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Dense chaos

L’uboḿır Snoha

Abstract. According to A. Lasota, a continuous function f from a real compact inter-
val I into itself is called generically chaotic if the set of all points (x, y), for which
lim infn→∞ |fn(x)− fn(y)| = 0 and lim sup

n→∞
|fn(x)− fn(y)| > 0, is residual in I × I.

Being inspired by this definition we say that f is densely chaotic if this set is dense in
I × I. A characterization of the generically chaotic functions is known. In the paper the
densely chaotic functions are characterized and it is proved that in the class of piecewise
monotone maps with finite number of pieces the notion of dense chaos and that of generic
chaos coincide.
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1. Introduction and results.

If not stated otherwise, a function in this paper will always be a function belong-
ing to the set C0(I, I) of all continuous maps of a real compact interval I into itself.
The terminology and notations are taken from [2]. Speaking on neighbourhoods or
one-sided neighbourhoods of min I we have only right-hand side neighbourhoods in
mind. Similarly for max I.
For a function f define the following planar sets:

C1(f) ={(x, y) ∈ I2 : lim inf
n→∞

|fn(x) − fn(y)| = 0},

C2(f) ={(x, y) ∈ I2 : lim sup
n→∞

|fn(x) − fn(y)| > 0},

C(f) =C1(f) ∩ C2(f).

According to A. Lasota (cf. [1]) a function f is called generically chaotic if the set
C(f) is residual in I2. Similarly, we will say that f is densely chaotic if C(f) is
dense in I2.
In [2], several conditions equivalent to the generic chaos have been found. Here

we recall at least the following result which follows from [2, Theorem 1.2 (a),(g) and
Lemma 4.16 (i),(ii)] and will be used later.

Theorem 1.1 ([2]). A function f ∈ C0(I, I) is generically chaotic if and only if
the following two conditions are fulfilled simultaneously:

(A-1) there is a fixed point x0 of f such that for every interval J ,
limn→∞ dist(fn(J), x0) = 0,

(D) there is a > 0 such that for every interval J , lim supn→∞ diam fn(J) > a.
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The condition (D) is too strong to be necessary for dense chaos (see [2, Exam-
ple 3.6]). By weakening this condition and adding a new one we get the following
characterization of dense chaos.

Theorem 1.2. A function f ∈ C0(I, I) is densely chaotic if and only if the following
three conditions are fulfilled simultaneously:

(A-1) there is a fixed point x0 of f such that for every interval J ,
limn→∞ dist(fn(J), x0) = 0,

(B-1) for every interval J , lim supn→∞ diam fn(J) > 0,
(C) every one-sided punctured neighbourhood of the point x0 contains points x,

y with (x, y) ∈ C(f) and moreover, if x0 ∈ int I then every neighbourhood
of x0 contains points x < x0 < y with (x, y) ∈ C(f).

Remark 1.3. Consider further the following conditions:

(A-2) for every two intervals J1, J2, lim infn→∞ dist(fn(J1), f
n(J2)) = 0,

(A-3) C1(f) is dense in I2,
(A-4) C1(f) is residual in I2

and

(B-2) for every interval J , lim infn→∞ diam fn(J) > 0,
(B-3) C2(f) is dense in I2.

By [2, Lemma 4.3] the conditions (A-2), (A-3) and (A-4) are equivalent and by [2,
Lemma 4.12 and Remark 4.14] the conditions (B-1), (B-2) and (B-3) are equivalent.
The condition (A-1) is stronger than (A-2) (see Example 3.3 below) but from [2,
Lemma 4.20 and Lemma 4.17 (iii)] we get that (A-2) and (B-1) together imply (A-1).
All things considered we can see that for every i, j ∈ {1, 2, 3, 4} and k, m ∈ {1, 2, 3},
the conjunctions (A-i) & (B-k) and (A-j) & (B-m) are equivalent. So Theorem 1.2
remains true if we replace (A-1) & (B-1) by (A-i) & (B-k), i ∈ {1, 2, 3, 4}, k ∈
{1, 2, 3}. Of course, the point x0 in (C) is the point that is mentioned in (A-1) and
whose existence follows from the fact that (A-i) & (B-k) implies (A-1).

