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Necessary and sufficient conditions for weak convergence

of random sums of independent random variables

A. Krajka, Z. Rychlik

Abstract. Let {Xn, n ≥ 1} be a sequence of independent random variables such that
EXn = an, E(Xn −an)2 = σ2n, n ≥ 1. Let {Nn, n ≥ 1} be a sequence od positive integer-

valued random variables. Let us put SNn
=
PNn

k=1
Xk, Ln =

Pn
k=1 ak , s2n =

Pn
k=1 σ2

k
,

n ≥ 1. In this paper we present necessary and sufficient conditions for weak convergence
of the sequence {(SNn

− Ln)/sn, n ≥ 1}, as n → ∞. The obtained theorems extend the
main result of M. Finkelstein and H.G. Tucker (1989).

Keywords: random sums, weak convergence, stable law, nonrandom centering, measure of
dependence between σ-fields

Classification: Primary 60F05; Secondary 60G50

1. Introduction.

Let {Xn, n ≥ 1} be a sequence of independent random variables, defined on
a probability space (Ω,A, P ), such that EXn = an, E(Xn−an)

2 = σ2n <∞, n ≥ 1.
Let us put

Sn =

n∑

k=1

Xk, Ln =

n∑

k=1

ak, s2n =

n∑

k=1

σ2k, n ≥ 1.

Let {Nn, n ≥ 1} be a sequence of positive integer-valued random variables, defined
on the same probability space (Ω,A, P ).
Recently many authors have studied limit behaviour of the following sequences:

{(SNn
− LNn

)/sNn
, n ≥ 1}, {(SNn

− ELNn
)/σ(SNn

), n ≥ 1},
{(SNn

− Ln)/sn, n ≥ 1},

under the assumption that for each n ≥ 1 the random variables Nn, X1, X2, . . . are
independent. Also the rate of convergence to the obtained limit law has extensively
been studied (cf. [3], [6], [9], [4], [5], [8] and the references given there).

The limit distribution of the sequence {(SNn
− Ln)/sn, n ≥ 1} is presented

in [3]. Namely, M. Finkelstein and H.G. Tucker [3] have obtained the following very
interesting result.
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Theorem A. Let {Xn, n ≥ 1} be a sequence of independent and identically dis-
tributed random variables such that EX1 = µ 6= 0 and E(X1 − µ)2 = σ2 > 0. If
{Nn, n ≥ 1} is a sequence of positive integer-valued random variables independent
of Xn, n ≥ 1, then the condition

(1.1) (SNn
− nµ)/σ

√
n

D−→ (some) Z

holds if and only if the condition

(1.2) (Nn − n)/
√
n

D−→ (some) U

holds, in which case the distribution of Z is that of X + Y , where X and Y are
independent random variables, X being N(0, 1) and Y having the same distribution
as µU/σ.

The main aim of this paper is to extend Theorem A in the following directions:

(i) We consider the random variables Xn, n ≥ 1, not necessarily identically
distributed.

(ii) We omit the assumption that the random variables Xn, n ≥ 1, have finite
moments, and therefore we consider weak convergence to the Levy class
distribution functions.

(iii) We do not assume that the random variables Nn, n ≥ 1, are independent
of Xn, n ≥ 1. We study limit distribution of the sequence {(SNn

−Ln)/sn,
n ≥ 1}, under the assumption that for some 1 ≤ q ≤ ∞

(1.3) r(n) = R1,q(σ{Nk, k ≥ 1}, σ{Xk, k ≥ n})→ 0

or

(1.4) R(n) = R1,q(σ{Nn}, σ{Xk, k ≥ 1})→ 0

as n → ∞, where Rp,q(F ,G) denotes the measure of dependence between σ-fields
F and G introduced in [2] (cf. (1.1)). Namely, for 1 ≤ p, q ≤ ∞

Rp,q(F ,G) = sup |Efg − Ef Eg|/‖f‖p‖g‖q ,

where the sup is taken over all f and g such that f is simple, real-valued, and
F -measurable and g is simple, real-valued, and G-measurable. (0/0 is presented to
be 0.) Of course, Rp,q is simply a norm of the bilinear form covariance.
In Section 2 we present the results. In Section 3 some auxiliary lemmas are given.

The proofs of the main results are presented in Section 4.
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2. Results.

Theorem 1. Let {Xn, n ≥ 1} be a sequence of independent random variables and
let {Nn, n ≥ 1} be a sequence of positive integer-valued random variables satisfying
(1.3) or (1.4) for some 1 ≤ q ≤ ∞. Let {Ln, n ≥ 1} and {sn, n ≥ 1} be sequences
of real numbers and positive real numbers, respectively. Denote

an = Ln − Ln−1, Sn =

n∑

k=1

Xk,

SNn
=

Nn∑

k=1

Xk, LNn
=

∞∑

k=1

LkI[Nn = k], sNn
=

∞∑

k=1

skI[Nn = k], n ≥ 1.

