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Special finite-difference approximations of flow

equations in terms of stream function, vorticity

and velocity components for viscous incompressible

liquid in curvilinear orthogonal coordinates

H. Kalis

Abstract. The Navier-Stokes equations written in general orthogonal curvilinear coordi-
nates are reformulated with the use of the stream function, vorticity and velocity compo-
nents. The resulting system id discretized on general irregular meshes and special monotone
finite-difference schemes are derived.

Keywords: finite-difference hydrodynamics

Classification: 65M06, 76E99

There are effective universal numerical methods (finite-difference and finite-ele-
ment methods) for the solution of boundary value problems of hydrodynamics based
on nonlinear Navier-Stokes equations for small Reynold numbers. However, the
presence of large parameters at first order derivatives or small parameters at sec-
ond order derivatives in the system of differential equations cause additional dif-
ficulties for the application of general methods which become uneffective (small
speed of convergence, low precision). Thus a topical task is to work out special
methods of solution — the so-called regular-convergence computational methods
for the regarded problems [1]–[3]. Such methods can be applied to the system of
flow equations for viscous incompressible fluid in curvilinear orthogonal coordinates.
The subject of examination are the finite-difference approximations of flow equa-

tions describing two-dimensional incompressible flow in curvilinear orthogonal co-
ordinates in the case when it is possible to introduce the stream function of the
liquid. This gives the possibility to develop special monotone difference schemes.
The flow of the liquid is governed by the Navier-Stokes equations which can be

written in the Crocco-Lamb form [5]:

(1)







∂
→
v /∂t−

→
v ×

→
ω = − gradΠ− ν rot

→
ω +

→

F

div
→
v = 0,

where
→
v ,

→
ω ,

→

F , denote the vectors of velocity, vorticity and external force (
→
ω =

rot
→
v ), Π = ̺−1p + (v21 + v22 + v23)/2 is the full pressure, ̺, p, ν are the density,

pressure and kinematic viscosity. Further, by v1, v2, v3 we denote the components of
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the vector
→
v in curvilinear orthogonal coordinates q1, q2, q3; similarly, ω1, ω2, ω3 and

F1, F2, F3 are the corresponding components of the vectors
→
ω and

→

F , respectively.
By t we denote time.
Operators grad, div, rot have the following representation in the coordinates

q1, q2, q3 [6]:

(2)

gradΠ =

3
∑

k=1

H−1
k ∂Π/∂qk ·

→
ι k,

div
→
v = (H1H2H3)

−1
[ ∂

∂q1
(H2H3v1) +

∂

∂q2
(H3H1v2) +

∂

∂q3
(H1H2v3)

]

,

rot
→
v = (H1H2H3)

−1





H1
→
ι 1 H2

→
ι 2 H3

→
ι 3

∂/∂q1 ∂/∂q2 ∂/∂q3
H1v1 H2v2 H3v3



 ,

where
→
ι k are unit vectors in the directions qk, k = 1, 2, 3, and H1, H2, H3 are

Lame’s coefficients. The boundary value problem for the system (1) in a bounded

domain includes non-slip conditions on solid walls (
→
v = 0) and vanishing normal

components of the viscous stress tensor τ at free surfaces.
The components of the tensor τ have the following form [6]:

(3) τmk = η[H
−1
k ∂vm/∂qk +H

−1
m ∂vk/∂qm −H−1

m H−1
k (vm∂Hm/∂qk+

+ vk∂Hk/∂qm) + 2δmk

3
∑

l=1

vlH
−1
l ∂ lnHm/∂ql], m, k = 1, 2, 3,

where δmk is the Kronecker symbol and η is the dynamic viscosity (η̺
−1 = ν).

