Commentationes Mathematicae Universitatis Carolinae

Miron Zelina
Selfduality of the system of convex subsets of a partially ordered set

Commentationes Mathematicae Universitatis Carolinae, Vol. 34 (1993), No. 3, 593--595

Persistent URL: http://dml.cz/dmlcz/118617

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1993

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/118617
http://project.dml.cz

Comment.Math.Univ.Carolin. 34,3 (1993)593-595 593

Selfduality of the system of convex subsets
of a partially ordered set

MIRON ZELINA

Abstract. For a partially ordered set P let us denote by CoP the system of all convex
subsets of P. It is found the necessary and sufficient condition (concerning P) under
which CoP (as a partially ordered set) is selfdual.
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1. Introduction.

For a partially ordered set P we denote by CoP the system of all convex subsets
of P. The system C'oP is partially ordered by the set-theoretical inclusion. It is not
difficult to see that CoP is a lattice. The aim of this paper is to find a necessary
and sufficient condition (concerning P) under which CoP is selfdual.

An analogous question for IntP (the system of all intervals of a partially ordered
set P) was investigated by J. Jakubik.

In [1], the following theorem was proved:

(T) Let P be a partially ordered set. Then the following conditions are equivalent:
(i) The partially ordered set IntP is selfdual.
(ii) P is a lattice such that either card P < 2, or card P = 4 and P has two
atoms.
2. Results.

Let @ be a partially ordered set. A subset C of @ is called convex if the following
holds:

Ifz,yeC,z€ @ and x < z <y, then z € C.
Thus the empty set is convex.

The partially ordered set @ is said to be selfdual if there exists a dual automor-
phism of @, i.e. such a bijection f : Q@ — @, that for all z,y € @ we have

r<ys f(x) > fy).

An element ¢ € @ is said to be extremal if it is minimal or maximal element
of Q. Finally, for r,s € Q we put [r,s] ={ueQ :r<u<s}.
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From now on let P denote a partially ordered set. The system CoP is a lattice
(intersection of convex subsets is clearly convex) with the least element (f)) and the
greatest element (P).

Let X € CoP. The set X is an atom of C'oP if and only if there is a € P with
X ={a}.

Lemma. Let X C P. Then X is a dual atom of CoP if and only if there exists
x € P such that X = P\ {z} and x is extremal.

PROOF: Let 2 be an extremal element of P such that X = P\ {z}. In order to
prove the convexity of P\ {z}, suppose that u,v € P\ {z}, 2 € P,u <z <w. If
z = x, then either u = x or v = x, since z is extremal. But that is a contradiction,
because u,v € P\ {x}. We have proved that X = P\ {z} is convex and hence X
is a dual atom of CoP.

Now let X C P be a dual atom of CoP. We distinguish two cases:

(1) There exists an extremal element y € P such that y ¢ X.
Then X C P\ {y} and P\ {y} is a dual atom, according to the first part of the
proof. Since X is a dual atom, necessarily X = P\ {y}. Thus in the case (1) the
assertion is proved.

(2) X contains all extremal elements of P.
Since X is a dual atom, there exists x € P\ X. Consider C'(X U {x})—the convex
closure of X U{z}. It is not difficult to see that C'(X U{z}) = { z € P : there exist
t,u € X U{z} such that ¢t < z < wu}. Next, z € P\ X, X contains all extremal
elements of P, therefore x is not extremal. Then there are x1,z9 € P such that
r <z <To.

Let x1,29 € C(X U {z}). Then there exist t1,u1,t2,ue € X U {z} such that
t1 <z <wup and to < x9 < ug. We have t] < z1 <z < 220 < ug, so t1,uz € X.
Since X is convex, we obtain x € X, which is a contradiction.

Hence either z1 or xo does not belong to C(X U{z}), which means C(X U{xz}) #
P. Then X C C(X U{z}) € P, which is a contradiction with the fact that X is
a dual atom. Thus the case (2) cannot occur. 0

Theorem. Let P be a partially ordered set. Then the following conditions are
equivalent:

(i) CoP is selfdual.
(ii) P does not contain a three-element chain.
(iii) Fach subset of P is convex.

PRrROOF: (i) = (ii) Let CoP be selfdual and let P contain a three-element chain.
Then we have a,b,c € P with a < b < ¢. As we know, {a}, {b},{c} are atoms of
CoP. Let f be a dual automorphism of CoP. Then f({a}), f({b}), f({c}) are dual
atoms and by Lemma there exist distinct extremal elements x,y,z € P such that
f{a}) = P\{z}, f({b}) = P\{y} and f({c}) = P\{z}. Consider intervals [a, ] and
[a,c]. Tt is easily seen that {a} V {c} = [a, ] in CoP. Using the dual automorphism
fwe get f(la,c]) = f({a} vV {c}) = f({a}) A F({c}) = (P\{z}) A (P {2}) =
(P\{z})N(P\{z}) = P\{z, z}. Analogously, f([a,b]) = P\{=z,y}. Sincea < b < ¢,
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[a,b] C [a, ¢], which implies f([a,c]) C f([a,b]). Hence P\{z,z} C P\ {x,y}, which
is a contradiction.

(ii) = (iii) Suppose that P does not contain a three-element chain. Let X C P
and let z,y € X, z € P, x < z <y. Now P does not contain a three-element chain,
so either z = x or z = y. Hence z € X and X is convex.

(iii) = (i) We define the dual automorphism f as follows: f(X) =P\ X. O
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