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Ideals in selfdistributive groupoids

Tomáš Kepka

Abstract. Products of (left) ideals in selfdistributive groupoids are studied.

Keywords: groupoid, distributive, ideal

Classification: 20N02

The purpose of this very short note is to complete some results from [1]. Other
results on, comments about and aspects of left distributive groupoids (and further
references as well) may be found in [2], [4] and [5].

1. Introduction

1.1. A groupoid is a non-empty set supplied with a binary operation.

LetG be a groupoid and let P(G) denote the set of all subsets ofG. Then we de-
fine a binary operation on P(G) by AB = {ab; a ∈ A, b ∈ B} for all A, B ∈ P(G).
In this way, P(G) becomes a groupoid and we denote by R(G) the subgroupoid
of P(G) generated by G. Clearly, R(G) is trivial iff G = G2.

A non-empty subset I of G is said to be a left (right) ideal of G if GI ⊆ I

(IG ⊆ I). We denote by Il(G) (Ir(G)) the set of left (right) ideals of G.

A non-empty subset I of G is said to be an ideal if it is both a left and right
ideal of G. We denote by I(G) the set of ideals of G.

1.2. Let G be a groupoid. We put G〈1〉 = G and G〈n+1〉 = G · G〈n〉 for every

n ≥ 1. Further, Q(G) = {G〈n〉;n ≥ 1} ⊆ R(G).

Similarly, let G〈n,0〉 = G〈n〉 and G〈n,m+1〉 = G〈n,m〉 · G for every n ≥ 1 and
every m ≥ 0.

1.3. A groupoid G is said to be

– left distributive if a · bc = ab · ac for all a, b, c ∈ G;
– right distributive if bc · a = ba · ca for all a, b, c ∈ G;
– distributive if it is both left and right distributive;
– medial if ab · cd = ac · bd for all a, b, c, d ∈ G.
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2. Examples

2.1 Example. Let D0 designate the set of ordered pairs (n, m), where n, m

are integers, n ≥ 1, n 6= 2 and m ≥ 0. Now define a multiplication on D0
as follows: (n, m)(k, l) = (3, 0) if l ≥ 1; (n, m)(k, 0) = (k + 1, 0) if k ≥ 3;
(n, m)(1, 0) = (n, m + 1). Then D0 becomes a groupoid and it is easy to check
that D0 is a left distributive groupoid. Moreover, D0 is medial, D0 does not
contain any idempotent element and uv · z 6= uz · vz for all u, v, z ∈ D0; in
particular, D0 is not right distributive. Further, notice that D0 is generated by
the element (1, 0). Finally, define a relation ≤0 on D0 by (n, m) ≤0 (k, l) iff at
least one of the following cases takes place: k ≤ n, m = l; 3 ≤ n, 0 ≤ m < l;
3 ≤ n, k = 1; k = 1, 0 ≤ l < m. Then ≤0 is a linear ordering of D0 and this
ordering is stable with respect to the operation of the groupoid D0.

2.2 Example. Consider the following three-element groupoid G:

G 0 1 2
0 1 2 2
1 1 2 2
2 1 2 2

Then G is left distributive, R(G) = Il(G) = {G〈1〉, G〈2〉, G〈3〉} and G〈3〉 is not
a right ideal.

2.3 Example. Consider the following four-element groupoid G:

G 0 1 2 3
0 0 0 0 0
1 0 0 3 0
2 0 0 1 0
3 0 0 3 0

Then G is left distributive, R(G) = {G〈1,0〉, G〈1,1〉, G〈1,2〉, G〈3,0〉} = I(G) =
Ir(G) 6= Il(G) = R(G) ∪ {A}, where A = {0, 1} is a left ideal but not a right
ideal; Il(G) is not linearly ordered by inclusion.

2.4 Example. Consider the following three-element groupoid G:

G 0 1 2
0 0 0 0
1 0 1 0
2 0 0 0

Then G is distributive, R(G) = {G〈1〉, G〈2〉} 6= I(G) and I(G) is not linearly
ordered by inclusion.
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2.5 Example. Consider the following three-element groupoid G:

G 0 1 2
0 1 2 0
1 1 2 0
2 1 2 0

Then G is left distributive and G is both left and right-ideal-free. Moreover, G is
a left quasigroup but it is not a right quasigroup.

