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Existence results for differential equations in Banach spaces

John W. Lee, Donal O’Regan

Abstract. This paper presents existence results for initial and boundary value problems for
nonlinear differential equations in Banach spaces.
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Classification: 34B15, 34A10, 34G20, 34G10

1. Introduction and preliminaries.

In [8], [12] methods based on the topological transversality theorem of A. Granas
[3] were used to establish existence results for initial and boundary value problems
in Hilbert space. In two recent articles [6], [7] similar topological methods were ap-
plied to differential systems in ℜn in such a way that the existence of both classical
and Carathéodory solutions could be treated simultaneously and in a classical set-
ting. The authors of this article noticed that the general existence principles in ℜn

extend very readily to the case of Hilbert space-valued solutions. Recently Granas,
Guenther, Lee and O’Regan have noticed that both the classical and Carathéodory
case for Banach space-valued solutions could be treated by the methods in [6], [7];
the basic ideas are presented below. A forthcoming paper [10] on differential delay
equations will provide more details. In this note we use one of these existence prin-
ciples to improve upon the results in [8], [12] and to provide some new existence
theorems for certain specific classes of differential equations in Banach spaces.
Throughout B is a real Banach space with norm | · |. In case B = H is a Hilbert

space, we denote its inner product by 〈·, ·〉 and then |x|2 = 〈x, x〉 for x ∈ H .
Cm[a, b] = Cm([a, b], B) is the Banach space of functions u : [a, b] → B such that

u(m) is continuous with norm

|u|m = max{|u|0, |u
′|0, . . . , |u

(m)|0}

where |v|0 = max{|v(t)| : t ∈ [a, b]} for any v ∈ C0([a, b], B) = C[a, b].

Boundary conditions will be specified by continuous linear maps Ui : C
k([a, b], B)

→ B for i = 1, 2, . . . , k such that there is a scaler form Ũi : C
k([a, b],ℜ)→ ℜ with

ui(θ(t)v) = Ũi(θ(t))v for each k − 1 times differentiable real function θ(t) and each
v in B. Given γi in B a function u ∈ Cm[a, b] is said to satisfy the boundary
conditions B, denoted u ∈ B, if Ui(u) = γi for i = 1, 2, . . . , k. The corresponding
homogeneous boundary conditions with each γi = 0 are denoted by BO. Given
a class of functions F from [a, b] into B, FB is the subclass of those functions in F
which satisfy the boundary condition B. Most commonly used boundary conditions
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satisfy the requirements above. For example a multipoint boundary condition is
specified by

U(u) =

k−1∑

r=0

q∑

s=0

arsu
(r)(cs)

where ars are scalers and cs ∈ [a, b]. In this case Ũ(u) is just the boundary condition
of the stated form applied to scaler functions.

Let u : [a, b] → B be a measurable function. By
∫ b
a u(t) dt we understand the

Bochner integral of u (assuming it exists). See [4] or [17] for properties of the
Bochner integral mentioned below. A measurable function u : [a, b]→ B is Bochner
integrable iff |u| is Lebesgue integrable. Moreover, if u : [a, b]→ B is measurable and
|u(t)| ≤ g(t) a.e. where g(t) is integrable, then u(t) is integrable. Let u : [a, b]→ B

be integrable and set v(t) =
∫ t
a u(s) ds. The function v : [a, b] → B is absolutely

continuous (according to the usual interval definition), v is differentiable almost
everywhere, and v′(t) = u(t) almost everywhere on [a, b]. Finally, let u : [a, b]→ B

be integrable and T : B → B1 a bounded linear operator, where B1 is also a Banach
space. Then Tu : [a, b] → B1 is integrable and

∫
E Tu(t) dt = T

∫
E u(t) dt for each

measurable E ⊂ [a, b]. We need the following elementary consequence of these basic
properties of the Bochner integral.

Theorem 1.1. Let u : [a, b] → B be absolutely continuous and assume u′ exists

a.e. and is Bochner integrable. Then

u(t)− u(a) =

∫ t

a
u′(s) ds.

