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Bernoulli sequences and Borel measurability in (0, 1)

Petr Veselý

Abstract. The necessary and sufficient condition for a function f : (0, 1)→ [0, 1] to be Borel
measurable (given by Theorem stated below) provides a technique to prove (in Corollary 2)
the existence of a Borel measurable map H : {0, 1}N → {0, 1}N such that L(H(Xp)) =

L(X1/2) holds for each p ∈ (0, 1), where Xp = (Xp
1
, Xp
2
, . . . ) denotes Bernoulli sequence

of random variables with P [Xp
i = 1] = p.

Keywords: Borel measurable function, Bernoulli sequence of random variables, Strong law
of large numbers

Classification: 60A10, 28A20

1. The main result and notation.

Consider a sequence Xn, n ∈ N, of mutually independent random variables
assuming the values 1 and 0 with probabilities p and 1−p, where p ∈ (0, 1). Denote
the distribution of the random variable

Y =

∞
∑

n=1

2−nXn

by λp. Identifying Borel spaces (0, 1) and {0, 1}N by the irrational dyadic expansion
map we can also define these measures by

λp

(

{x ∈ {0, 1}N | x1 = a1, . . . , xn = an}
)

=

n
∏

i=1

pai(1− p)1−ai , n ∈ N, a ∈ {0, 1}n

or equivalently by

λp =

∞
⊗

1

(1 − p)ε0 + pε1 ,

where εx denotes the atomic measure supported by {x}.
Our main result is

I am very grateful to Professor J. Štěpán for his assistance. The Corollaries 1, 2 and 3 belong
to him (see [2])
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Theorem. For each function f : (0, 1)→ [0, 1] , the following assertions are equiv-
alent:

(a) f is a Borel measurable;

(b) there exists a Borel set B ⊆ (0, 1) such that f(p) = λp(B) for all p ∈ (0, 1).

Corollaries to this result related to Bernoulli sequences of random variables are
stated and proved in the part 3 of the present paper.
The following terminology and notation will be used in the sequel: Let x ∈

(0, 1). By the dyadic expansion of x we mean the sequence (x1, x2, . . . ) ∈ {0, 1}N

with infinitely many xi’s zeros such that x =
∑∞

i=1 xi2
−i. In this case we write

x = (x1, x2, . . . ). Put

I(n, a) = {x ∈ (0, 1) | x1 = a1, . . . , xn = an} for n ∈ N, a = (a1, . . . , an) ∈ {0, 1}n

and denote by K the algebra generated by the sets I(n, a). Note that the algebra K
consists exactly of finite (possibly empty) unions of the sets I(n, a) and generates
Borel σ-algebra B(0, 1). Putting

Λ(B) = { x ∈ (0, 1) | lim
n→∞

1

n

n
∑

i=1

xi ∈ B } , B ⊆ (0, 1) ,

it follows easily by Strong law of large numbers that

(1) Λ(B) ∈ B(0, 1) and λp(Λ(B)) = IB(p) for each B ∈ B(0, 1) and p ∈ (0, 1) .

Finally, let us agree that if T1, T2 are two decompositions of a set S and if for all
T1 ∈ T1, T2 ∈ T2 either T1 ∩ T2 = ∅ or T1 ⊆ T2, then we shall write T1 4 T2.

2. Proof of Theorem.

Lemma 1. Let p ∈ (0, 1) and K ∈ K. Then {λp(D) ; K ⊇ D ∈ K} is a dense set
in the interval [0, λp(K)].

The assertion follows easily by the inequality

λp(I(m, a)) ≤ max{ pm, (1− p)m} , m ∈ N, a ∈ {0, 1}m ,

using the fact that for almost all m ∈ N there exists a set Am ⊆ {0, 1}m such that
{ I(m, a) ; a ∈ Am } forms a decomposition of K.

Lemma 2. Consider K ∈ K, a Borel set V ⊆ [a, b] ⊂ (0, 1) and a continuous
function γ : [0, 1]→ [0, 1] such that γ(p) ≤ λp(K) for all p ∈ V . Then to each ε > 0
there is a finite Borel measurable decomposition {A1, . . . , At} of V and the sets

K ⊇ Fi ∈ K such that
0 ≤ γ(p)− λp(Fi) ≤ ε

holds for each p ∈ Ai and 1 ≤ i ≤ t.
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Proof: Since p 7→ λp(K) is a continuous function defined on (0, 1) we get that

γ(p) ≤ λp(K) holds for all p ∈ V . Fix a p ∈ V . Lemma 1 provides a setK ⊇ Dp ∈ K
such that

0 ≤ γ(p)− λp(Dp) ≤
1

2
ε .

Let Vp be an open neighbourhood of p such that

0 ≤ γ(q)− λq(Dp) ≤ ε for all q ∈ Vp .