Assume

max
1≤k≤n

P [|Xk − ak| ≥ εsn]→ 0 as n→ ∞,

and

(2.1) (Sn − Ln)/sn
D−→ F (·) as n→ ∞,

where

(2.2)

∫
eitx F (dx) = exp{iγt+

∮
(eitx − 1− itx/(1 + x2)) (1 + x2)/x2G(dx)},

γ is a real number, G(·) is nondecreasing bounded function (
∮
means that the

integrand is equal to −t2/2 for x = 0) and not identically equal to a constant, and

(2.3) Nn
P−→ ∞ as n→ ∞

or for every k, n ∈ N and some constant C > 0

(2.4) |Ln − Lk| ≥ C|n− k| and n/sn → ∞ as n→ ∞,

or

(2.5) Ln/sn → ∞ or Ln/sn → ∞, as n→ ∞,

If

(2.6) (sNn
/sn, (LNn

− Ln)/sn)→ (some) A(·, ·),

where A is a two-dimensional distribution function, then

(2.7) (SNn
− Ln)/sn

D−→ (some) Ψ(·),
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where

(2.8)

∫
eitxΨ(dx) =

=

∫ ∫

R2

exp{iγty+itz+
∮
(ei(ty)x−1−i(ty)x/(1+x2)) (1+x2)/x2G(dx)}A(dy, dz).

If (2.7) holds with some distribution function Ψ(·), then the sequence {(sNn
/sn,

(LNn
− Ln)/sn), n ≥ 1} is tight.

It is known that the set of possible weak limits of sums of independent random
variables (cf. for e.g. [7, IV, § 3]) is the class of Levy distribution function F (·)
which may be characterized by (2.2) and: For every 0 < α < 1, there exists the
characteristic function fα(t) such that

∫
eitx F (dx) =

∫
eitαx F (dx) fα(t), t ∈ R.

Furthermore, by Lemma 11 [7, IV, § 3], (2.1) implies

(2.9) sn+1/sn → 1, and sn → ∞ as n→ ∞.

The condition that G(·) is not identically equal to a constant implies

∮
(eitx − 1− itx/(1 + x2)) (1 + x2)/x2 G(dx) 6= 0

so that F (·) in (2.1) is not a degenerate distribution function.
We note that the condition (2.3) may be expressed as follows:

For some sequence {α(n), n ≥ 1} such that α(n)→ ∞ as n→ ∞,

(2.10) P (Nn < α(n))→ 0 as n→ ∞.

Let us observe that if for each n ≥ 1, the random variables Nn, X1, X2, . . . are
independent, then (1.3) and (1.4) hold with r(n) = R(n) = 0 for every q ≥ 1.
The next result deals with the convergence to the stable limit law. Assume

(2.11) P (Xn > x)/P (|Xn| > x)→ c1,n/(c1,n + c2,n) as x→ ∞,

where {cj,n, n ≥ 1}, j = 1, 2, are some sequences of nonnegative numbers such that
c1,n + c2,n > 0, n ≥ 1.
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For some 0 ≤ α ≤ 2 we define

e1 =

∫ ∞

0
u−α sin(u) du, e2 =






−
∫ ∞
0 u−α cos(u) du, if α < 1,

1 if α = 1
∫ ∞
0 u−α(1− cos(u)) du, otherwise

σα
n = (c1,n + c2,n)e1, sαn =

n∑

i=1

σα
i , s0 = 1,

an =






0, if α < 1,

EXn, if α > 1,
∫ 1
0 dn(x) dx +

∫ ∞
1 (dn(x)− (c2,n − c1,n)/x) dx+

+
∑n−1

i=1 (c1,i − c2,i)e2 ln(si/si−1)+

+(c1,n − c2,n)e2 ln(sn) + (c2,n − c1,n)γ, otherwise

Ln =

n∑

i=1

ai, n ≥ 1,

where dn(x) = P (Xn > x) − P (Xn < −x), γ is the Euler’s constant and sn =
(sαn)

1/α. Furthermore, let

βn =

n∑

i=1

(c1,i − c2,i)e2 .

Let Gα,β,ν,λ(·) denote the stable law with parameters α, β, ν, λ, α ∈ (0, 2], β ∈
[−1, 1], λ > 0, ν ∈ R, i.e.

∫
eitxGα,β,ν,λ(dx) = exp{iνt− λ|t|α(1 + i sgn(t)ω(t, α, β))},

where ω(t, α, β) = βtg(πα/2) for α 6= 1 and ω(t, α, β) = −(2β/π) ln |t| for α = 1.
Theorem 2. Let {Xn, n ≥ 1} be a sequence of independent random variables
satisfying (2.11). Assume, for some α ∈ (0, 2],

(2.12) βn/s
α
n → β as n→ ∞

and

(2.13) (Sn − Ln)/sn
D−→ Gα,β,0,1(·) as n→ ∞,

hold.