Proof: Let b∗ ∈ B∗ and set g(t) = b∗(u(t)). Clearly g : [a, b] → ℜ is absolutely

continuous and consequently g(t) − g(a) −
∫ t
a g

′(s) ds = 0. Since g′(s) = b∗(u′(s))

whenever u′(s) exists which is almost everywhere by assumption, we infer that∫ t
a g

′(s) ds =
∫ t
a b

∗(u′(s)) ds = b∗
∫ t
a u

′(s) ds because u′(s) is integrable. Thus,

b∗(u(t)− u(a)−

∫ t

a
u′(s) ds) = 0,

and the conclusion of the theorem follows because b∗ is arbitrary. �

As usual Lp[a, b] = Lp([a, b], B) for 1 ≤ p <∞ denotes the measurable functions
u : [a, b]→ B such that |u|p is Lebesgue integrable. Lp[a, b] is a Banach space with

‖u‖p = (
∫ b
a |u|p dt)

1

p . When p = 2, we abbreviate ‖u‖2 by ‖u‖. L∞[a, b] is defined
in the usual way and equipped with the essential supremum norm ‖ · ‖∞. In our
context [a, b] is a bounded interval and Hölder’s inequality and an earlier remark

imply that each Lp-function is Bochner integrable. We denote by W k,p[a, b] those

functions u : [a, b]→ B such that u(k−1) is absolutely continuous, u(k) exists almost

everywhere and u(k) belongs to Lp[a, b].
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We are concerned with solutions to initial and boundary value problems of the
form

(1.1) y(k)(t) = f(t, y(t), . . . , y(k−1)(t)), y ∈ B,

where y : [a, b] → B and the differential equation is to hold either everywhere or

almost everywhere, depending on the assumptions on f . Recall that f : [a, b]×Bk →
B is an Lp-Carathéodory function if

(a) u→ f(t, u) is continuous in u ∈ Bk for a.e. t;
(b) t→ f(t, u) is measurable for all u;
(c) for each r > 0 there is a function hr ∈ Lp([a, b],ℜ) such that |u| ≤ r implies

|f(t, u)| ≤ hr(t) a.e. on [a, b]. (Here the norm of u in B
k is the maximum

among the norms in B of its k components.)

When f is continuous a solution y to (1.1) will mean a function y ∈ CkB[a, b]
which satisfies the differential equation in (1.1) everywhere. When f is an Lp-

Carathéodory function a solution y to (1.1) will mean a function y ∈ W
k,p
B [a, b]

which satisfies the differential equation in (1.1) almost everywhere.
It is well known that, in contrast to systems in ℜn, even the initial value problem

may have no solution in the Banach space case when f in (1.1) is merely continuous.
Various additional compactness conditions are needed to assume existence in the
infinite dimensional setting. For our purposes the following added compactness
property will suffice. We say a function g : [a, b]×Bk → B satisfies (∗) if

(∗)

{
for each bounded set S ⊂ Ck−1([a, b], B) and each t ∈ [a, b] the set

{
∫ t
a g(s, u(s)), . . . , u

(k−1)(s) ds : u ∈ S} is relatively compact.

Note that (∗) holds if g : [a, b]× Bk → B is completely continuous. (See the proof
of Theorem 2.1)

Let Λ : CkBO
([a, b], B)→ C([a, b], B) be the linear operator defined by Λy = y(k).

Assume that f is continuous or Lp-Carathéodory. Now observe that (Theorem 1.1)

any solution to (1.1) of the sort we seek is also a solution in Ck−1[a, b] to the
integro-differential equation with boundary conditions

(1.2) y(k−1)(t)− y(k−1)(a) =

∫ t

a
f(t, y(s), . . . y(k−1)(s)) ds, y ∈ B.

Conversely, any solution y ∈ Ck−1[a, b] to (1.2) defines a solution to (1.1) of the
required sort. In this sense (1.1) and (1.2) are equivalent; however, (1.1) may have

“solutions” which are not in Ck[a, b] or W k,p[a, b]. Considerations based on the
equivalence of (1.1) and (1.2) just described lead to the following existence result
from [7]; see [10] for more details.

Theorem 1.2. Let f : [a, b]×Bk → B be Lp-Carathéodory (respectively, continu-

ous). Assume ε is not an eigenvalue of Λ : CkBO
→ C and that f(t, u1, . . . , uk−1)−

εu1 satisfies (∗). Consider the family of problems

(1.3)λ y(k) − εy = λ[f(t, y, . . . , y(k−1))− εy], y ∈ B
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for λ ∈ (0, 1). Then (1.1) has a solution inW k,p[a, b] (respectively, Ck[a, b]) provided

there is a constantM independent of λ in (0, 1) such that any solution y inW k,p[a, b]

(respectively, Ck[a, b]) to (1.3)λ satisfies |y|k−1 ≤M .

For the analysis in the remaining sections we will need a variant [5] of the stan-
dard change-of-variables theorem for the Lebesgue integral which is helpful in es-
tablishing a priori bounds.

Theorem 1.3. Let g : [a, b] → [A,B] and h : [A,B] → ℜ, where g is absolutely
continuous, h is measurable, and (h ◦ g)g′ is Lebesgue integrable on [a, b]. Then

h is integrable on the interval with endpoints g(a) and g(b) and
∫ g(b)
g(a)

h(u) du =
∫ b
a h(g(t))g

′(t) dt.

