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Partitions of k-branching trees

and the reaping number of Boolean algebras

Claude Laflamme

Abstract. The reaping number rm,n(B) of a Boolean algebra B is defined as the minimum
size of a subset A ⊆ B \ {O} such that for each m-partition P of unity, some member of A
meets less than n elements of P.
We show that for each B, rm,n(B) = r⌈ m

n−1
⌉,2(B) as conjectured by Dow, Steprāns and

Watson. The proof relies on a partition theorem for finite trees; namely that every k-
branching tree whose maximal nodes are coloured with ℓ colours contains an m-branching
subtree using at most n colours if and only if ⌈ ℓ

n
⌉ < ⌈ k

m−1
⌉.
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1. Introduction.

Given a Boolean algebra B and an integerm, anm-partition of B is a set P ∈ [B]m

such that ∨P = 1 and a∧ b = O for each {a, b} ∈ [P ]2. A ⊆ B is said to be (m, n)-
reaped by the m-partition P if

(∀a ∈ A)|{b ∈ P : a ∧ b 6= O}| ≥ n.

The cardinal invariant rm,n(B) can now be defined as the minimum size of a subset
A ⊆ B \ {O} which cannot be (m, n)-reaped.
The more standard reaping numbers rm,2(B) have been studied in [1], [2] and [3]

where they are simply denoted by rm(B); we clearly have rn(B) ≤ rn+1(B) for each
Boolean algebra B.
In [4], the more general reaping numbers rm,n(B) are defined where they are used

to prove that for each n there is a Boolean algebra B such that rn(B) < rn+1(B);

they further prove the surprising inequality rn(B) ≤ r
+
2 (B) which holds for every

Boolean algebra B and integer n. In this short note, we prove that for each B,
rm,n(B) = r⌈ m

n−1
⌉(B) as conjectured by Dow, Steprāns and Watson.

As for terminology, an integer n will often be identified with its predecessors
{0, ..., n − 1}. A tree will always mean a finite collection of sequences of integers
which are closed under initial segments; it is called k-branching if every one of its
non-maximal node has at least k immediate successors and µ(T ) will denote the
maximal nodes of T . In particular, nk is the full k-branching tree of height n, and
χ : µ(T )→ n is an n-colouring of the maximal nodes of T . Finally, ⌈x⌉ denotes as
usual the least integer greater than or equal to x.
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2. Partitions of k-branching trees.

In this section, we shall characterize exactly which tuples k, ℓ, m, n of integers
have the property that every k-branching tree whose maximal nodes are coloured
with ℓ colours contains an m-branching subtree using at most n colours, a property
that will be denoted by P(k, ℓ, m, n). The answer, conjectured in [4], is given by
the following:

Theorem 1. P(k, ℓ, m, n) holds if and only if ⌈ ℓ
n⌉ < ⌈ k

m−1⌉.

Proof: We first put a = ⌈ ℓ
n⌉, b = ⌈ k

m−1⌉ and assume that a < b; we shall prove

that P(k, ℓ, m, n) holds.
Since ℓ ≤ an, partition ℓ into at most a sets <si : i < a>, each of size at most n.
Given a k-branching tree T and a colouring χ : µ(T ) → ℓ of its maximal nodes,
define a new colouring χ : µ(T ) → a by χ(σ) = i iff χ(σ) ∈ si. Since k ≥

b(m − 1) − (m − 2), we get a ≤ b − 1 ≤ k−1
m−1 ; but P(k, k−1

m−1 , m, 1) can easily be

verified to hold and therefore T contains an m-branching subtree T ′ using only one
χ-colour, say i. Thus T ′ is an m-branching subtree of T using at most n χ-colours,
namely those from si, and we are done.

For the other direction, we shall show that P(k, ℓ, m, n) fails whenever ⌈ ℓ
n⌉ ≥

⌈ k
m−1⌉. This will be done by induction on n, the case n = 1 being straightforward.
Assume now the result true for n and we prove it for n + 1. Fix k, ℓ, m such that
⌈ ℓ

n+1⌉ ≥ ⌈ k
m−1⌉ and we must show that P(k, ℓ, m, n+ 1) fails.