A continuous real function f defined on a compact interval J is called piecewise
monotone or piecewise strictly monotone if there are N ≥ 0 and minJ = d0 <
d1 < · · · < dN < dN+1 = maxJ such that f is monotone or strictly monotone,
respectively, on [dk, dk+1] for each k = 0, . . . , N . If f is piecewise strictly monotone
and the points dk are chosen such that for k = 1, . . . , N , f is not monotone in any
neighbourhood of dk, the restricted functions f |[dk, dk+1], k = 0, . . . , N , are called
the pieces of f .
The following theorem shows that in a class of maps which contains all piece-

wise monotone maps the notion of dense chaos and that of generic chaos coincide.
Moreover, the characterization of such maps is simpler than those in Theorems 1.1
and 1.2.

Theorem 1.4. Let f ∈ C0(I, I) and let every fixed point of f have a neighbour-
hood on which f is piecewise monotone. Then the following three conditions are
equivalent:

(i) f is generically chaotic,
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(ii) f is densely chaotic,
(iii) (A-1) and (B-1).

Remark 1.5. Note that (A-1) & (B-1) is equivalent to (A-i) & (B-k) for arbitrarily
chosen i ∈ {1, 2, 3, 4} and k ∈ {1, 2, 3} (see Remark 1.3).
Recall that there is a map consisting of infinitely many strictly monotone (in

fact, linear) pieces for which (i) does not hold though (ii) and consequently (iii) are
fulfilled (see [2, Example 3.6]).
From the proof of Theorem 1.4 it will be seen that this theorem can be strength-

ened. In fact, if f does not satisfy (A-1) then (i), (ii) and (iii) are not fulfilled and
if f satisfies (A-1) then (i), (ii) and (iii) are equivalent provided at least one of the
fixed points x0 of f satisfying (A-1) (and not necessarily every fixed point of f) has
a neighbourhood on which f is piecewise monotone. There are maps whose dense
and generic chaoticity can be proved using this result but not using Theorem 1.4
(see Example 3.4). On the other hand there is a generically chaotic function which
has a unique fixed point but is not piecewise monotone in any neighbourhood of it
(see Example 3.5).
The rest of the paper is organized as follows. In Section 2 the proofs of our results

are given and in Section 3 some examples are presented. Concluding remarks can
be found in Section 4. For open problems see Section 5.

2. Proofs.

Proof of Theorem 1.2: Let f be densely chaotic. Then we get (A-2), (B-1) and
(C) from the definition of the dense chaos trivially. Finally, (A-2) and (B-1) imply
(A-1) (see Remark 1.3).
Now let (A-1), (B-1) and (C) be fulfilled. By Remark 1.3, (B-2) holds, too.

Take any intervals J1, J2. We need to show that (J1 × J2) ∩ C(f) 6= ∅. By (B-2),
there is a > 0 with lim infn→∞ diam(fn(Ji)) > a, i = 1, 2. Consider the intervals
L =]x0− a

2 , x0[ and R =]x0, x0+
a
2 [ and suppose that x0 is an interior point of I (if it

is an endpoint of I we proceed analogously). Then by (C) there are points (xL, yL) ∈
L2 ∩ C(f), (xR, yR) ∈ R2 ∩ C(f) and (x̃L, ỹR) ∈ (L × R) ∩ C(f). Using (A-1) we
get that for sufficiently large n each of the sets fn(J1) and fn(J2) contains at least
one of the sets {xL, yL, x̃L} and {xR, yR, ỹR}. Hence (fn(J1)× fn(J2))∩C(f) 6= ∅
and so (J1 × J2) ∩ C(f) 6= ∅.
To prove Theorem 1.4 we need the following lemma. Its simple proof is omitted.

Lemma 2.1. Let f ∈ C0(I, I) satisfy the condition (A-1) and let f be piecewise
strictly monotone on a neighbourhood of the point x0 from (A-1). Then the point
x0 is isolated in the set of all fixed points of f .