We conclude this section with a proof of Wirtinger’s inequality in a real Hilbert
space H .

Theorem 1.4. (i) Let u : [0, 1] → H have a continuous derivative and satisfy

u(0) = u(1) = 0. Then

π2
∫ 1

0
|u(t)|2 dt ≤

∫ 1

0
|u′(t)|2 dt

with equality only if u(t) = (sinπt)e for some e ∈ H .

(ii) Let u : [0, 1] → H have a continuous derivative and satisfy u(0) = 0 or
u(1) = 0. Then

π2
∫ 1

0
|u(t)|2 dt ≤ 4

∫ 1

0
|u′(t)|2 dt.

Proof: (i) The compact set S = u([0, 1]) ∪ u′([0, 1]) is separable in H as is the
smallest closed subspace H ′ of H which contains S. Let {en}

∞
n=1 be an orthonormal

basis for H ′. By Parseval’s relation, Wirtinger’s inequality when H = ℜ, and two
applications of the Monotone Convergence Theorem,

π2
∫ 1

0
|u(t)|2 dt = π2

∫ 1

0

∑

n

|〈u(t), en〉|
2 dt =

∑

n

π2
∫ 1

0
|〈u(t), en〉|

2 dt

≤
∑

n

∫ 1

0
|〈u′(t), en〉|

2 dt =

∫ 1

0

∑

n

|〈u′(t), en〉|
2 dt =

∫ 1

0
|u′(t)|2 dt

with equality iff there exist constants cn with 〈u(t), en〉 = cn sinπt for n = 1, 2, . . . ,
in which case u(t) =

∑
n
〈u(t), en〉en =

∑
n(cn sinπt)en, i.e. u(t) = (sinπt)e where

e =
∑
n cnen. �

2. Some first order problems.

Consider the initial value problem

(2.1) y′ = η(t)f(t, y), y(0) = r,

where η : [0, T ]→ [0,∞), f : [0, T ]×B → B, B is a Banach space with norm |·|, and
r ∈ B. We seek global solutions to (2.1); that is, solutions defined for all t in [0, T ].
Of course, such global results require appropriate growth restrictions on η and f .
The following theorem establishes existence under conditions of Wintner-type [16].



Existence results for differential equations in Banach spaces 243

Theorem 2.1. Let 1p +
1
q = 1, f : [0, T ]×B → B be an Lp-Carathéodory (respec-

tively, continuous) function which is completely continuous, η ∈ Lq([0, T ],ℜ) (re-
spectively, continuous) be nonnegative, and r ∈ B. Assume that ψ : [0,∞)→ (0,∞)
is a nondecreasing Borel function, α ∈ Lp([0, T ],ℜ), and that

|f(t, y)| ≤ α(t)ψ(|y|)

for almost all t in [0, T ] and y ∈ B. Then (2.1) has a solution y in W 1,p[0, T ]
(respectively, C1[0, T ]) provided

(2.2)

∫ T

0
α(t)η(t) dt <

∫ ∞

|r|

du

ψ(u)
.

Proof: The differential operator Λ : C1BO
[0, T ] → C[0, T ] defined by Λy = y′

and where u ∈ B means U(u) ≡ u(0) = r is clearly invertible. Also, by Hölder’s
inequality ηf is L1-Carathéodory. Furthermore, ηf satisfies (∗). Indeed, let S ⊂
C[0, T ] be bounded. By complete continuity of f there is a compact subset K of B
such that f(t, y(t)) ∈ K for all t ∈ [0, T ] and y ∈ S. Fix t and consider the set

(2.3)
{∫ t

0
η(s)f(s, y(s)) ds : y ∈ S

}
.

If η(s) = 0 a.e. on [0, t], then the set is compact; otherwise
∫ t
0 η(s) ds > 0 and

1
∫ t
0 η(s) ds

∫ t

0
f(s, y(s))η(s) ds ∈ co (range f(s, y(s))) ⊂ co (K)

which is compact by Mazur’s theorem. Thus the set in (2.3) is relatively compact
and ηf satisfies (∗). Consequently, Theorem 1.2 is applicable with ε = 0 and
existence of a solution to (2.1) in W 1,p[0, T ] (respectively, C1[0, T ]) will follow if
there is an a priori boundM independent of λ in (0, 1) on |y|0 for all y ∈W 1,p[0, T ]
(respectively, C1[0, T ]) which satisfy

(2.4)λ y′ = λη(t)f(t, y), y(0) = r.