Let {Nn, n ≥ 1} be a sequence of positive integer-valued random variables sat-
isfying (1.3) or (1.4) and (2.3) or (2.4). If

(2.14) (sαNn
/sαn, (βNn

− βn)/s
α
n, (LNn

− Ln)/sn)
D−→ (some) A(·, ·, ·),
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where A is a three-dimensional distribution function, then

(2.15) (SNn
− Ln)/sn

D−→ Ψ(·) as n→ ∞,

where
∫
eitxΨ(dx) =

∫ ∫ ∫

R3

exp{−|t|α(x+ i sgn(t)ω(α, β, t))−

− |t|αi sgn(t)ω(α, 1, t)y + itz}A(dx, dy, dz).

If (2.15) holds with some distribution function Ψ, then the sequence {(sαNn
/sαn,

(βNn
− βn)/s

α
n, (LNn

− Ln)/sn), n ≥ 1} is tight.
Note that for α < 1 we have Lk = 0 for all k, hence (LNn

−Ln) = 0, n ≥ 1. The
given result seems to be interesting in case of i.i.d. random variables, but because
in case α < 1 the centralization is equal to 0, we formulate two corollaries for α > 1
and α = 1 only.

Corollary 1. Let {Xn, n ≥ 1} be a sequence of independent and identically dis-
tributed random variables. Assume X1 belongs to the area of attraction of a stable
law Gα,β,0,λ(·), α ∈ (1, 2]. Let {Nn, n ≥ 1} be a sequence of positive integer-valued
random variables satisfying (1.3) or (1.4). If

(2.16) (Nn − n)/n1/α D−→ (some) A(·), as n→ ∞,

then

(2.17) (SNn
− nEX1)/(nλ)

1/α D−→ (some) Ψ(·), as n→ ∞,

where λ = e1(c1,1 + c2,1), and

∫
eitxΨ(dx) = exp{−|t|αλ(1 + i sgn(t)ω(α, β, t))}

∫

R

exp{−x|t|αi sgn(t) ω(α, β, t)

(c1,1 − c2,1)e2/λ
1/α + itxEX1/λ

1/α}A(dx).

If (2.17) holds, then the sequence given in (2.16) is tight.

Corollary 2. Let {Xn, n ≥ 1} be a sequence of independent and identically dis-
tributed random variables. Assume X1 belongs to the area of attraction of Cauchy
law. Let {Nn, n ≥ 1} be a sequence of positive integer-valued random variables
satisfying (1.3) or (1.4). If

(2.18) (Nn/n, (Nn ln(Nn)− n ln(n))/n)
D−→ (some) A(·, ·), as n→ ∞,

then

(2.19) (SNn
− nµ− rn ln(n))/(nλ)

D−→ (some) Ψ(·), as n→ ∞,
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where λ = e1(c1,1 + c2,1), r = e1(c1,1 − c2,1),

µ =

∫ 1

0
d1(x) dx +

∫ ∞

1
(d1(x) − (c1,1 − c2,1)/x) dx + (c1,1 − c2,1) [γ + e2 ln(λ)],

and
∫
eitxΨ(dx) =

=

∫ ∫

R2

exp{−|t|λ(x+(2x−1)i sgn(t)ω(1, β, t))+it(x+1)µ+itβ(y+1)}A(dx, dy).

If (2.19) holds, then the sequence given in (2.18) is tight.

The next result deals with the central limit theorem. Here we can formulate
a stronger result than in Theorems 1 and 2 (cf. Lemma 6 in Section 3).

Theorem 3. Let {Xn, n ≥ 1} be a sequence of independent random variables such
that EXn = an and E(Xn−an)

2 = σ2n <∞, n ≥ 1. Let {Nn, n ≥ 1} be a sequence
of positive integer-valued random variables satisfying (1.3) or (1.4). Let us put

Sn =

n∑

k=1

Xk, Ln =

n∑

k=1

ak, s2n =

n∑

k=1

σ2k,

SNn
=

Nn∑

k=1

Xk, LNn
=

Nn∑

k=1

ak, s2Nn
=

Nn∑

k=1

σ2k, n ≥ 1.

If

(2.20) (Sn − Ln)/sn
D−→ N(0, 1) as n→ ∞,

and (2.3) or (2.4) or (2.5) hold, then the following conditions are equivalent:

(2.21) (s2Nn
/s2n, (LNn

− Ln)/sn)
D−→ (some) A(·, ·),

where A is a two-dimensional distribution function,

(2.22) (SNn
− Ln)/sn

D−→ (some) Ψ(·),

where Ψ is a distribution function.
The distribution functions A and Ψ are such that

(2.23)

∫ ∞

−∞
exp(itx)Ψ(dx) =

∫ ∫

R2

exp(−t2x/2 + ity)A(dx, dy).
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Corollary 3. Let {Xn, n ≥ 1} be a sequence of independent random variables
such that EXn = µ 6= 0, E(Xn − µ)2 = σ2 <∞, n ≥ 1, and

(2.24) (Sn − nµ)/σ
√
n

D−→ N(0, 1) as n→ ∞.