Proof of Theorem 1.4: (i) ⇒ (ii) holds trivially and (ii) ⇒ (iii) follows from
Theorem 1.2. With respect to Theorem 1.1 it suffices to prove that (iii) implies (D).
So let f satisfy (A-1) and (B-1). To prove (D) it is sufficient to show that there

exists a > 0 such that for every interval J there is k with diam fk(J) ≥ 2a.
Assume that the fixed point x0 from (A-1) is an interior point of I (if it is an

endpoint of I, the proof is similar). Take sufficiently small δ > 0 such that both f
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and g = f2 are piecewise monotone on M = [x0 − δ, x0 + δ]. From (B-1) we have
that f and hence also g are piecewise strictly monotone on M . Since f satisfies
(A-1), g satisfies an analogous condition in which the point x0 is the same and f
is replaced by g. So by Lemma 2.1, the point x0 is isolated in the set of all fixed
points of g. Take a > 0 such that the interval [x0 − 3a, x0 + 3a] contains no fixed
point of g (and hence no fixed point of f) different from x0 and both f and g are
strictly monotone on each of the intervals L = [x0 − 3a, x0[ and R =]x0, x0 + 3a].

Take h ∈ {f, g}. If x < h(x) < x0 for all x ∈ L then limn→∞ diamhn(L) = 0,
whence limn→∞ diam fn(L) = 0. But this is impossible since f satisfies (B-1). So
either

(1) h(x) > x0 for all x ∈ L, or
(2) h(x) < x for all x ∈ L.

For the analogous reasons either

(3) h(x) < x0 for all x ∈ R, or
(4) h(x) > x for all x ∈ R.

Now take any interval J . To finish the proof we are going to show that for some k,
diam fk(J) ≥ 2a.
Denote L1 = [x0 − a, x0], L2 = [x0 − 3a, x0 − a], R1 = [x0, x0 + a] and R2 =

[x0+a, x0+3a]. Since f satisfies (A-1), there is N such that fn(J)∩ (L1 ∪R1) 6= ∅
for all n ≥ N . To complete the proof it suffices to show that for some k ≥ N , fk(J)
meets I \ (L ∪ R ∪ {x0}).
Take a point z ∈ fN (J) ∩ L (if no such point exists then fN (J) meets R and

one can proceed similarly). Consider three possible cases:

Case 1. h = f satisfies (2). Then it is easy to see that for some r ≥ 1, fr(z) < minL
and it suffices to take k = N + r.

Case 2. h = f satisfies (1) and (4). Then fN+1(J) meets R and one can proceed
in the same way as in Case 1.

Case 3. h = f satisfies (1) and (3). Then h = g satisfies (2) and in the same way
as in Case 1 we get some r ≥ 1 with gr(z) = f2r(z) < minL. Take k = N + 2r.

3. Examples.

We want to present some examples to illustrate our results. Let min I = a0 <
a1 < · · · < an = max I and bi ∈ I, i = 0, 1, . . . , n. Then by 〈(a0, b0), . . . , (an, bn)〉
will be denoted the piecewise linear map which sends ai to bi, i = 0, 1, . . . , n and is
linear on each interval [ai, ai+1], i = 0, 1, . . . , n − 1.
Recall that the map f from [2, Example 3.6] is densely chaotic but is not gener-

ically chaotic. Now also Theorem 1.2 shows that f is densely chaotic with x0 = 1
in (A-1).

Example 3.1. Let I = [0, 2]. Take the map g ∈ C0(I, I) defined by

g(x) =

{

f(x) if x ∈ [0, 1]
2− f(2− x) if x ∈ [1, 2]
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where f is the map from [2, Example 3.6]. Though f is densely chaotic and g
satisfies the condition (A-1) with x0 = 1 and the condition (B-1), g is not densely
chaotic since it does not satisfy the condition (C).

Example 3.2. Let I = [0, 1]. Consider the tent maps fλ ∈ C0(I, I) defined by

fλ(x) =
λ
2 (1−|2x−1|) for λ ∈ [0, 2]. The point f3√

2
(12 ) is the positive fixed point of

f√2. If λ ≥
√
2 then for every interval J ⊂ I there is n with fn

λ (J) ⊃ [f2λ(12 ), fλ(
1
2 )].

