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Sacks forcing collapses c to b
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Abstract. We shall prove that Sacks algebra is nowhere (b, c, c)-distributive, which implies
that Sacks forcing collapses c to b.
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A. Ros lanowski and S. Shelah recently proved that Sacks forcing S collapses c to
b

+ǫ [RS]. The aim of the present note is to prove the theorem from the title. Since
Ros lanowski and Shelah showed also the consistency of the inequality b

+ǫ > b, our
theorem improves that result and answers a question from their paper. To put the
things to the right perspective, let us mention first that PFA implies that Sacks
forcing does not collapse cardinals at all [A]. Next, it is consistent that MA+¬CH
holds (hence b = c > ω1) and c is still collapsed to ω1 [JMS, Theorem 2.1]. Hence
the question, whether S collapses c below b is undecidable.

Let us start with some definitions. A binary tree is a subset of
⋃

n∈ω
n2 such

that ∅ ∈ T and whenever s ∈ T and n ∈ dom s, then s ↾ n ∈ T . There is a natural
partial order of elements of a tree given by ⊆. For a (binary) tree T , a subset V ⊆ T
is called a branch, if V is a maximal linearly ordered subset of T .

A binary tree T is called perfect, if it satisfies the following: For every s ∈ T
there are q, r ∈ T , q 6= r both extending s, i.e., s ⊆ q, s ⊆ r. Notice that in a perfect
tree, all branches are infinite.

A Sacks forcing is a partially ordered set S of all perfect trees ordered by inclusion.
Since every partially ordered set determines uniquely a complete Boolean algebra,
we shall use the same symbol S to denote the complete Boolean algebra, whose
dense subset is isomorphic to the set of all perfect trees.

Let us recall a three-parameter distributivity of Boolean algebras. Suppose that
B is a Boolean algebra, κ, λ, µ are cardinal numbers. B is called to be (κ, λ, µ)-
distributive, if for every collection {Pα : α ∈ κ} of partitions of 1B with |Pα| ≤ λ
for all α ∈ κ there is a partition of unity Q such that for every q ∈ Q and for
every α ∈ κ, |{p ∈ Pα : q ∧ p 6= 0B}| < µ. A bit stronger property than just
the negation of being (κ, λ, µ)-distributive, is the following. A Boolean algebra B is
(κ, λ, µ)-nowhere distributive, if there is some collection {Pα : α ∈ κ} of partitions
of 1B with |Pα| ≤ λ for all α ∈ κ such that for every non-zero q ∈ B there is some
α ∈ κ such that |{p ∈ Pα : q ∧ p 6= 0B}| ≥ µ. It is well-known and easy to prove
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that if κ < µ and B is (κ, µ, µ)-nowhere distributive, then forcing with B changes
the cofinality of µ to κ. If moreover the density of B does not exceed µ, then forcing
with B collapses µ to κ.

Before stating the Theorem, let us note that the letter c stands for the cardinal
2ω and the cardinal number b is defined by b = min{|F| : F ⊆ ωω &F has no
upper bound in the order < mod fin}.

Theorem. The Boolean algebra S is (b, c, c)-nowhere distributive.

To begin the proof of the theorem, we shall introduce some notation and observe
several easy facts.

If n < m are integers, we shall denote by [n, m) the set of all integers i satisfying
n ≤ i < m. Two infinite sets are called almost disjoint, if their intersection is finite.

If T ∈ S, define a mapping fT ∈ ωω by induction as follows. fT (0) = 0. If
fT (n) is known, then fT (n+ 1) is the minimal k ∈ ω such that for every s ∈ T with
dom s = fT (n) there are at least two distinct r, q ∈ T satisfying dom r = dom q = k,
s ⊆ r, s ⊆ q.

If T is a binary tree and if A ⊆ ω, we shall denote by T [A] the subtree of T
defined by induction on nodes. ∅ ∈ T [A]; if s ∈ T [A] and dom s = n, then we
distinguish two cases: If n ∈ A, then r ∈ T [A] for all r ∈ T with dom r = n + 1 and

r ⊇ s. If n /∈ A and sa0 ∈ T , then sa0 ∈ T [A] but sa1 /∈ T [A]; if sa0 /∈ T , then

sa0 /∈ T [A] and sa1 ∈ T [A] only if sa1 ∈ T . So s ∈ T [A] branches in T [A] only if
dom s ∈ A and s branches in T .

The symbols fT and T [A] will have the meaning just described till the end of
the proof. Let us notice without proofs a few observations concerning the notions
just introduced.

Fact 1. Let T ∈ S and suppose that A ∈ [ω]ω satisfies A ⊇ [fT (n), fT (n + 1)) for
infinitely many n ∈ ω. Then T [A] ∈ S.

Fact 2. Let T0, T1 be binary trees, A0, A1 subsets of ω. Then T0[A0]∩ T1[A1] =
(T0 ∩ T1)[A0 ∩ A1].