Let {Nn, n ≥ 1} be a sequence of positive integer-valued random variables satisfying
(1.3) or (1.4). Then the following conditions are equivalent:

(2.25) (Nn − n)/
√
n

D−→ (some) G(·), as n→ ∞,

and

(2.26) (SNn
− nµ)/σ

√
n

D−→ (some) Ψ(·), as n→ ∞.

The distribution functions G and Ψ are such that

∫
eitxΨ(dx) = exp(−t2/2)

∫
eitµx/σ G(dx).

Let us observe that if, in addition, Xn, n ≥ 1, are identically distributed, then
(2.24) holds. Thus Corollary 3, under the assumption that the random variables
Nn, X1, X2, . . . are independent for each n ≥ 1, gives Theorem A.
3. Auxiliary lemmas.

In the proofs of the main results we need some lemmas. Let L(X) denote the
distribution of the random variable X .

Lemma 1. Let {Xn, n ≥ 1} be a sequence of independent random variables and
let {Nn, n ≥ 1} be a sequence of positive integer-valued random variables satisfying
(1.3) or (1.4). Let {Yn, n ≥ 1} be a sequence of independent random variables and
independent of {Xn, n ≥ 1} and {Nn, n ≥ 1} such that L(Xn) = L(Yn), n ≥ 1.
Let {sn, n ≥ 1} and {Ln, n ≥ 1} be sequences of real numbers such that sn > 0,
n ≥ 1, and sn → ∞ as n→ ∞. Let Zn = Y1+ · · ·+Yn, n ≥ 1. Assume (2.1) holds.
Then the following conditions are equivalent:

(3.1) (SNn
− Ln)/sn

D−→ (some) Ψ(·), as n→ ∞.

and

(3.2) (ZNn
− Ln)/sn

D−→ (some) G(·), as n→ ∞.

in which case Ψ(·) ≡ G(·).
Proof: Let us observe that L(Sn) = L(Zn), n ≥ 1, but in general L(SNn

) 6=
L(ZNn

), n ≥ 1, since Nn is independent of Yn, n ≥ 1, but may be dependent of
Xn, n ≥ 1.
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Assume (1.4) holds. Then

(3.3)

In(t) = |E exp{it(SNn
− Ln)/sn} − E exp{it(ZNn

− Ln)/sn}| =

= |
∞∑

m=1

[EI(Nn = m) exp{it(Sm − Ln)/sn}−

− EI(Nn = m)E exp{it(Zm − Ln)/sn}]| ≤

≤
∞∑

m=1

R(n)P (Nn = m) = R(n)→ 0 as n→ ∞.

Thus (3.1) holds if and only if (3.2) holds and Ψ(·) ≡ G(·). We remark that under
the assumption (1.4) we did not use (2.1).
Assume now (1.3) holds. Then by (2.1), for every ε > 0, there exists a positive

number Kε such that for every n ≥ 1

P (|Sn − Ln|/sn ≥ Kε) ≤ ε.

Furthermore, we may and do assume 0 < ε1 < ε2 implies Kε1 ≥ Kε2 and that
Kε → ∞ as ε→ 0.
Let us put

ψ(n) = max{k : sk ≤ s
1/2
n },

ε(n) = 2 inf{ε > 0 : Kε < s
1/4
n , ε > s

−1/4
n },

̺(n) = min{ψ(n), (ε(n))−1/2}.

We have sn → ∞, hence ε(n) → 0, ψ(n) → ∞ and Kε(n) → ∞ as n → ∞.
Furthermore, for every 1 ≤ i ≤ ̺(n)

P (|Si − Li|/sn > s
−1/4
n ) ≤ P (|Si − Li|/sis1/2n > s

−1/4
n ) ≤ P (|Si − Li|/si > s

1/4
n ) ≤

≤ P (|Si − Li|/si > Kε(n)) ≤ ε(n)

and, in consequence,

P (|Si − Li|/sn > s
−1/4
n , Nn = i) ≤ ε(n).

Thus, for every t such that |t| < s
1/8
n , we get

|E(exp{it(SNn
− Ln)/sn} − exp{it(LNn

− Ln)/sn}) I[Nn ≤ ̺(n)]| ≤

≤ E|(exp{it(SNn
− LNn

)/sn} − 1)| I[Nn ≤ ̺(n), max
1≤i≤̺(n)

|Si − Li|/sn ≤ s
−1/4
n ]+

+
∑

i≤̺(n)

2P (|Si − Li|/sn > s
−1/4
n ) ≤ 2|t|s−1/4n + 2̺(n)ε(n) ≤ 4(ε(n))1/2 .
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Similarly, replacing Si by Zi, we get

|E(exp{it(ZNn
− Ln)/sn} − exp{it(LNn

− Ln)/sn}) I[Nn ≤ ̺(n)]| ≤ 4(ε(n))1/2 ,

so that

|E(exp{it(SNn
− Ln)/sn} − exp{it(ZNn

− Ln)/sn}) I[Nn ≤ ̺(n)]| ≤ 8(ε(n))1/2 .