Let y = y(t) ∈ W 1,p[0, T ] solve (2.4)λ for some λ ∈ (0, 1). Since ηf is an L1-
Carathéodory function, (2.4)λ shows that y

′ is integrable. Since y ∈ W 1,p[0, T ], it

is absolutely continuous and so Theorem 1.1 implies y(t)−y(0) =
∫ t
0 y

′(s) ds, which
yields

|y(t)| ≤ |r|+

∫ t

0
|y′(s)| ds ≡ ̺(t).

Clearly ̺(t) is absolutely continuous with ̺′(t) = |y′(t)| almost everywhere. Now
from (2.4)λ and the nondecreasing nature of ψ we obtain

̺′(t) = |y′(t)| ≤ η(t)α(t)ψ(|y(t)|) ≤ η(t)α(t)ψ(̺(t))
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almost everywhere on [0, T ]. Next, Theorem 1.3 yields

∫ ̺(t)

|r|

du

ψ(u)
=

∫ t

0

̺′(s)

ψ(̺(s))
ds ≤

∫ t

0
α(s)η(s) ds ≤

∫ T

0
α(s)η(s) ds

and then ∫ ̺(t)

|r|

du

ψ(u)
≤

∫ T

0
α(s)η(s) ds <

∫ ∞

|r|

du

ψ(u)

by (2.2). This chain of inequalities entails the existence of a constant M (indepen-
dent of λ) such that |y(t)| ≤ ̺(t) ≤M for t ∈ [0, T ]. Thus, |y|0 ≤M and existence
of a solution to (2.1) in the required class follows. �

Remarks. (i) The classical result of Wintner is Theorem 2.1 when f and ψ are

continuous, η = α ≡ 1, B = ℜn, and
∫ ∞ du

ψ(u)
= +∞. In this context, ψ need not

be increasing; see below.

(ii) Various extensions of Wintner’s theorem in ℜ are given in [2], [6], [9], [11].

(iii) Notice that if |f(t, y)| ≤ a(t)|y|+ b(t) with a, b ∈ Lp([0, T ],ℜ), then |f(t, y)| ≤

α(t)ψ(|y|) where α(t) = 1 + a(t) + b(t) and ψ(u) = u + 1. Since
∫ ∞
|r|

du
u+1 = +∞,

(2.2) holds and a solution exists on [0, T ] for any T > 0. The same conclusion
holds if |f(t, y)| ≤ a(t)h(|y|) + b(t) where h : [0,∞) → (0,∞) is increasing and∫ ∞
|r|

du
h(u)

= +∞.

The ideas in [12] permit a version of Theorem 2.1 in a real Hilbert space setting
where the assumption that ψ is increasing can be relaxed.

Theorem 2.2. In Theorem 2.1 assume B = H is a real Hilbert space and delete

the requirement that ψ be nondecreasing. Then the conclusion to Theorem 2.1
holds.

Proof: The proof is essentially the same as that in Theorem 3.2 of [12] except we
now use Theorems 1.2 and 1.3. The establishment of a priori bounds relies on

(2.5) |y(t)|′ ≤ |y′(t)|

whenever y′(t) exists and y(t) 6= 0. �

Remark. Theorem 2.2 also holds for Banach spaces B, such as the Lp-spaces for
1 < p < ∞, for which B∗ is uniformly convex. Indeed, if this is so, then the
norm | · | in B is Fréchet differentiable for any u 6= 0 with derivative Fu ∈ B∗ the
unique functional with norm 1 such that Fu(u) = |u|. Thus, if y′(t) exists and
y(t) 6= 0 it follows that |y(t)|′ = Fy(t)(y

′(t)). Since Fy(t) has norm 1, we find that

|y(t)|′ ≤ |y′(t)| which is (2.5). Given this, the proof mentioned above applies and
Theorem 2.2 holds with B a Banach space whose dual B∗ is uniformly convex.

Remark. Of course, there is an extensive literature on various existence results
for first order differential equations in a Banach space; see for example [1], [15]
and the references therein. The treatment here typically involves fewer technical
assumptions and the proofs themselves also lead quickly and naturally to reasonably
general existence results.
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Remark. Theorem 2.1 is sharp relative to the full class of problems covered. That
is, given α(t), η(t), ψ(u) and r as in Theorem 2.1 a solution to (2.1) will exist on
[0, T ] provided T satisfies (2.2). Conversely, given such data there is a differential
equation in the class covered by Theorem 2.1 for which (2.2) must hold if the solution
exists on [0, T ]. To see this, take f(t, y) = α(t)ψ(|y|)e where e = r

|r|
when r 6= 0

and e is any convenient unit vector when r = 0. Suppose

y′ = η(t)f(t, y) = η(t)α(t)ψ(|y|)e, y(0) = r

has a solution on [0, T ]. Integration from 0 to t shows that y has the form y(t) =
z(t)e for some scaler function z(t). Moreover,

z′ = η(t)α(t)ψ(|z|), z(0) = |r|.