Now, let Vp1 , . . . , Vpt be a covering of the compact set V . It is easy to see that
the sets

A1 = Vp1 ∩ V , A2 = Vp2 ∩ Ac
1 ∩ V , . . . , At = Vpt ∩ Ac

1 ∩ · · · ∩ Ac
t−1 ∩ V ,

F1 = Dp1 , . . . , Ft = Dpt

provide the desired construction. �

Lemma 3. Let [a, b] ⊂ (0, 1) and let f : [a, b] → [0, 1] be a Borel measurable
function. Then there exists a Borel set B ⊆ (0, 1) such that f(p) = λp(B) for all
p ∈ [a, b].

Proof: Consider a nondecreasing sequence of simple functions 0 ≤ fn ≤ 1 such
that fn → f uniformly on [a, b]. Denote by {Un,1, . . . , Un,r(n)} a Borel measurable

decomposition of [a, b] such that

fn(p) =

r(n)
∑

j=1

cn,j IUn,j
(p) , p ∈ [a, b] ,

where cn,j ∈ [0, 1]. By induction, we shall construct sequences

Wn = {Wn,1, . . . , Wn,α(n)} ⊂ B(0, 1) , Hn = {Hn,1, . . . , Hn,α(n) } ⊂ K ,

such that for all n ≥ 0:

(i) Wn is a Borel measurable decomposition of the interval [a, b];
(ii) Wn 4 Wn−1 4 · · · 4 W0;
(iii) if W0,i0 ∈ W0, W1,i1 ∈ W1, . . . , Wn,in ∈ Wn and W0,i0 ⊇ W1,i1 ⊇ · · · ⊇

Wn,in , then the sets H0,i0 , H1,i1 , . . . , Hn,in are pairwise disjoint;

(iv) the inequality 0 ≤ fn(p)− f̂n(p) ≤ n−1 holds for all p ∈ [a, b], where

f̂n(p) =

n
∑

k=0

α(n)
∑

i=1

λp(Hk,i) IWk,i
(p) .



344 P. Veselý

Put f0 ≡ 0, f̂0 ≡ 0, W0 = {[a, b]} and H0 = {∅}. Assume that W1, H1, . . . ,
Wm−1, Hm−1 have been already constructed such that (i), (ii), (iii), (iv) hold for
some m ∈ N and n = 0, 1, . . . , m − 1. Choose a finite Borel measurable decompo-
sition Vm = {Vm,1, . . . , Vm,s(m)} of [a, b] such that Vm 4 {Um,1, . . . , Um,r(m)} and

Vm 4 Wm−1. Fix a Vm,g ∈ Vm and let Um,j ∈ {Um,1, . . . , Um,r(m)} be the unique

set for which Vm,g ⊆ Um,j holds. By (ii), there exists an uniquely determined se-
quence of positive integers i0, i1, . . . , im−1 such that [a, b] =W0,i0 ⊇ W1,i1 ⊇ · · · ⊇
Wm−1,im−1

⊇ Vm,g. It follows easily from (iii) and (iv) that

0 ≤fm−1(p)− f̂m−1(p) ≤ fm(p)− f̂m−1(p) = cm,j −
m−1
∑

k=0

λp(Hk,ik)

=cm,j − λp(

m−1
⋃

k=0

Hk,ik) ≤ 1 , p ∈ Vm,g .

Since cm,j −
∑m−1

k=0 λp(Hk,ik) is a polynomial (because Hk,ik ∈ K), there exists
a continuous function γ : [0, 1]→ [0, 1] such that

γ(p) = fm(p)− f̂m−1(p) ≤ λp(Kg) , p ∈ Vm,g ,

where

Kg = (0, 1)−
m−1
⋃

k=0

Hk,ik .

Thus, for each 1 ≤ g ≤ s(m) there exists by Lemma 2 a finite Borel measurable
decomposition {Am,g

1 , . . . , A
m,g
t(g)

} of Vm,g and the sets F
m,g
1 , . . . , F

m,g
t(g)

∈ K such

that F
m,g
1 ⊆ Kg, . . . , F

m,g
t(g)

⊆ Kg and

(2) 0 ≤ fm(p)− f̂m−1(p)− λp(F
m,g
i ) ≤ m−1 , p ∈ A

m,g
i , 1 ≤ i ≤ t(g) .

Putting

Wm = {Am,g
i | g = 1, . . . , s(m); i = 1, . . . , t(g)} ,

Hm = {Fm,g
i | g = 1, . . . , s(m); i = 1, . . . , t(g)} ,

it is easy to verify (i), (ii), (iii), (iv) for W1, H1, . . . ,Wm, Hm using (2).
For each n ∈ N put

Cn =

n
⋃

k=1

α(k)
⋃

i=1

(

Hk,i ∩ Λ(Wk,i)
)

.