On the other hand, step by step as in above, for |t| < s
1/8
n we also get

E| exp{it(S[̺(n)] − L[̺(n)])/sn} − 1| ≤ 4(ε(n))1/2 ,

and
E| exp{it(Z[̺(n)] − L[̺(n)])/sn} − 1| ≤ 4(ε(n))1/2 ,

where [x] denotes the integral part of x. Hence, taking into account the inequalities

obtained above and using the triangle inequality, for |t| ≤ s
1/8
n we have

In(t) ≤ |E(exp{it(SNn
− Ln)/sn}−

− exp{it(ZNn
− Ln)/sn}) I[Nn > ̺(n)]|+ 8(ε(n))1/2 ≤

≤ |E(exp{it(SNn
− Ln − S[̺(n)] + L[̺(n)])/sn}−

− exp{it(ZNn
− Ln − S[̺(n)] + L[̺(n)])/sn}) I[Nn > ̺(n)]|+ 8(ε(n))1/2 ≤

≤ |E(exp{it(SNn
− Ln − S[̺(n)] + L[̺(n)])/sn}−

− exp{it(ZNn
− Ln − Z[̺(n)] + L[̺(n)])/sn}) I[Nn > ̺(n)]|+

+ |E(exp{it(ZNn
− Ln − S[̺(n)] + L[̺(n)])/sn}−

− exp{it(ZNn
− Ln − Z[̺(n)] + L[̺(n)])/sn}) I[Nn > ̺(n)]|+ 8(ε(n))1/2 ≤

≤ |E(exp{it(SNn
− S[̺(n)] − Ln + L[̺(n)])/sn}−

− exp{it(ZNn
− Z[̺(n)] − Ln + L[̺(n)])/sn}) I[Nn > ̺(n)]|+ 16(ε(n))1/2 ≤

≤
∑

k>̺(n)

|E exp{it(Sk − S[̺(n)] − Ln + L[̺(n)])/sn} I[Nk = k]−

− E exp{it(Sk − S[̺(n)] − Ln + L[̺(n)])/sn} P [Nn = k]|+ 16(ε(n))1/2 ≤
≤ r([̺(n)] + 1) + 16(ε(n))1/2 → 0 as n→ ∞.

Thus the proof of Lemma 1 is finished. �

Lemma 2. If {Xn, n ≥ 1} and {Yn, n ≥ 1} are tight sequences of random vari-
ables, then the following sequences are also tight:

(a) {Xn + Yn, n ≥ 1},
(b) {XnYn, n ≥ 1},
(c) {(Xn, Yn), n ≥ 1}.

The proof is simple and therefore omitted.
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Lemma 3. Let {Xn, n ≥ 1} be a sequence of independent random variables and
let {Nn, n ≥ 1} be a sequence of positive integer-valued random variables satisfying
(1.3) or (1.4). Let {sn, n ≥ 1} and {Ln, n ≥ 1} be sequences of real numbers such
that 0 < sn, n ≥ 1, and sn → ∞ as n → ∞. Assume (2.1) and (3.1) hold with
nondegenerate distribution function F (·), then the sequence {sNn

/sn, n ≥ 1} is
tight.

Proof: Let {Yn, n ≥ 1} and {Vn, n ≥ 1} be independent sequences of independent
random variables and independent of the sequences {Xn, n ≥ 1} and {Nn, n ≥ 1},
such that L(Xn) = L(Yn) = L(Vn), n ≥ 1. Let us put

Zn =

n∑

k=1

Yk, Un =

n∑

k=1

Vk , n ≥ 1.

Then

(Zn − Ln)/sn
D−→ F (·), (Un − Ln)/sn

D−→ F (·), as n→ ∞,

and, by Lemma 1,

(ZNn
− Ln)/sn

D−→ Ψ(·), (UNn
− Ln)/sn

D−→ Ψ(·), as n→ ∞.

By Lemma 2 (a) the sequences {(ZNn
−UNn

)/sn, n ≥ 1} and {(Zn−Un)/sn, n ≥ 1}
are tight. Moreover,

(Zn − Ln)/sn
D−→

∫ ∞

−∞
F (x + ·)F (dx) as n→ ∞.

Because F (·) is nondegenerate distribution function and
∫
F (x+·)F (dx) is symmet-

ric distribution function so that there exists c > 0 such that
∫
F (x+ c)F (dx) > 0.