2.6 Example. Consider the following three-element groupoid G:

G 0 1 2
0 0 0 0
1 1 1 1
2 1 2 2

Then G is distributive and left-ideal-free. Moreover, G is neither a left nor a right
quasigroup.

2.7 Remark. By [3, 5.10], every finite left and right-ideal-free distributive groupoid
is a quasigroup.

3. First observations on ideals of left distributive groupoids.

3.1 Lemma. Let I, J, K be left ideals of a left distributive groupoid G. Then:

(i) IJ is a left ideal and IJ ⊆ J .

(ii) I · JK = IJ · IK.

(iii) I(J ∪ K) = IJ ∪ IK and (J ∪ K)I = JI ∪ KI.

(iv) If J ⊆ K, then IJ ⊆ IK and JI ⊆ KI.

3.2 Lemma. Let G be a left distributive groupoid such that G = G2.

(i) If I is a right ideal and J is an ideal of G, then IJ is a right ideal and

IJ ⊆ I ∩ J .

(ii) If I, J are ideals of G, then IJ is an ideal and IJ ⊆ I ∩ J .

3.3 Proposition. Let G be a left distributive groupoid. Then:

(i) The set Il(G) of left ideals of G is a subgroupoid of P(G) and Il(G) is
again a left distributive groupoid.

(ii) R(G) is a subgroupoid of Il(G).
(iii) If G = G2, then I(G) is a subgroupoid of Il(G) and I(G) is a medial

groupoid.

(iv) If G is idempotent, then Il(G) is idempotent and I(G) is a semilattice.
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4. The groupoid R(G).
4.1 Lemma. Let G be a left distributive groupoid and A ∈ R(G). Then:

(i) GA ⊆ A.

(ii) If A 6= G, then G〈n〉 · A = GA for every n ≥ 1.

(iii) There exists m ≥ 1 such that G〈m〉 ⊆ A.

Proof: (i) A is a left ideal by 3.3 (ii).
(ii) Let F be an absolutely free groupoid over a one-element set {x} and let

f : F → R(G) be the uniquely determined homomorphism such that f(x) = G.
Since A 6= G, we have G 6= G2 and A = f(r) for some r ∈ F , l(r) ≥ 2; here, l(r)
means the length of r. Now, we shall proceed by induction on l(r) + n.

First, let l(r) = 2. Then A = G2 and G〈3〉 = G〈n〉 · G2 = (G〈n〉G)(G〈n〉G) =

((G〈n〉G)G〈n〉)((G〈n〉G)G) ⊆ G〈n+1〉 · G2. The inclusion G〈n+1〉 · G2 ⊆ G〈3〉 is

evident, and hence G〈n+1〉 · G2 = G〈3〉.

Next, let r = sx, l(s) ≥ 2, B = f(s). Then GA = G〈n〉 ·BG = (G〈n〉B)(G〈n〉G)

= ((G〈n〉B)G〈n〉)((G〈n〉B)G) ⊆ G〈n+1〉·BG = G〈n+1〉·A, and soGA = G〈n+1〉·A.
Similarly, if r = xs.

Finally, let r = st, l(s) ≥ 2, l(t) ≥ 2, B = f(s), C = f(t). Then G〈n〉 · A =

(G〈n〉B)(G〈n〉C) = GB · GC = G · BC = GA.

(iii) We can assume that A = BC and that G〈n〉 ⊆ B ∩ C for some n ≥ 2.

Then G〈n〉 · G〈n〉 ⊆ A. However, by (ii), G〈n〉 · G〈n〉 = G〈n+1〉. �

4.2 Lemma. Let G be a left distributive groupoid. Then G〈n,m〉 ·G〈k〉 = G〈k+1〉

for all n ≥ 1, m ≥ 0 and k ≥ 2.

Proof: We can assume that G 6= G2. Now, for m = 0, our equality follows from
4.1 (ii).