In order to transform system (1) into curvilinear orthogonal coordinates, we use
the following relations:

(gradΠ)m = H
−1
m ∂Π/∂qm,

(rot
→
v )m = H

−1
m+1H

−1
m+2(∂(Hm+2vm+2)/∂qm+1 − ∂(Hm+1vm+1)/∂qm+2),

(
→
v ×

→
ω )m = vm+1ωm+2 − vm+2ωm+1,

vm+3 = vm, ωm+3 = ωm, Hm+3 = Hm, 1 ≤ m ≤ 3. Thus, system (1) becomes

(4)











∂vm∂t− vm+1ωm+2 + vm+2ωm+1 = −H−1
m ∂Π/∂qm−

−νH−1
m+1H

−1
m+2[∂(Hm+2ωm+2)/∂qm+1 − ∂(Hm+1ωm+1)/∂qm+2] + Fm,

∂
∂q1
(H2H3v1) +

∂
∂q2
(H3H1v2) +

∂
∂q3
(H1H2v3) = 0,

where

ωm = H
−1
m+1H

−1
m+2(∂(Hm+2vm+2)/∂qm+1 − ∂(Hm+1vm+1)/∂qm+2).
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If we apply the operator rot to system (1), then we eliminate the pressure Π and
rewrite the flow equations in the form

(5) ∂
→
ω/∂t− rot(

→
v ×

→
ω ) = −ν rot rot

→
ω + rot

→

F ,

or in components,

(6)

∂ωm/∂t−H−1
m+1H

−1
m+2[

∂

∂qm+1
(Hm+2(vmωm+1 − vm+1ωm))−

−
∂

∂qm+2
(Hm+1(vm+2ωm − vmωm+2))] = fm − νH−1

m+1H
−1
m+2·

·
[ ∂

∂qm+1

( Hm+2

HmHm+1

( ∂

∂qm
(Hm+1ωm+1)−

∂

∂qm+1
(Hmωm)

))

−

−
∂

∂qm+2

( Hm+1

HmHm+2

( ∂

∂qm+2
(Hmωm)−

∂

∂qm
(Hm+2ωm+2)

))]

,

where
→

f = rot
→

F .
In what follows, we consider the class of axially symmetric flows. This means we

assume the existence of an index k ∈ {1, 2, 3} such that the derivatives with respect
to qk, which appear in system (4), (6), vanish. Then, taking into account that

ωk+1 = H
−1
k+2H

−1
k ∂(Hkvk)/∂qk+2 , ωk+2 = −H−1

k+1H
−1
k ∂(Hkvk)/∂qk+1 ,

system (4) reduces to the equation

(7)

∂vk/∂t+ vk+1H
−1
k H−1

k+1∂(Hkvk)/∂qk+1 + vk+2H
−1
k H−1

k+2∂(Hkvk)/∂qk+2 =

=
ν

Hk+1Hk+2

[ ∂

∂qk+1

( Hk+2

HkHk+1

∂

∂qk+1
(Hkvk)

)

+

+
∂

∂qk+2

( Hk+1

HkHk+2

∂

∂qk+2
(Hkvk)

)]

+ Fk .

The continuity equation has now the form

(8)
∂

∂qk+1
(Hk+2Hkvk+1) +

∂

∂qk+2
(HkHk+1vk+2) = 0.

Hence, the stream function ψ can be defined by

(9) vk+1 =
1

HkHk+1

∂ψ

∂qk+2
, vk+2 = −

1

HkHk+1

∂ψ

∂qk+1
.

If such a function exists, then (8) is satisfied automatically.
From the definition of the vorticity function ωk we obtain the Poisson equation

for the function ψ:

(10)
∂

∂qk+1

( Hk+2

HkHk+1

∂ψ

∂qk+1

)

+
∂

∂qk+2

( Hk+1

HkHk+2

∂ψ

∂qk+2

)

= −Hk+1Hk+2ωk .
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Equations (6) for the vorticity function ωk become

(11)

∂ωk/∂t− (Hk+1Hk+2)
−1
{ ∂

∂qk+1

[ vk
Hk

∂

∂qk+2
(Hkvk)−Hk+2vk+1ωk

]

−

−
∂

∂qk+2

[

Hk+1vk+2ωk +
vk
Hk

∂

∂qk+1
(Hkvk)

]}

=

= fk +
ν

Hk+1Hk+2

[ ∂

∂qk+1

( Hk+2

HkHk+1

∂

∂qk+1
(Hkωk)

)

+

+
∂

∂qk+2

( Hk+1

HkHk+2

∂

∂qk+2
(Hkωk)

)]

.