Assume that {sNn
/sn, n ≥ 1} is not tight. Thus, for some ε > 0 there exist the

sequences {kn, n ≥ 1} and {ln, n ≥ 1} such that kn ∈ {1, 2, . . .}, kn → ∞, ln → ∞
as n→ ∞, and P (sNkn

/skn
> ln) > ε, n ≥ 1. Hence, for sufficiently large n,

P (ZNkn
− UNkn

≥ clnskn
) ≥

∑

m:sm>lnskn

P (Zm − Um ≥ clnskn
) P (Nkn

= m) ≥

≥
∑

m:sm>lnskn

P (Zm − Um ≥ csm) P (Nkn
= m) ≥

≥ (1−
∫ ∞

−∞
F (x+ c)F (dx)) P (sNkn

≥ lnskn
)/2 ≥

≥ (1/4)(1−
∫ ∞

−∞
F (x+ c)F (dx)) ε > 0.

Thus we get a contradiction, and this ends the proof. �
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Lemma 4. Let {Yn, n ≥ 1} be a sequence of independent random variables and let
{Nn, n ≥ 1} be a sequence of positive integer-valued random variables independent
of {Yn, n ≥ 1}. If {Ln, n ≥ 1} and {sn, n ≥ 1} are sequences of real numbers such
that 0 < sn, n ≥ 1, sn → ∞ as n → ∞ and the sequences {(Zn − Ln)/sn, n ≥ 1}
and {sNn

/sn, n ≥ 1} are tight, then the sequence {(ZNn
− LNn

)/sn, n ≥ 1} is
tight, too.

Proof: We have

P (|ZNn
− LNn

|/sNn
> K) =

∞∑

m=1

P (|Zm − Lm|/sm > K) P (Nn = m) ≤ ε

provided, for every m ≥ 1, P (|Zm − Lm|/sm > K) ≤ ε. Thus the sequence
{(ZNn

− LNn
)/sNn

, n ≥ 1} is tight, so that the sequence {(ZNn
− LNn

)/sn =
((ZNn

− LNn
)/sNn

)(sNn
/sn), n ≥ 1} is tight by Lemma 2 (b). �

Lemma 5. Let {Ln, n ≥ 1} and {sn, n ≥ 1} be sequences of real numbers such
that 0 < sn, n ≥ 1, and sn → ∞ as n→ ∞. Let {Nn, n ≥ 1} be a sequence of posi-
tive integer-valued random variables such that the sequence {(LNn

−Ln)/sn, n ≥ 1}
is tight. Then (2.3) or (2.4) or (2.5) implies (2.10).

Proof: Assume (2.4) holds. Then

P (|LNn
− Ln|/sn > K) ≥ P (|Nn − n|/sn > K/C) ≥

≥ P ((Nn − n)/sn < −K/C) = P (Nn < sn(n/sn −K/C)).

Thus, taking into account the tightness of {(LNn
−Ln)/sn, n ≥ 1} and the second

part of (2.4), we get

P (Nn < sn(n/sn − n/2sn)) = P (Nn < n/2)→ 0, as n→ ∞,

so that (2.10) holds with α(n) = n/2, n ≥ 1. Let us suppose (2.5). If Ln/sn → ∞
as n→ ∞, then

P (|LNn
− Ln|/sn > K) ≥ P ((LNn

− Ln)/sn < −K) = P (LNn
< sn(Ln/sn −K)).

Now the tightness and Ln/sn → ∞ as n→ ∞ imply

P (LNn
< sn(Ln/sn − Ln/2sn)) = P (LNn

< Ln/2)→ 0, as n→ ∞,

so that (2.10) holds with α(n) = inf{k ∈ N : Lk ≥ Ln/2}, n ≥ 1. Of course, since
Ln → ∞ as n→ ∞, we get α(n)→ ∞ as n→ ∞.
If Ln/sn → ∞ as n → ∞, the proof of (2.10) is the same. The equivalence of

(2.3) and (2.10) has been explained after Theorem 1. �
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Lemma 6. Let A(·, ·) and A′(·, ·) be two distribution functions. If for every t ∈ R

∫ ∫
exp(−t2x/2 + ity)A′(dx, dy) =

∫ ∫
exp(−t2x/2 + ity)A(dx, dy),

then A = A′

The proof is easy and therefore omitted.

Lemma 7. Let {Xn, n ≥ 1} be a sequence of independent random variables and let
{Nn, n ≥ 1} be a sequence of positive integer-valued random variables independent
of {Xn, n ≥ 1} and satisfying (2.10). Assume for arbitrary τ > 0, some sequence
of real numbers {ak, k ≥ 1} and nondecreasing sequence of positive real numbers
{sn, n ≥ 1},

(3.4)

n∑

j=1

(bj +

∫ ∞

−∞
x/(1 + x2) dFj(x+ bj)− aj)/sn → γ, as n→ ∞,

and uniformly on compact sets with respect to t

(3.5)

