and A2 := MK \ A1.
Since x ∈ A1, y ∈ A2, we have A1 6= ∅, A2 6= ∅. If zi ∈ Ai, Ui ∈ S(zi) and
UiK := Ui ∩ K (i = 1, 2), then (3) implies U1K ∩ U2K = ∅.
Now we choose for each x ∈ MK a U ∈ S(x), UK := U ∩ K, and define

M1 :=
⋃

x∈A1
UK , M2 :=

⋃
x∈A2

UK .

We obtain M1 6= ∅, M2 6= ∅, M1 ∩ M2 = ∅ and M1 ∪ M2 = MK . M1, M2
are open in K and also in MK . This contradicts our assumption that MK is
connected. This implies that i(x, f, f(x)) = i(y, f, f(y)) for each x, y ∈ MK . �

Now we prove the following

Theorem 3. Let E be a topological vector space, K ⊆ E nonempty, closed, con-
vex and locally convex,M ⊆ E nonempty, open andMK =M ∩K be connected.
Let F : clK MK → K be a (ϕ, γ)-condensing mapping with respect to a ϕ-

measure of noncompactness γ on K, f := I − F . Suppose that

(1) f is locally injective on MK ,

(2) F (clK MK) + f(clK MK) ⊆ K.

Then the equation f(x) = y (x ∈ MK) has for all y ∈ f(MK) with y /∈ f(∂KMK)
and i(F (·) + y, MK) = ±1 exactly one solution.

Proof: Let y ∈ f(MK) \ f(∂KMK) and i(F (·) + y, MK) = ±1. By Theorem 2,
f is a proper mapping and this implies that N := f−1(y) is compact.
Applying this fact and the condition that f is locally injective on MK and

N ∩ ∂KMK = ∅, we can easily show that N is finite.
Let N := {x1, . . . , xn} (n ∈ N∗). Using (I7), we obtain

i(F (·) + y, MK) =

n∑

j=1

(xj , f, y).

Lemma 3 implies i(xj , f, y) = c (j = 1, . . . , n; c ∈ Z).
Then ±1 = i(F (·) + y, MK) = n · c and we obtain n = 1. Hence the equation

f(x) = y has exactly one solution x ∈ MK . �

Using Theorem 3, we give conditions for a mapping to be a homeomorphism
whenever the mapping is locally injective.

Theorem 4. Let E, K, M , F , f be such as in Theorem 3. Suppose that

(1) f(MK) ∩ f(∂KMK) = ∅,
(2) i(F (·) + y, MK) = ±1 (y ∈ f(MK)).

Then the restriction of f on MK , f̃ := f | MK , is an injective mapping. If f is
additionally an open mapping, then f is a homeomorphism of MK onto f(MK).

Proof: (1), (2) and Theorem 3 imply that the equation f(x) = y has exactly
one solution x ∈ MK for each y ∈ f(MK). Hence f is injective. If f is an
open mapping, then the inverse mapping f−1 of f is continuous. Hence, f is
a homeomorphism. �
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Remark. The assumption (1) f(MK) ∩ f(∂KMK) = ∅ is essential. It is easy
to show that if f is an open mapping, then ∂Kf(MK) ⊆ f(∂KMK). A simple
example for an open locally injective mapping with f(∂KMK) * ∂Kf(MK), and
hence f(∂KMK) ∩ f(MK) 6= ∅, can be found in [2].

Corollary 1. Let E, K, M , F , f be such as in Theorem 3. Suppose that

(1) f(MK) ∩ f(∂KMK) = ∅,
(2) there exists a y ∈ K with y /∈ f(∂KMK) and i(F (·) + y, MK) = ±1.

Then f̃ := f | MK is injective. If f is additionally an open mapping, then f is
a homeomorphism on MK onto f(MK).

Proof: We must only show that the assumption (2) of Theorem 3 holds.
Let y ∈ K with y /∈ f(∂KMK) and i(F (·) + y, MK) = ±1. Then y ∈ f(MK).

SinceK is convex andMK is connected and open inK,MK is pathwise connected
(see Lemma 1). Hence f(MK) is pathwise connected. Let z ∈ f(MK). Then there
exists a continuous mapping s : [0, 1]→ f(MK) with s(0) = y, s1 = z. We define

H(t, x) := Fx+ s(t) (t ∈ [0, 1], x ∈ clK MK).