We see that equations (7) and (11) contain source terms of the form aωk, bvk where
the functions a and b can change their signs. This causes difficulties in the derivation
of monotone difference schemes, since the maximum principle ([4]) is not valid for
such equations.
Using the transformation

(12) uk = ωkH
−1
k , wk = Hkvk

and taking into account the relations (8) and

(13) Mk ≡
∂

∂qk+1

(Hk+2

Hk+1

∂Hk

∂qk+1

)

+
∂

∂qk+2

(Hk+1

Hk+2

∂Hk

∂qk+2

)

= 0,

we transform (7) and (11) to the equations

(14)

Hk+1Hk+2
∂wk

∂t
=

= νHk

[ ∂

∂qk+1

( Hk+2

HkHk+1

∂wk

∂qk+1

)

+
∂

∂qk+2

( Hk+1

HkHk+2

∂wk

∂qk+2

)]

−

−Hk+2vk+1∂wk/∂qk+1 −Hk+1vk+2∂wk/∂qk+2 +Hk+1Hk+2HkFk

and

(15)

Hk+1Hk+2
∂uk

∂t
=

= νH−3
k

[ ∂

∂qk+1

(

H3k
Hk+2

Hk+1

∂uk

∂qk+1

)

+
∂

∂qk+2

(

H3k
Hk+1

Hk+2

∂uk

∂qk+2

)]

−

−Hk+2vk+1∂uk/∂qk+1 −Hk+1vk+2∂uk/∂qk+2 +Hk+1Hk+2H
−1
k fk−

−H−4
k

(

∂Hk/∂qk+1 · ∂w
2
k/∂qk+2 − ∂Hk/∂qk+2 · ∂w

2
k/∂qk+1

)

.

We used the fact that (13) implies the identity

H−1
k

[ ∂

∂qk+1

( Hk+2

HkHk+1

∂(H2kuk)

∂qk+1

)

+
∂

∂qk+2

( Hk+1

HkHk+2

∂(H2kuk)

∂qk+2

)]

=

= H−3
k

[ ∂

∂qk+1

(

H3k
Hk+2

Hk+1

∂uk

∂qk+1

)

+
∂

∂qk+2

(

H3k
Hk+1

Hk+2

∂uk

∂qk+2

)]

.
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Let us note that in any orthogonal coordinate system ([7]) there exists always at
least one direction qk for whichMk = 0 (k = 3) and the equation for the normalized
vorticity function uk can be represented in form (15). The following special cases
can be considered: (1) Mk = 0, if Hk = const, (2) M3 = 0, if H1 = H2 and
∂2H3/∂q

2
1 + ∂2H3/∂q

2
2 = 0, (3) M1 6= 0, M2 6= 0, if H1, H2 depend only on

q1, q2. For example, for rectangular and cylindrical coordinate systemsM1 =M2 =
M3 = 0, and for spherical coordinates M1 =M3 = 0, M2 6= 0.
Equations (14), (15) do not contain source terms and are, therefore, suitable for

obtaining difference schemes. We begin with the analysis of finite-difference schemes
for the following system of ordinary differential equations:

(16)

{

(b1u
′)′ + a1u

′ + cw′ = f1

(b2w
′)′ + a2w

′ = f2,

where the functions a1, b1, a2, b2, c, f1, f2 depend on x,

b1 > 0, b2 > 0, u
′ ≡

du

dx
, u′′ ≡

d2u

dx2
, . . . .

System (16) can be rewritten in the matrix form

(17) (B
→
u ′)′ +A

→
u ′ =

→

f ,

where

B =

(

b1 0
0 b2

)

, A =

(

a1 c
0 a2

)

are 2× 2 matrices,
→
u = (u,w) and

→

f = (f1, f2). Let us consider an irregular mesh
formed by mesh points xi and introduce the matrix function

w(x) = exp(

∫ x

xi

α(t) dt), x ∈ (xi−1, xi+1),

where
α = AB−1.