∮ ∞

−∞
(eitx/sn − 1− itx/((1 + x2)sn)) d

n∑

j=1

Fj(x+ bj)→

→
∮ ∞

−∞
(eitx − 1− itx/(1 + x2)) (1 + x2)/xG(dx), as n→ ∞,

where

Fj(x) = P [Xj < x], bj =

∫

|x|<τ
xdFj(x), j ≥ 1,

and G(·) is nondecreasing bounded function. Then uniformly on compact sets

Jn(t) = |E exp{it
Nn∑

j=1

(bj+

+

∫ ∞

−∞
x/(1 + x2) dFj(x+ bj)− aj)/sNn

(sNn
/sn) + it(LNn

− Ln)/sn+

+

∮ ∞

−∞
(eitx/sNn (sNn/sn) − 1− itx(sNn

/sn)/((1 + x
2)sNn

)) d

Nn∑

j=1

Fj(x + bj)}−

− E exp{itγ(sNn
/sn) + it(LNn

− Ln)/sn+

+

∮ ∞

−∞
(eitx(sNn/sn) − 1− itx(sNn

/sn)/(1 + x
2))(1 + x2)/x dG(x)}| → 0

as n→ ∞,

where

Ln =
n∑

j=1

aj , LNn
=

Nn∑

j=1

aj , n ≥ 1.
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Proof: Let us remark that for every ε > 0

P [|
Nn∑

j=1

(bj +

∫ ∞

−∞
x/(1 + x2) dFj(x+ bj)− aj)/sNn

− γ| > ε] ≤

≤ P [Nn ≤ α(n)] + sup
kn≥α(n)

|
kn∑

j=1

(bj+

+

∫ ∞

−∞
x/(1 + x2) dFj(x + bj)− aj)/skn

− γ|/ε→ 0 as n→ ∞,

where {α(n), n ≥ 1} is defined in (2.10). Similarly

P [ sup
|t|<K1

|
∮ ∞

−∞
(eitx/sNn − 1− itx/((1 + x2)sNn

)) d

Nn∑

j=1

Fj(x + bj)−

−
∮ ∞

−∞
(eitx − 1− itx/(1 + x2))(1 + x2)/x dG(x)| > ε]→ 0 as n→ ∞.

On the other hand, for each positive number Ki, εi, i = 1, 2, we have

sup
|t|<K1

Jn(t) ≤ P [|sNn
/sn| > K2]+

+ 2P [|
Nn∑

j=1

(bj +

∫ ∞

−∞
x/(1 + x2) dFj(x + bj)− aj)/sNn

− γ| > ε1/K1]+

+ 2P [ sup
|y|<K1K2

|
∮ ∞

−∞
(eiyx/sNn − 1− iyx/((1 + x2)sNn

)) d

Nn∑

j=1

Fj(x+ bj)−

−
∮ ∞

−∞
(eiyx − 1− iyx/(1 + x2)) (1 + x2)/x dG(x)| > ε2] + 2ε1 + 2ε2, n ≥ 1.

Let now K1 > 1 and ε be arbitrary positive numbers and let n1 be such that for
every n ≥ n1

P [|
Nn∑

j=1

(bj +

∫ ∞

−∞
x/(1 + x2) dFj(x+ bj)− aj)/sNn

− γ| > ε/(9K1)] ≤ ε/9.

Now we put K2 such that for every n ≥ n1

P [|sNn
/sn| > K2] ≤ ε/9,

and n2 such that for every n ≥ n2

P [ sup
|y|<K1K2

|
∮ ∞

−∞
(eiyx/sNn − 1− iyx/((1 + x2)sNn

)) d

Nn∑

j=1

Fj(x+ bj)−

−
∮ ∞

−∞
(eiyx − 1− iyx/(1 + x2)) (1 + x2)/x dG(x)| > ε/9] ≤ ε/9.
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Thus for every n ≥ max(n1, n2)

sup
|t|<K1

Jn(t) ≤ ε/9 + 2ε/9 + 2ε/9 + 2ε/9 + 2ε/9 = ε,

which ends the proof. �

4. Proofs.

Proof of Theorem 1: At first we prove that (2.6) ⇒ (2.7). Let {Un, n ≥ 1} be
a sequence of independent random variables and independent of {Nn, n ≥ 1} and
such that

∫
eitxL(Un) (dx) = exp{it(bn +

∫ ∞

−∞
x/(1 + x2)Fn(dx+ bn))+

+

∮
(eitx − 1− itx/(1 + x2)) Fn(dx + bn)},

where

bn =

∫

|x|<1
xdFn(x), Fn(x) = P [Xn < x], n ≥ 1.

By Lemma 1 we may and do assume that {Xn, n ≥ 1} and {Nn, n ≥ 1} are
independent. Note that by Theorem 4 [7, Chapter IV, § 2, p. 115] and Lemma 5,
the assumptions of Lemma 7 hold. By Lemma 7 it is enough to prove that

In(t) = |E exp{it(VNn
− Ln)/sn} − E exp{it(SNn

− Ln)/sn}| → 0, as n→ ∞,

uniformly on compact sets with respect to t, where

Vn =

n∑

j=1

Uj .