It follows that z(t) ≥ |r| ≥ 0 and that

∫ T

0
η(t)α(t) dt =

∫ T

0

z′(t)

ψ(z(t))
dt =

∫ z(T )

|r|

du

ψ(u)
<

∫ ∞

|r|

du

ψ(u)
,

which is just (2.2).

3. Some second order problems.

The existence principle in Theorem 1.2 can be used in place of Theorems 2.1 and 2.2
in [8] to sharpen the results obtained there where problems of the form

(3.1) y′′ = f(t, y, y′), y ∈ B

were considered with f : [0, 1] ×H ×H → H continuous, H a real Hilbert space,
and B boundary conditions of Sturm-Liouville type:

(3.2) −αy(0) + βy′(0) = r, ay(1) + by′(1) = s

where r, s ∈ H , α, β, a, b ≥ 0, α+β > 0, a+b > 0, and in addition (α+a)(β+b) > 0,
r = 0 if α = 0, and s = 0 if a = 0. The additional conditions exclude pure Dirichlet
data at both ends, exclude pure Neumann data at both ends, and require that any
pure Neumann condition be homogeneous. The special nature of problems with
either pure Dirichlet or Neumann data is discussed further in [8]. Two principle
assumptions were made in [8] in order to invoke the general existence principles
given there:

(3.3) f(t, u, p) is completely continuous on [0, 1]×H ×H,

and

(3.4)

{
given a bounded subset U of C2([0, 1], H) there exist constants γ > 0
and A such that |f(t, u(t), u′(t))− f(s, u(s), u′(s))| ≤ A|t− s|γ for all u
in U and t, s ∈ [0, 1].

When Theorem 1.2 is used for existence purposes the assumption (3.4) is not needed.
Furthermore, the reasoning used in [8] to establish a priori bounds never uses (3.4).
Therefore, all the results in [8] hold with assumption (3.4) deleted from all hypothe-
ses. For example, we have the following result of Bernstein-Nagumo type.
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Theorem 3.1. Let f : [0, 1]×H ×H → H be continuous and completely contin-

uous. Assume

{
there is a constantM > 0 such that |u| > M and 〈u, p〉 = 0
implies 〈u, f(t, u, p)〉 > 0

and




there is a Borel function ψ : [0,∞) → (0,∞) such that |f(t, u, p)| ≤

ψ(|p|) for (t, |u|) ∈ [0, 1] × [0,M0], and
∫ ∞
c

dx
ψ(x)

> 1, where M0 =

max{M,
|r|
α ,

|s|
a } and c = min{β−1(|r| + αM0), b

−1(|s|+ aM0)}.

Then (3.1) has a solution y ∈ C2[0, 1].

Remark. If α, β, a or b equals 0 in the expressions for M0 and c above then the
corresponding term is omitted from that expression.

We now broaden the class of differential equations covered in [8] by considering
the following analogue of Theorem 3.1 for singular second order boundary value
problems of the form

(3.5) y′′ = η(t)f(t, y, y′), y ∈ B

with η : [0, 1] → [0,∞). Here the boundary conditions B denote (3.2) with α 6= 0
and a 6= 0.

Theorem 3.2. Let f : [0, 1]×H ×H → H be continuous and completely contin-

uous. Let B denote (3.2) with α 6= 0 and a 6= 0. In addition suppose η ∈ L1[0, 1]
and {

there is a constantM > 0 such that t ∈ (0, 1), |u| > M and

〈u, p〉 = 0 implies 〈u, η(t)f(t, u, p)〉 > 0

and






there is a Borel function ψ : [0,∞) → (0,∞) and a continuous func-
tion α : [0, 1] → [0,∞) such that |f(t, u, p)| ≤ α(t)ψ(|p|) for (t, |u|) ∈

[0, 1]× [0,M0], and
∫ ∞
c

dx
ψ(x)

>
∫ 1
0 α(t)η(t) dt. Here c and M0 are as in

Theorem 3.1.

Then (3.5) has a solution y ∈ W 2,1[0, 1] (in fact C1[0, 1] ∩ C2(0, 1)).