Then equation (17) can be expressed in the selfadjoint form

w−1(wB
→
u ′)′ =

→

f or (wB
→
u ′)′ = w

→

f in (xi−1, xi+1).

Integrating over (xi−1/2, xi+1/2) and using the rectangle formula, we obtain the

vector equation of balance ([4])

(18)
→

J−i+1/2 −
→

J−i−1/2 =

∫ xi+1/2

xi−1/2

w
→

f dx ≈ h−i

→

f i,
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where
→

J−(x) = wB
→
u ′,

→

J−i±1/2 =
→

J−(xi±1/2), xi±1/2 = (xi + xi±1/2)/2, h
−

i = (hi +

hi+1)/2, hi+1 = xi+1 − xi, hi = xi − xi−1. Since
→
u ′ = B−1w−1

→

J−, we have

→
u i+1 −

→
u i =

∫ xi+1

xi

B−1w−1
→

J− dx ≈ B−1
i+1/2

∫ xi+1

xi

w−1 dx ·
→

J−i+1/2 =

= −B−1
i+1/2

α−1
i+1/2

(exp(−αi+1/2hi+1)− E) ·
→

J−i+1/2,

→
u i −

→
u i−1 =

∫ xi

xi−1

B−1w−1
→

J− dx ≈ B−1
i−1/2

∫ xi

xi−1

w−1 dx ·
→

J−i−1/2 =

= −B−1
i−1/2

α−1
i−1/2

(E − exp(αi−1/2hi)) ·
→

J−i−1/2

and from (18) we get the vector finite-difference equations

(19) Λ
→
u i ≡ B̃i(

→
u i+1 −

→
u i)− Ãi(

→
u i −

→
u i−1) =

→

f i,

where

B̃i = h−
−1
i h−1i+1s(−αi+1/2hi+1)Bi+1/2,

Ãi = h−
−1
i h−1i s(αi−1/2hi)Bi−1/2,

s(z) = z(exp(z)− E)−1 = (exp(z)− E)−1z.

Here E is the identity matrix. αi±1/2, Bi±1/2 are the average values of the entries

of the matrices α,B in intervals (xi−1, xi), (xi, xi+1) and ui = u(xi).
Since the matrix function s(z) associated with the matrix z = αh has nonnegative

eigenvalues, we have B̃i > 0, Ãi > 0 and the corresponding difference scheme is
monotone. Calculating the matrix function s(z) on the spectrum of the matrix z
([10]), we get

B̃i =
1

h−ihi+1

(

s(−λ+1 )b
+
1 c+

s(−λ+
2
)−s(−λ+

1
)

λ+
2
−λ+
1

hi+1

0 s(−λ+2 )b
+
2

)

,

Ãi =
1

h−ihi

(

s(λ−1 )b
−

1 c−
s(λ−

2
)−s(λ−

1
)

λ−

2
−λ−

1

hi

0 s(λ−2 )b
−

2 ,

)

,

where

λ+k = a
+
k hi+1/b

+
k , λ

−

k = a
−

k hi/b
−

k , b
±

k = (bk)i±1/2,

a±k = (ak)i±1/2, k = 1, 2; c
± = ci±1/2, s(λ) = λ/(exp(λ)− 1).

If we consider
→

f = 0 in (16), then the corresponding system (19) can also be
obtained directly from (16) integrating this over segments (xi−1, xi), (xi, xi+1),
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assuming that the coefficients b1, a1, b2, a2, c have constant values b
−

j , a
−

j , c
− and

b+j , a
+
j , c
+ (j = 1, 2) on the intervals (xi−1, xi) and (xi, xi+1), respectively, and

using the following boundary conditions

u(xi±1) = ui±1, w(xi±1) = wi±1, ui = u(x
−

i ) = u(x
+
i ),

w(x−i ) = w(x
+
i ) = wi, b

+
1 u

′(x+i ) = b
−

1 u
′(x−i ),

b+2 w
′(x+i ) = b

−

2 w
′(x−i ).