H is a (ϕ, γ)-condensing mapping withH([0, 1]×clK MK) ⊆ K,H(0, ·) = F (·)+y,
H(1, ·) = F (·) + z.
Furthermore s([0, 1]) ⊆ f(MK) and (1) implies x 6= H(t, x) (t ∈ [0, 1],

x ∈ ∂KMK). Using (I3) ([1, Theorem 3]) and (2), we obtain
±1 = i(F (·) + y, MK) = i(F (·) + z, MK) for each z ∈ f(MK). This is the
assumption (2) of Theorem 3. �

Corollary 2. Let E be a topological vector space, K ⊆ E nonempty, closed,
convex and locally convex. Let F : K → K be a (ϕ, γ)-condensing mapping with
respect to a ϕ-measure of noncompactness γ. Suppose that

(1) f := I − F is a locally injective and open mapping on K,
(2) F (K) + f(K) ⊆ K.

Then f is a homeomorphism of K onto f(K).

Proof: Setting M := E, we obtain ∂KMK = ∂KK = ∅ and, by (I4) ([1,
Theorem 3]), i(F, MK) = 1.
It is easy to see that the assumptions of Corollary 1 hold for E, K, M , F , f

with y = o. �

Remark. (1) The proof of Corollary 2 implies o ∈ K.
(2) If f(K) = K in Corollary 2, then Corollary 2 follows from the theorem of

Banach-Mazur (see [13, Theorem 4.39, p. 147]), because f is a proper mapping
(Theorem 2) and locally topological. Since K is convex, it is easy to show that the
assumptions for the domain and the range of f in the theorem of Banach-Mazur
hold for K.
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(3) If f(K) 6= K and f(clK MK) 6= K in Theorem 4, respectively, then our
results do not follow from the theorem of Banach-Mazur. The identity on the set
{x ∈ E : 1 ≤ ‖x‖ ≤ 2}, where E is a normed space, is a simple example.

(4) Let E be a locally convex vector space. Let K = E, then K is convex,
closed and locally convex. The assumption f(K) + F (K) ⊆ K holds always in
this case.

(5) Let E be a complete locally convex and metrizable vector space, F :M → E
a k-set contraction with 0 ≤ k < 1 (M ⊆ E nonempty, open). If f := I − F is
locally injective, then f is an open mapping (see [7]).

3. Fixed point theorems

Now we prove a uniqueness theorem for a fixed point of a (ϕ, γ)-condensing
mapping F , whenever a Leray-Schauder-boundary condition holds for the map-
ping.

Theorem 5. Let E be a topological vector space, K ⊆ E nonempty, closed,
convex and locally convex, M ⊆ E nonempty, open and MK := M ∩ K be

connected, a ∈ MK .

Let F : clK MK → K be a (ϕ, γ)-condensing mapping with respect to a ϕ-
measure of noncompactness γ on K. Suppose

(a) Fx 6= x+ (1− β)a (x ∈ ∂KMK , β ≥ 1),
(b) f := I − F is locally injective on MK ,

(c) F (clK MK) + f(clK MK) ⊆ K.

Then F has a unique fixed point.

Proof: We set H(t, x) := t·Fx+(1−t)·a (t ∈ [0, 1], x ∈ clK MK). H is a (ϕ, γ)-
condensing mapping with H([0, 1] × clK MK) ⊆ K, H(0, ·) = a, H(1, ·) = F .
Furthermore, from (a), we obtain x 6= H(t, x) (t ∈ [0, 1], x ∈ ∂KMK). Applying
(I3) and (15) from [1, Theorem 3], we have i(F, MK) = 1, because a ∈ MK .
Therefore o ∈ f(MK) and we can apply Theorem 3 for y = o. Hence the equation
f(x) = o has exactly one solution x ∈ MK and F has a unique fixed point. �

Now the proposition from the introduction follows from Theorem 5.

Proposition. Let E be a complete, locally convex and metrizable vector space,
K ⊆ E nonempty, closed and convex,M ⊆ E nonempty, open andMK :=M ∩K
be connected, a ∈ MK .

Let F : clK MK → K be a condensing mapping with respect to a measure

of noncompactness γ. (This means [N ⊆ MK ∧ γ(F (N)) ≥ γ(N)] ⇒ F (N) is
compact.) Suppose

(a) Fx 6= βx+ (1− β) · a (x ∈ ∂KMK , β ≥ 1).
(b) f := I − F is locally injective on MK .

(c) F (clK MK) + f(clK MK) ⊆ K.
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Then F has a unique fixed point.

Proof: Since E is locally convex, K is also locally convex. Furthermore F is
a (ϕ, γ)-condensing mapping with ϕ(t) = t (t ∈ A). Hence all assumptions from
Theorem 5 hold. �

Remark. Setting in the proposition K = E, then we obtain a generalization of
a theorem of Talmann [16] for continuously Fréchet-differentiable k-set contrac-
tions in Banach spaces. The assumption “For each x ∈ M 1 is not an eigen-value
of F ′(x)” by Talmann implies our assumption (b) of Theorem 5.
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