Proof: The differential operator Λ : C2BO
→ C, Λy = y′′ is easily seen to be

invertible and (∗) holds because f is completely continuous. Therefore existence of
a solution to (3.5) in W 2,1[0, 1] will follow if there is an a priori bound K of λ in
(0, 1) on |y|1 for all y ∈W 2,1[0, 1] which satisfy

(3.6)λ y′′ = λη(t)f(t, y, y′), y ∈ B.

Let y = y(t) ∈ W 2,1[0, 1] solve (3.6)λ for some λ ∈ (0, 1). Then essentially the
argument in Lemma 3.1 of [8] yields |y|0 ≤ M0 where M0 is as in Theorem 3.1.
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Also as in Lemma 4.1 of [8] there exists τ ∈ [0, 1] with |y′(τ)| ≤ c. In addition we
have |y′|′ ≤ |y′′| whenever y′′(t) exists and y′(t) 6= 0. We now obtain from (3.6)λ
that

(3.7) |y′(t)|′ ≤ η(t)α(t)ψ(|y′(t)|)

almost everywhere on [0, 1]. Now, suppose |y′(t)| > c for some t ∈ [0, 1]. Since
|y′(τ)| ≤ c and y′ is continuous, there is an interval d ≤ s ≤ t (or t ≤ s ≤ d) such
that |y′(t)| > 0 and |y′(d)| = c. To be definite, suppose the interval is d ≤ s ≤ t.
Then (3.7) and Theorem 1.3 yields

∫ |y′(t)|

c

du

ψ(u)
=

∫ t

d

|y′(s)|′

ψ(|y′(s)|)
ds ≤

∫ t

d
α(s)η(s) ds ≤

∫ 1

0
α(s)η(s) ds <

∫ ∞

c

du

ψ(u)

and so there exists a constant M1 (independent of λ) such that |y
′(t)| ≤ M1. We

conclude |y′|0 ≤ max{c,M1} and the existence of a solution to (3.5) in the required
class follows. �

The next results extend the ideas in [6], [13], [14] about systems in ℜn to a Hilbert
space setting. Suppose a0, b0, a1, b1 ≥ 0 with b0, b1 > 0. Let B denote either the
boundary conditions

(3.8) y(0) = 0, a1y(1) + b1y
′(1) = r1,

or

(3.9) a0y(0)− b0y
′(0) = r0, y(1) = 0,

where r0, r1 ∈ H .

Theorem 3.3. Let f : [0, 1]×H ×H → H be an Lp-Carathéodory (respectively,
continuous) function which is completely continuous and consider the problem

(3.10) y′′ = f(t, y, y′), y ∈ B

where B denotes either (3.8) or (3.9) and f has the decomposition f(t, u, p) =
g(t, u, p) + h(t, u, p) such that

(3.11)

{
〈u, g(t, u, p)〉 ≥ a|u|2 + b|u||p| for certain constants
a and b and |g(t, u, p)| ≤ A(t, u)|p|2 + B(t, u) where
A,B are bounded on bounded sets

and

(3.12) |h(t, u, p)| ≤M(|u|α + |p|β) for 0 ≤ α, β < 1 and some constant M.

Then the problem (3.10) has a solution y ∈ W 2,p[0, 1] (respectively, C2[0, 1]) in
each of the following cases:

(i) a ≥ 0 and |b| < π
2 ;

(ii) a < 0 and |b|+
2|a|
π < π

2 .
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Proof: Just as in Theorem 3.2 existence of a solution to (3.10) in W 2,p[0, 1]
(respectively, C2[0, 1]) will follow if there is an a priori bound independent of λ in
(0, 1) on |y|1 for all y ∈W 2,p[0, 1] (respectively, C2[0, 1]) which satisfy

(3.13)λ y′′ = λf(t, y, y′), y ∈ B.

Let y be such a solution. Then 〈y, y′〉 is absolutely continuous and 〈y, y′〉′ = 〈y, y′′〉+
〈y′, y′〉 a.e. is integrable from (3.13)λ because f is a Carathéodory function. So
Theorem 1.1 gives

(3.14)

∫ 1

0
〈y, y′′〉 dt = 〈y, y′〉

]1
0 −

∫ 1

0
|y′|2 dt,

and use of the boundary conditions yields

〈y, y′〉
]1
0
≤

〈y(i), ri〉

bi

where i = 0 or 1 according as the boundary conditions are (3.9) or (3.8). In either

case the boundary conditions also give |y(i)| = |
∫ 1
0 y

′(t)| dt ≤ ‖y′‖ where ‖ · ‖

denotes the L2 norm on [0, 1]. Consequently,

(3.15) 〈y, y′〉
]1
0 ≤ r‖y′‖, r =

max{|r0|, |r1|}

min{b0, b1}
≥ 0.