In the case of constant coefficients and regular meshes we have

(20)

Λ
→
u i ≡ h−2[s(−z)B(

→
u i+1 −

→
u i ± (

→
u i+1 +

→
u i−1)/2)−

−s(z)B(
→
u i −

→
u i−1 ± (

→
u i+1 +

→
u i−1)/2) =

= γ(z)B
→
uxx̄i +A

→
u ẋi

,

where

z = AB−1h = s(−z)− s(z), γ(z) = (s(z) + s(−z))/2 = (z/2)cth(z/2).

Here γ is the so-called perturbation of the coefficient matrix and uẋ, uxx̄ are the
central differences of the first and the second order ([4]).
By computing γ(z) on the spectrum of the matrix z, we get ([10])

γ(z) =

(

γ1 cb−12 h △ γ
0 γ2

)

,

where γ1 = γ(λ1), γ2 = γ(λ2), △ γ = (γ2 − γ1)/(λ2 − λ1) and λ1 = a1h/b1,
λ2 = a2h/b2 are the eigenvalues of the matrix z.
Thus, the difference equations for the system of equations (16) on regular mesh

have the form ([9])

(21)

{

b1γ1uxx̄ + a1uẋ + cwẋ + ch △ γwxx̄ = f1

b2γ2wxx̄ + a2wẋ = f2.

If λ1 → λ2, then △ γ → γ′(λ). The advantage of the difference equations (21) with
the perturbation coefficient △ γ for large values of parameter c is shown in [9].
For the approximation of equations (14), (15) irregular mesh with points (qi, q̃j)

is used where q ≡ qk+1, q̃ ≡ qk+2. Let H ≡ Hk+1, H̃ ≡ Hk+2, G ≡ Hk, v ≡ vk+1,
ṽ ≡ vk+2, u ≡ uk, w ≡ wk, f ≡ fk, F ≡ Fk. Then, using the results derived for
the model equation (19), we obtain the following difference equations:

(22)

B
(1)
i,j (ui+1,j − ui,j)−A

(1)
i,j (ui,j − ui−1,j) + B̃

(1)
i,j (ui,j+1 − ui,j)−

−Ã
(1)
i,j (ui,j − ui,j−1) +Di,j(wi+1,j − wi,j)− Ei,j(wi,j − wi−1,j)+

+D̃i,j(wi,j+1 − wi,j)− Ẽi,j(wi,j − wi,j−1) = F
(1)
i,j h

−
ig−j ,
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(23)
B
(2)
i,j (wi+1,j − wi,j)−A

(2)
i,j (wi,j − wi−1,j) + B̃

(2)
i,j (wi,j+1 − wi,j)−

−Ã
(2)
i,j (wi,j − wi,j−1) = F

(2)
i,j h

−
ig−j ,

where

B
(1)
i,j = νg−j · h

−1
i+1(Gi+1/2,j/Gi,j)

κ(H̃/H)i+1/2,js(αi+1/2,j · hi+1),

A
(1)
i,j = νg−j · h

−1
i (Gi−1/2,j/Gi,j)

κ(H̃/H)i−1/2,js(−αi−1/2,j · hi),

B̃
(1)
i,j = νh

−
ig

−1
j+1(Gi,j+1/2/Gi,j)

κ(H/H̃)i,j+1/2s(α̃i,j+1/2 · gj+1),

Ã
(1)
i,j = νh

−
ig

−1
j (Gi,j−1/2/Gi,j)

κ(H/H̃)i,j−1/2s(−α̃i,j−1/2 · gj),

Di,j = −2g−jwi+1/2,jG
−3
i,j (∂ lnG/∂q̃)i+1/2,js

′(αi+1/2,j · hi+1),

Ei,j = 2g−jwi−1/2,jG
−3
i,j (∂ lnG/∂q̃)i−1/2,js

′(−αi−1/2,j · hi),

D̃i,j = 2h−iwi,j+1/2G
−3
i,j (∂ lnG/∂q)i,j+1/2s

′(α̃i,j+1/2 · gj+1),

Ẽi,j = −2h−iwi,j−1/2G
−3
i,j (∂ lnG/∂q)i,j−1/2s

′(−α̃i,j−1/2 · gj),

F (1) ≡ HH̃(∂u/∂t− fG−1),

F (2) ≡ H̃H(∂w/∂t− FG),

ui,j = u(qi, q̃j)