Let a = ⌈ ℓ
n+1⌉, b = ⌈ k

m−1⌉, and choose ℓ′ as small as possible such that a = ⌈ ℓ′

n ⌉,

namely ℓ′ = an−(n−1). We know by induction that P(k, ℓ′, m, n) fails and therefore

fix for each s ∈ [ℓ]ℓ
′
a k-branching tree Ts with a colouring χs : µ(Ts)→ s such that

every m-branching subtree uses at least n+ 1 colours from s. The counterexample
T to P(k, ℓ, m, n+ 1) will be obtained by tagging a tree Tsσ to each maximal node
σ of the tree an−2n+1k.
We will now label each node down the tree an−2n+1k with a “root” rσ ⊆ ℓ of

size at most ℓ′ such that if an m-branching subtree of T contains σ, then it will
either use at least n+2 colours as desired or else use at least n+1 colours from rσ.
We let rσ = sσ if σ is a maximal node, but by shrinking the size of rσ by one each
time we go down the tree, its size will be n by the time we arrive at the bottom
because n+ (an − 2n+ 1) = ℓ′ and therefore the only alternative then is that any
m-branching subtree of T will use at least n+ 2 colours.
To ensure that the size of the roots can be reduced, let τ be a non-maximal node

of an−2n+1k and assume by induction that |rσ | = i+ 1 is fixed for each immediate
successor σ of τ and that any m-branching subtree containing σ uses at least n+ 2
colours or else uses at least n + 1 colours from rσ . Assume further that at most
m − 1 of the rσ ’s are equal and that their pairwise intersections is rτ if different,
with |rτ | = i. By a simple calculation, any m-branching subtree containing τ uses
at least n+2 colours or else uses at least n+ 1 colours from rτ . That this strategy
can be worked out is where the particular values of k, ℓ′, ℓ, m and n play a role.
An exact description of the rσ can be obtained as follows. We construct a 1-1
function fσ : {1, ..., ℓ

′} → {1, ..., ℓ} for each maximal node σ of an−2n+1k. To start
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with, fσ ↾ {1, ..., n} is the identity function. Now having obtained fσ ↾ {1, ..., n+ i},
for i ≤ an−2n, put t = {1, ..., ℓ}\f ′′

σ{1, ..., n+ i} and fix π : t → {1, ..., ℓ−n− i} the

unique order preserving bijection. Finally define fσ(n+ i+ 1) = π−1(⌊
σ(i)
m−1⌋+ 1).

This can be done since ℓ ≥ a(n+ 1)− n, k ≤ a(m − 1) and therefore ⌊
σ(i)
m−1⌋+ 1 ≤

ℓ − n − i for any i ≤ an − 2n. Now for τ a node of an−2n+1k of height i say, pick
any maximal node σ extending τ and label τ with the root f ′′

σ{1, ..., n+ i}. It can
now be verified that the above strategy can be implemented with these roots. �

3. Reaping numbers of Boolean algebras.

In [4], the ordering of the reaping numbers in Boolean algebras has been charac-
terized in terms of the property P(k, ℓ, m, n) as follows:

Theorem 2 ([4]). rk,ℓ(B) ≤ rm,n(B) for every Boolean algebra B if and only if

P(k, m, ℓ, n− 1) fails.

In particular, it follows from this theorem the existence for each n of a Boolean
algebra such that rn(B) < rn+1(B).
Further, it follows from Theorem 1 that for each Boolean algebra, each reaping

number rm,n(B) is equal to the standard r⌈ m
n−1

⌉(B); thus the ordering of the reaping

numbers is completely described.

Theorem 3. For each Boolean algebra B, rm,n(B) = r⌈ m
n−1

⌉(B).

Proof: Since both P(m, ⌈ m
n−1⌉, n, 1) and P(⌈ m

n−1⌉, m, 2, n− 1) fail by Theorem 1,

we get rm,n(B) ≤ r⌈ m
n−1

⌉(B) ≤ rm,n(B) for each Boolean algebra B by Theorem 2.

�

References

[1] Balcar B., Simon P., On minimal π-character of points in extremally disconnected spaces,
Topology Appl. 41 (1991), 133-145.

[2] , Reaping number and π-character of Boolean algebras, preprint, 1991.
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