Use of (3.13)λ, (3.14), and (3.15) gives

‖y′‖2 =

∫ 1

0
|y′|2 dt = 〈y, y′〉

]1
0 −

∫ 1

0
〈y, y′′〉 dt

≤ r‖y′‖ − λ

∫ 1

0
〈y, g(t, y, y′)〉 dt− λ

∫ 1

0
〈y, h(t, y, y′)〉 dt.

From (3.11) and (3.12), −〈y, g(t, y, y′)〉 ≤ −a|y|2 − b|y||y′| ≤ −a|y|2 + |b||y||y′| and

|〈y, h(t, y, y′)〉| ≤ |y||h(y, y, y′)| ≤
ε

2
|y|2 +

1

2ε
|h(t, y, y′)|2

≤
ε

2
|y|2 +

M2

ε
(|y|2α + |y′|2β)

where ε > 0 will be fixed shortly. Therefore

(3.16) ‖y′‖2 ≤ r‖y′‖ − λa‖y‖2 + |b|‖y‖‖y′‖+
ε

2
‖y‖2 +

M2

ε
(‖y‖2α + ‖y′‖2β)

where Hölder’s inequality was used to obtain
∫ 1
0 |y||y′| dt ≤ ‖y‖‖y′‖ and

∫ 1
0 |y|2γ dt ≤

‖y‖2γ valid for any γ in [0, 1]. Since y(t) vanishes either at t = 0 or 1 we may apply
Theorem 1.4 (ii) and this together with (3.16) yields

(3.17)
(
1−
2|b|

π
−
2ε

π2

)
‖y′‖2 ≤ −λa‖y‖2 + r‖y′‖+

M2

ε

( 22α
π2α

‖y′‖2α + ‖y′‖2β
)
.
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Now, assume a ≥ 0 and |b| < π
2 as in (i) of the theorem. Then −λa‖y‖2 can be

dropped from the right member of (3.17) and ε > 0 can be fixed close enough to
zero so that the coefficient of ‖y′‖2 in (3.17) is positive. Since 2α, 2β < 2 these
observations and (3.17) yield an a priori bound

(3.18)
π

2
‖y‖ ≤ ‖y′‖ ≤M1

for some constantM1 independent of λ in (0, 1). Next, assume a < 0 and |b|+
2|a|
π <

π
2 as in (ii) of the theorem. Since a < 0, we have −aλ < −a and Theorem 1.4 (ii)

gives −λa‖y‖2 ≤ −a‖y‖2 ≤ −a( 4
π2
)‖y′‖2. Then (3.17) leads to

(3.19)
(
1−
2|b|

π
+
4a

π2
−
2ε

π2

)
‖y′‖2 ≤ r‖y′‖+

M2

ε

( 22α
π2α

‖y′‖2α + ‖y′‖2β
)
.

Under the conditions in (ii) we can fix ε > 0 so that the coefficient of ‖y′‖2 in (3.19)
is positive and as above this leads again to an a priori bound (3.18) for ‖y‖ and
‖y′‖.
From (3.18) and the fact that y(t) vanishes at i = 0 or 1 we obtain |y(t)| =

|
∫ t
i y

′(s) ds| ≤ ‖y′‖ ≤M1, and so

(3.20) |y|0 ≤M1.

Now the assumption (3.11) and (3.12) reveal that there are constants E,F such
that |f(t, y, p)| ≤ E|p|2 + F provided (t, u) ∈ [0, 1] × [−M1,M1]. Then (3.13)λ,
(3.20) and (3.18) yield

(3.21)

∫ 1

0
|y′′| dt ≤ E

∫ 1

0
|y′|2 dt+ F ≤ EM21 + F =M2.

Fix z in H with norm 1 and set φ(t) = 〈y(t), z〉. Clearly |φ(t)| ≤ |y(t)| ≤ M1
and hence there exists t0 (dependent on y and z) in [0, 1] such that |φ

′(t0)| =
|φ(1)− φ(0)| ≤ 2M1. Then

|φ′(t)| ≤ |φ′(t0)|+
∣∣
∫ t

t0

|φ′′(s)| ds
∣∣

≤ 2M1 +

∫ 1

0
|〈y′′(s), z〉| ds ≤ 2M1 +M2 =M3.