wi,j = w(qi, q̃j),

s′(λ) =
ds

dλ
, −s′(−λ)− s′(λ) = 1, −s′(−λ) + s′(λ) = 2γ′(λ),

γ(λ) = (λ/2)cth(λ/2), α = vH/ν, α̃ = ṽH̃/ν, hi+1 = qi+1 − qi,

gj+1 = q̃j+1 − q̃j , h−i = (hi + hi+1)/2, g−j = (gj + gj+1)/2, κ = 3.

Coefficients B
(2)
i,j , A

(2)
i,j , B̃

(2)
i,j , Ã

(2)
i,j can be calculated analogously to B

(1)
i,j , A

(1)
i,j , B̃

(1)
i,j ,

Ã
(1)
i,j with κ = −1.

Since the coefficients Di,j , Ei,j , D̃i,j , Ẽi,j contain the unknown function w, an
iterative method must be used for the solution of equations (22). The parameters
with indices i± 1/2, j± 1/2 denote corresponding average values of mesh functions
in the intervals (qi−1, qi), (qi, qi+1) and (q̃j−1, q̃j), (q̃j , q̃j+1), respectively.
If wk = 0 (or axially symmetric flow), the difference equations have form (22)

with Di,j = Ei,j = D̃i,j = Ẽi,j = 0. In this case the model equation

(24) (bu′)′ + au′ = f

can be used with functions a, b, f which depend on argument x and b > 0.
The corresponding difference equations have the form

Λui ≡ B̃i(ui+1 − ui)− Ãi(ui − ui−1) = fi,
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where

(25)

Bi = h−
−1
i h−1i+1bi+1/2s(−αi+1/2hi+1) > 0,

Ai = h−
−1
i h−1i bi−1/2s(αi−1/2hi) > 0,

α = ab−1.

In the case of constant coefficients and regular meshes we have

Λui ≡ h−2[s(−z)b(ui+1 − ui ± (ui+1 + ui−1)/2)−

−s(z)b(ui − ui−1 ± (ui+1 + ui−1)/2)] =

= bh−2[(s(−z) + s(z))(ui+1 − 2ui + ui−1)/2 + (s(−z)− s(z))(ui+1 − ui−1)/2] =

= γ(z)buxx̄i + auẋi
,

where z = ah/b, s(−z) − s(z) = z, γ(z) = (s(z) + s(−z))/2 = (z/2)cth(z/2)
(see [11]).
The Ilhyn difference scheme can also be used in the case of variable coefficients

a, b, supposing, e.g., that a = a(xi), b = b(xi), f = f(xi), z = z(xi) = a(xi)h/b(xi),
in the interval (xi−1, xi+1).
Since equation (10) for the stream function has a similar form as (14) (where we

put ∂wk/∂t = 0, vk+1 = vk+2 = 0, ν = 1, Fk = ωk = ukHk), the discretization of
(10) again yields a finite-difference system of form (23) where we now set s(0) = 1.
If we consider the heat transfer equation

(26) ∂T/∂t+ div(
→
v T ) = div(χ gradT ) +Q,

then equation (14) can be written as

(27)

Hk+1Hk+2(∂T/∂t−Q) + hk+2vk+1
∂T

∂qk+1
+Hk+1vk+2

∂T

∂qk+2
=

=
χ

Hk

[

∂T

∂qk+1

(

Hk
Hk+2

Hk+1

∂T

∂qk+1

)

+
∂T

∂qk+2

(

Hk
Hk+1

Hk+2

∂T

∂qk+2

)]

,

where χ,Q and T denote the coefficient of heat capacity, the density of heat sources
and the temperature, respectively. This means that the finite-difference equations

have again the form (22), where we put κ = 1, F (1) = HH̃(∂T/∂t − Q), Di,j =

Ei,j = D̃i,j = Ẽi,j = 0 and substitute Ti,j and χ for ui,j and ν, respectively.
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