Let C and ε be arbitrary positive numbers. Let n1 ∈ N be such that

P [Nn < α(n)] < ε/3,

for every n ≥ n1. Here, and in what follows, {α(n), n ≥ 1} is defined in Lemma 5.
By (2.6) we may put Cε such that

P [|sNn
/sn| > Cε] ≤ ε/3,

for every n ≥ n1. By (3.5) and (3.6) it is possible to choose n2 ∈ N such that

sup
|u|<CCε

sup
j:j>α(n)

|E exp{iu(Sj − Lj)/sj} − E exp{iu(Vj − Lj)/sj}| < ε/3,



480 A.Krajka, Z. Rychlik

for every n ≥ n2. Thus

sup
|yt|<C

In(t) ≤
∫

0<x<Cε

sup
|t|<C

sup
j:j>α(n)

|E exp{itx(Sj − Lj)/sj}−

− E exp{itx(Vj − Lj)/sj}|+ P [Nn < α(n)]+

+ P [sNn
/sn > Cε] < ε, for n > max(n1, n2).

Since the left hand side of the above inequality is independent of ε, we have

lim
n→∞

sup
|t|<C

In(t) = 0.

Thus the proof that (2.6) ⇒ (2.7) is ended.
Assume now that (2.7) holds. Then, by Lemma 3, the sequence {sNn

/sn, n ≥ 1}
is tight. Moreover, by Lemma 1 and Lemma 4, the sequence {(ZNn

−Ln)/sn, n ≥ 1}
and {(ZNn

−LNn
)/sn, n ≥ 1} are tight, too, where {Zn, n ≥ 1} is the sequence de-

fined in Lemma 1. Thus by Lemma 2 (a) the sequence {(LNn
−Ln)/sn, n ≥ 1} is also

tight, so that Lemma 2 (c) implies the tightness of the sequence {(sNn
/sn, (LNn

−
Ln)/sn), n ≥ 1}. �

Proof of Theorem 2: The implication (2.14) ⇒ (2.15) can be proved similarly
as the implication (2.5), (2.6) ⇒ (2.7). In this case, let {Un, n ≥ 1} be a sequence
of independent random variables and independent of {Nn, n ≥ 1} and such that
L(Un) = Gα,(c1,n−c2,n)e2,0,(c1,n+c2,n)e1(·), n ≥ 1, then

E exp{it(
Nn∑

j=1

Uj − Ln)/sn} = E exp{−|t|α(sαNn
/sαn + i sgn(t)ω(α, βNn

/sαn, t))+

+ it(LNn
− Ln)/sn} = E exp{−|t|α(sαNn

/sαn + i sgn(t)(βn/s
α
n)ω(α, 1, t))−

− |t|αi sgn(t)((βNn
− βn)/s

α
n)ω(α, 1, t) + it(LNn

− Ln)/sn} →

→
∫ ∫ ∫

R3

exp{−|t|α(x+ i sgn(t)ω(α, β, t))−

− |t|αi sgn(t)ω(α, 1, t)y + itz}A(dx, dy, dz),

as n→ ∞. We omit further details.
The second part of Theorem 2 can also be obtained similarly as the second part of

Theorem 1. Namely, as in Theorem 1, we prove that the sequence {(sNn
/sn, (LNn

−
Ln)/sn), n ≥ 1} is tight. Thus the sequence {(sαNn

/sαn, (LNn
− Ln)/sn), n ≥ 1} is

tight, too. Now (2.15) follows, if we show that the sequence {(βNn
−βn)/s

α
n, n ≥ 1}

is tight. But this fact follows from the tightness of the sequence {sαNn
/sαn, n ≥ 1}.

Namely, we have
|βn/s

α
n| ≤ 1, |βNn

/sαNn
| ≤ 1 a.s.

and
|βNn

− βn|/sαn ≤ sαNn
/sαn + 1 a.s.
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Hence the proof of Theorem 2 is completed. �

Proof of Theorem 3: The implication (2.21)⇒ (2.22) follows from the first part
of Theorem 1 as the Gaussian law is the special case of Levy laws. The tightness
of sequence defined on the left hand side of (2.21) follows from Theorem 1, too.
Assume that

(sNn′
/sn′, (LNn′

− Ln′)/sn′)
D−→ A′(·, ·) as n′ → ∞

and

(sNn′′
/sn′′ , (LNn′′

− Ln′′)/sn′′)
D−→ A′′(·, ·) as n′′ → ∞.

Then applying two times the implication (2.21) ⇒ (2.22), which is already proved,
we get

Ψ̂(t) =

∫ ∫

R2

exp(−t2x/2 + ity)A′(dx, dy) =

∫ ∫

R2

exp(−t2x/2 + ity)A′′(dx, dy).

By Lemma 6, A′ = A′′, which ends the proof of Theorem 3. �

Corollaries 1, 2 and 3 easily follow from Theorems 2 and 3, respectively. We note
only that if

(Nn − n)/n1/α D−→ (some) A(·), as n→ ∞, 0 < α < 2,

then

Nn/n
P−→ 1, as n→ ∞.
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