That is |〈y′(t), z〉| ≤ M3 for all z ∈ H of norm 1. If y′(t) 6= 0 set z =
y′(t)
|y′(t)|

to

obtain |y′(t)| ≤M3, which also holds if y
′(t) = 0. Thus, |y′|0 ≤M3 and with (3.20)

this implies the required a priori bound in the C1[0, 1] norm. �

The reasoning above, with minor simplifications, also works when the bound-
ary conditions are homogeneous Dirichlet conditions y(0) = y(1) = 0. In this
case, the boundary term in (3.14) vanishes and we arrive at (3.16) with r = 0.
The reasoning following (3.16) only changes in the way that Wirtinger’s inequality

(Theorem 1.4 (i)) takes the stronger form ‖y‖ ≤ 1
π ‖y

′‖. The argument now proves:
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Theorem 3.4. Let f be as in Theorem 3.3 and let B in (3.10) be the homogeneous
Dirichlet conditions y(0) = y(1) = 0. Then (3.10) has a solution y ∈ W 2,p[0, 1]
(respectively, C2[0, 1]) in each of the following cases:

(i) a ≥ 0 and |b| < π;

(ii) a < 0 and |b|+
|a|
π < π.

Remarks. (i) Theorem 3.4 with H = ℜn and a = b = 0 is the result established
in [6] for systems.

(ii) Further modifications permit corresponding results involving inhomogeneous
Dirichlet data (and inhomogeneous Sturm-Liouville data). See [14] for details when
H = ℜn. Such results in the context of differential delay equations will be forth-
coming [10].

(iii) The ideas of this paper together with those in [13], [14] provide existence results
for higher order singular and nonsingular problems in a real Hilbert space. Since
the extensions are immediate we will omit the details.

Finally we discuss briefly a singular second order boundary value problem in
a Banach space. Specifically consider

(3.22) y′′ = η(t)f(t, y, y′), y ∈ B

with f : [0, 1] × B × B → B, η : [0, 1] → [0,∞), B is a Banach space. Here the
boundary conditions B denote either

(3.23) y′(0) = r, ay(1) + by′(1) = s,

or

(3.24) −αy(0) + βy′(0) = s, y′(1) = r,

where r, s ∈ B, β, b ≥ 0, and a, α > 0.

Theorem 3.5. Let 1p +
1
q = 1, f : [0, 1] × B × B → B be an Lp-Carathéodory

(respectively, continuous) function which is completely continuous, η ∈ Lq([0, 1],ℜ)
(respectively, continuous) be nonnegative. Assume that ψ : [0,∞) → (0,∞) is
a nondecreasing Borel function, α ∈ Lp([0, 1],ℜ), and that

|f(t, y, p)| ≤ α(t)ψ(|p|)

for almost all t ∈ [0, 1], y ∈ B and p ∈ B. Then (3.22) has a solution y in W 2,p[0, 1]
(respectively, C2[0, 1]) provided

∫ 1

0
α(t)η(t) dt <

∫ ∞

|r|

du

ψ(u)
.

Proof: Essentially the same argument as in Theorem 2.1 yields the result. The

only major difference is that ̺(t) = |r|+
∫ t
0 |y

′′(s)| ds if (3.23) holds whereas ̺(t) =

|r| +
∫ 1
t |y′′(s)| ds if (3.24) is satisfied. �
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differential equations, Proc. Inter. Conf. on Theory and Appl. of Diff. Eq., Ohio Univ. Press,
Athens, Ohio, 1988, 353–364.

[8] Lee J.W., O’Regan D., Nonlinear boundary value problems in Hilbert spaces, J. Math. Anal.
Appl. 137 (1989), 59–69.

[9] , Topological transversality: Applications to initial value problems, Ann. Polonici
Math. 48 (1988), 31–36.

[10] , Existence of solutions for nonlinear differential delay equations in Banach and
Hilbert spaces, Nonlinear Analysis, to appear.

[11] O’Farrell A., O’Regan D., Existence results for initial and boundary value problems, Proc.
Amer. Math. Society 110 (1990), 661–673.

[12] O’Regan D., A note on the application of topological transversality to nonlinear differential
equations in Hilbert spaces, Rocky Mountain J. Math. 18 (1988), 801–811.

[13] , Second and higher order systems of boundary value problems, J. Math. Anal. Appl.
15 (1991), 120–149.

[14] , Boundary value problems for second and higher order differential equations, Proc.
Amer. Math. Soc. 113 (1991), 761–776.

[15] Martin R.H., Nonlinear Operators and Differential Equations in Banach Spaces, Wiley, New

York, 1976.
[16] Wintner A., The nonlocal existence problem for ordinary differential equations, Amer. J.

Math. 67 (1945), 277–284.
[17] Yoshida K., Functional Analysis, Springer Verlag, Berlin, 1965.

Department of Mathematics, Oregon State University, Corvallis, Oregon 97331,

USA

Department of Mathematics, University College, Galway, Ireland

(Received July 17, 1992)


		webmaster@dml.cz
	2012-04-30T14:05:24+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