An immediate consequence of Fact 2 is the next Fact 3. The trivial Fact 4 is
mentioned for the sake of completeness.

Fact 3. If A, B ⊆ ω are almost disjoint, then for arbitrary binary trees T0, T1,
T0[A] ∩ T1[B] /∈ S.

Fact 4. Let {Rn : n ∈ ω} be a pairwise disjoint family of finite sets. If A, B ∈ [ω]ω

are almost disjoint, then so are the sets
⋃

n∈A Rn and
⋃

n∈B Rn.

Let R = {Rn : n ∈ ω} be a partition of ω. We shall denote by J +(R) the set
of all subsets of ω, which are large if measured by R, precisely, J+(R) = {X ⊆ ω :
limsupn→∞|X ∩ Rn| = ∞}. Two facts are necessary to be mentioned:

Fact 5. Let X ∈ [ω]ω be arbitrary, let F ⊆ ωω be a family without an upper
bound consisting of strictly increasing functions. Then there is an f ∈ F such that
X ∈ J +(R) for R = {[f(n), f(n + 1)) : n ∈ ω}.

Indeed, one may write X = {x0 < x1 < · · · < xn < . . . } and put g(n) = xn2 .
By the assumption, the mapping g does not dominate the family F , so there is
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some f ∈ F with f(n) ≥ g(n) for infinitely many integers n. We may assume that
f(0) = 0. If K ∈ ω is arbitrary, find n > K with g(n) ≤ f(n). The number of
intervals [f(j), f(j + 1)) covering the interval [0, f(n)) is n, but [0, f(n)) contains
at least n2 points of X . So |X ∩ [f(j), f(j + 1))| ≥ n > K for some j < n. As all
sets [f(n), f(n + 1)) are finite, limsupn→∞|X ∩ [f(n), f(n + 1))| = ∞.

Fact 6. Let R = {Rn : n ∈ ω} be a partition of ω. Then there is a family
A ⊆ [ω]ω such that:

(i) A is almost disjoint;
(ii) every A ∈ A is a transversal of R, i.e., |A ∩ Rn| ≤ 1 for each n ∈ ω;

(iii) for every X ∈ J +(R), the set {A ∈ A : A ⊆ X} is of size c.

Fact 6 is a special case of more general Theorem 4.6 from [BS]. This fact is rather
nontrivial; we shall not indicate a proof here.

For the proof of the Theorem, fix a family F ⊆ ωω such that F has no upper
bound, all mappings in F are strictly increasing, all f ∈ F satisfy f(0) = 0 and
|F| = b.

We shall assign to every T ∈ S two mappings from F and a subset of ω: By Fact 5,
there is a mapping hT ∈ F such that rng fT ∈ J +(R), where R = {[hT (n), hT (n +
1)) : n ∈ ω}. Since rng fT ∈ J +(R), we conclude that the set XT defined by
XT = {n ∈ ω : |[hT (n), hT (n + 1)) ∩ rng fT | ≥ 2} is infinite. Applying once more
Fact 5, we can find the second mapping gT ∈ F such that XT ∈ J +(Q), where Q
stands now for the partition {[gT (n), gT (n + 1)) : n ∈ ω}.

In order to prove the Theorem, we need to find the family of partitions witnessing
the (b, c, c)-nowhere distributivity of S. We shall use as an index set the square
F ×F and, instead of a partition of unity, we shall find only a subset of the desired
partition, having the required properties. (It should be clear that this suffices.)
For (h, g) ∈ F × F , denote by S(h, g) the set of all perfect trees T ∈ S satisfying
hT = h, gT = g. Consider a partition R(g) = {[g(n), g(n + 1)) : n ∈ ω}. Using
Fact 6, there is an almost disjoint family A satisfying (i), (ii) and (iii). Since
|S(h, g)| ≤ c, one may choose for each T ∈ S(h, g) a subset A(T ) ⊆ A such that
for each A ∈ A(T ), A ⊆ XT , |A(T )| = c and A(T ) ∩ A(T ′) = ∅ for T 6= T ′,
T, T ′ ∈ S(h, g).

For A ∈ A, let BA =
⋃

n∈A[h(n), h(n + 1)). The desired disjoint family P(h,g)

will be now the set of all T [BA] for T ∈ S(h, g) and A ∈ A(T ).
By Fact 6 (i), by Fact 4 and by Fact 3, P(h,g) is pairwise disjoint. By Fact 1, all

members from P(h,g) are perfect trees. Finally, every tree T ∈ S(h, g) contains all

T [BA] for A ∈ A(T ), so by Fact 6 (iii), T meets c many members from P(h,g).

To conclude the proof notice that, by Fact 5, for every perfect tree T there is
a pair (h, g) ∈ F × F with T ∈ S(h, g). �
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