By (i), (ii), (iii) and by (1) we have λp(Cn) = f̂n(p) for all p ∈ [a, b] and, conse-
quently, λp(Cn)→ f(p) uniformly on [a, b] by (iv). Since Cn ⊆ Cn+1 for all n ∈ N,
we may put

B =
∞
⋃

n=1

Cn
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to get that f(p) = λp(B) for all p ∈ [a, b]. �

Now, to prove our Theorem it is sufficient to verify the implication (a)⇒(b) : Let
f : (0, 1)→ [0, 1] be a Borel measurable function. By Lemma 3, there exists a Borel
set Bn ⊆ (0, 1) such that f(p) = λp(Bn) for all p ∈ [ 1n , n−1

n ] and all n ≥ 3. Thus,
it is sufficient to put

B =
∞
⋃

n=3

(Bn ∩ Λ(Jn)) ,

where
J3 = [

1
3 ,
2
3 ] , Jn = [

1
n , 1

n−1 ) ∪ (
n−2
n−1 ,

n−1
n ] , n ≥ 4 .

As the contrary implication is standard, the proof is completed.

3. Corollaries.

In the sequel, F ◦ν denotes the image measure of a measure ν w.r.t. a measurable
map F , i.e. (F ◦ν)(A) = ν(F−1(A)) for all measurable sets A. Also, if necessary, we
identify for each p ∈ (0, 1) the probability space ((0, 1),B(0, 1), λp) with the product

({0, 1}N, B({0, 1}N), µp =
⊗∞
1 (1−p)ε0+pε1). The identification is obviously “good

enough” for all our purposes, as the measure µp is the image of λp w.r.t. the dyadic
expansion map x → (x1, x2, . . . ) which has the measurable inverse defined almost
surely w.r.t. µp.

Corollary 1. For each Borel measurable function f : (0, 1) → (0, 1) there exists
a Borel measurable function Hf : (0, 1) → (0, 1) such that Hf ◦ λp = λf(p) for all

p ∈ (0, 1).

Proof: By Theorem there exists a Borel set Bf ⊆ {0, 1}N such that f(p) = λp(Bf )
for all p ∈ (0, 1). Let {in,k}

∞
k=1 ⊆ N, n ∈ N, are increasing sequences such that in,k

are distinct integers for all (n, k) ∈ N
2. Define a mapping ρn : {0, 1}

N → {0, 1}N for
each n ∈ N by

ρn(x) = (xin,1 , xin,2 , . . . ) , x ∈ {0, 1}N ,

and put Bn
f = ρ−1n (Bf ). The indicator functions IB1f

, IB2f
, . . . are i.i.d. random

variables w.r.t. each probability measure λp such that λp[ IBn
f
= 1 ] = λp(B

n
f ) =

λp(Bf ) = f(p) holds. Thus, the function Hf defined by

Hf (x) = (IB1f
(x), IB2f

(x), . . . ) , x ∈ {0, 1}N ,

has the desired property. �

Corollary 2. For each α ∈ (0, 1) there exists a Borel measurable function

Hα : (0, 1)→ (0, 1)

such that Hα ◦ λp = λα holds for all p ∈ (0, 1).

Recall that a probability measure ν on ((0, 1),B(0, 1)) is called symmetric, if

ν(A) = ν
(

{x ∈ (0, 1) | (xπ(1), . . . , xπ(n), xn+1, xn+2, . . . ) ∈ A}
)
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holds for each A ∈ B(0, 1), for each n ∈ N and for each permutation π : {1, . . . , n} →
{1, . . . , n}. Equivalently, a measure ν on ((0, 1),B(0, 1)) is symmetric iff ν is the
distribution of a random variable

Y =

∞
∑

n=1

2−nXn ,

where {Xn}∞n=1 is a sequence of exchangeable 0–1 random variables. For example,
each measure λp, p ∈ (0, 1), is symmetric.

Corollary 3. For each Borel probability measure µ on R there exists a Borel

measurable function Hµ : (0, 1) → R such that Hµ ◦ ν = µ holds for all symmetric

probability measures ν defined on ((0, 1),B(0, 1)).

Proof: It is easy to see that it suffices to treat the case µ = λ1/2. A well-known

de Finetti’s result says that for each symmetric probability measure ν on ((0, 1),
B(0, 1)) there exists a probability measure Q on ((0, 1),B(0, 1)) such that

ν(A) =

1
∫

0

λp(A) Q(dp)

holds for all A ∈ B(0, 1) (see e.g. [1, p. 225]). Now, the assertion follows easily
applying Corollary 2 with α = 12 . �
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