Let k = 2. We shall proceed by induction on m. We have G〈3〉 = G〈n,m〉 ·G2 =

(G〈n,m〉G)(G〈n,m〉G) ⊆ G〈n,m+1〉 · G2 ⊆ G〈3〉, and so G〈3〉 = G〈n,m+1〉 · G2.

Let k ≥ 3. Again, we shall proceed by induction on m. We have G〈k+1〉 =

G〈n,m〉 · G〈k〉 = G〈n,m〉 · (G · G〈k−1〉) = (G〈n,m〉G)(G〈n,m〉G〈k−1〉) = G〈n,m+1〉 ·

G〈k〉. �

4.3 Lemma. Let G be a left distributive groupoid. Then G · G〈n,m〉 = G〈3〉 for

all n ≥ 1, m ≥ 1.

Proof: Assuming G 6= G2, we shall proceed by induction on m. Now, G ·

G〈n,m〉 = (G · G〈n,m−1〉) · G2. If m ≥ 2, then G · G〈n,m−1〉 = G〈3〉 by induction

and G〈3〉 ·G2 = G〈3〉 by 4.2. If m = 1, then G ·G〈n,m−1〉 = G〈n+1〉 and our result
follows from 4.2 again. �

4.4 Lemma. Let G be a left distributive groupoid. Then G〈n,m〉 · G〈k,l〉 = G〈3〉

for all n ≥ 1, m ≥ 0, k ≥ 1, l ≥ 1.

Proof: Using 4.1, 4.2 and 4.3, the result follows easily by induction on l. �
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4.5 Proposition ([1]). Let G be a left distributive groupoid. Then:

(i) G〈n,m〉 · G〈k,l〉 = G〈3〉 for all n ≥ 1, m ≥ 0, k ≥ 1, l ≥ 1.

(ii) G〈n,m〉 · G〈k,0〉 = G〈k+1,0〉 for all n ≥ 1, m ≥ 0, k ≥ 2.

(iii) G〈n,m〉 · G〈1,0〉 = G〈n,m+1〉 for all n ≥ 1, m ≥ 0.

Proof: See the preceding lemmas. �

4.6 Corollary. Let G be a left distributive groupoid. Then:

(i) R(G) = {G〈n,m〉;n ≥ 1, m ≥ 0}.

(ii) If G 6= G2, then Q(G)− {G} = {G〈k〉; k ≥ 2} is a left ideal of R(G).

4.7 Theorem. Let G be a left distributive groupoid. Define a mapping f : D0 →

R(G) by f(n, m) = G〈n,m〉. Then

(i) f is a projective homomorphism of the left distributive groupoids.

(ii) If (n, m), (k, l) ∈ D0 and (n, m) ≤0 (k, l), then G〈n,m〉 ⊆ G〈k,l〉.

Proof: (i) See 4.5 and 2.1.

(ii) First, let k ≥ n, m = 1. We have G〈n〉 = (G . . . (G·G〈k〉)), where G appears

(n− k)-times, and hence G〈n〉 ⊆ G〈k〉, since G〈k〉 is a left ideal. This also implies

that G〈n,m〉 ⊆ G〈k,l〉.
Next, let 3 ≤ n and 0 ≤ m < l. If m = 0, then G〈n,0〉 ⊆ G〈3〉 = G · G〈k,l〉 ⊆

G〈k,l〉. If m ≥ 1, then G〈n,0〉 ⊆ G〈k,l−m〉, and therefore G〈n,m〉 = ((G〈n,0〉 ·

G) . . . )G ⊆ ((G〈k,l−m〉 · G) . . . )G = G〈k,l〉.
Finally, let 3 ≤ n and k = 1. With respect to the preceding case, we can

assume that l ≤ m. Now, G〈n,m〉 = ((G〈n,m−l〉 ·G) . . . )G ⊆ ((GG) . . . )G = G〈1,l〉.
Similarly, if k = 1 and 0 ≤ l < m. �

4.8 Corollary. Let G be a left distributive groupoid. Then R(G) is a medial
left distributive groupoid which is linearly ordered by inclusion; this ordering is

stable.
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