If λ <
√
2 then either fλ has a periodic interval of period 2 or fλ is identical on

an interval or limk→∞ fk
λ (x) = 0 for every x. So fλ is densely or, equivalently,

generically chaotic if and only if λ ≥
√
2.

Example 3.3. Let I = [0, 1]. We are going to define a map f ∈ C0(I, I)
which satisfies the condition (A-2) but does not satisfy (A-1). Take f =
〈(0, 0), (1/4, 1/2), (1/2, 0), (3/4, a), (1, a)〉 where a is any point from [0, 1/2] such
that for g = f |[0, 1/2], gn(a) does not converge to a fixed point of g when n → ∞.

Example 3.4. Let I = [−1, 1]. Take a map f ∈ C0(I, I) such that f(x) = 1 −
|2x − 1| for x ∈ [0, 1], f([−1, 0]) ⊂ [0, 1] and f is constant in no interval. Then
for every interval J there is n with fn(J) = [0, 1] and so, by Theorem 1.1, f is
generically chaotic. If, additionally, f is piecewise monotone in no left-hand side
neighbourhood of the point 0, Theorem 1.4 cannot be used. The stronger version
of this theorem mentioned in the last but one paragraph of Section 1 works (take
the larger from two fixed points of f as the required point x0).

Example 3.5. Recall the folk result that there is a continuous self-map g of the
interval [0, 1] such that for every x, x2 ≤ g(x) ≤ √

x and g is topologically transitive.
(Then for every ε > 0 and for every interval J there is N with fn(J) ⊃ [ε, 1 − ε]

whenever n ≥ N , but it is not true that for every J there is N with fN (J) = [0, 1].
Such maps can consist of infinitely many linear pieces and cannot be piecewise
monotone in any neighbourhood of the point 0 or 1.) Now take I = [−1, 1] and
f ∈ C0(I, I) such that f(x) = −x for x ∈ [0, 1], x2 ≤ f(x) ≤ √−x for x ∈
[−1, 0] and g = f2|[0, 1] is a map with the above mentioned properties. Then f is
generically chaotic (even topologically transitive) but is not piecewise monotone in
any neighbourhood of its unique fixed point 0.

4. Concluding remarks.

Some results concerning the generic chaos can be carried over to the case of
continuous self-maps of the compact metric spaces.
For example, if for every two balls B1 and B2, lim infn→∞ dist(fn(B1), f

n(B2))
= 0 and if there is an a > 0 such that for every ball B, lim supn→∞ diam fn(B) > a,
then f is generically chaotic (the definition of the generic chaos is analogous to
that on the interval). On the other hand, an irrational rotation of the circle is
topologically transitive but not densely chaotic, which is impossible on the interval.
Let I be an interval and 0 < α ≤ β < diam I. We say that f ∈ C0(I, I) is gener-

ically or densely (α, β)-chaotic if the set of all (x, y) ∈ I2 with lim infn→∞ |fn(x)−
fn(y)| ≤ α and lim supn→∞ |fn(x)− fn(y)| > β is residual or dense in I2, respec-
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tively. A characterization of such maps is analogous to that of generically chaotic
maps and can be found in [3].

5. Open problems.

We finish our paper with the following problems:

(1) Find inf {topological entropy of f : f is densely chaotic} (cf. [2, Theorem 1.3]).
(2) What is the position of densely chaotic functions in the Šarkovskii ordering?
(Cf. [2, Theorem 1.4].)

(3) Take I = [0, 1] and fλ ∈ C0(I, I) defined by fλ(x) = λx(1−x) for λ ∈ [0, 4].
What can be said about the parameters λ for which fλ is densely chaotic?
Is there a countable or an uncountable number of such parameters? Are
such parameters dense in some interval [λ0, 4]?

It is easy to see (cf. [2]) that every generically chaotic map has sensitive de-
pendence on initial conditions. It would be interesting to know whether a kind of
converse holds for the maps fλ(x) = λx(1 − x).
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