
Commentationes Mathematicae Universitatis Carolinae

Cheng Lin-Zhi; Brian Fisher
The product of distributions on Rm

Commentationes Mathematicae Universitatis Carolinae, Vol. 33 (1992), No. 4, 605--614

Persistent URL: http://dml.cz/dmlcz/118531

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1992

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/118531
http://project.dml.cz


Comment.Math.Univ.Carolin. 33,4 (1992)605–614 605

The product of distributions on R
m

Brian Fisher, Cheng Lin-Zhi

Abstract. The fixed infinitely differentiable function ρ(x) is such that {nρ(nx)} is a re-
gular sequence converging to the Dirac delta function δ. The function δn(x), with x =
(x1, . . . , xm) is defined by

δn(x) = n1ρ(n1x1) . . . nmρ(nmxm).

The product f ◦ g of two distributions f and g in D′

m is the distribution h defined by

N– lim
n1→∞

. . . N– lim
nm→∞

〈fngn, φ〉 = 〈h, φ〉,

provided this neutrix limit exists for all φ(x) = φ1(x1) . . . φm(xm), where fn = f ∗ δn and
gn = g ∗ δn.

Keywords: distribution, neutrix limit, neutrix product

Classification: 46F10

A commutative product of two distributions in D′
m, the space of distributions

defined on Dm, the space of infinitely differentiable functions in m variables with
compact support, was considered in [1] and a non-commutative product of two
distributions in D′

m was considered in [6]. In the following we are going to consider
a commutative product of two distributions in D′

m which is similar to that given
in [1] but simpler to deal with.
First of all we let ρ be a fixed infinitely differentiable function with the properties

(i) ρ(x) = 0, |x| ≥ 1,
(ii) ρ(x) ≥ 0,
(iii) ρ(x) = ρ(−x),

(iv)
∫ 1
−1 ρ(x) dx = 1.

The function δn is defined by δn(x) = nρ(nx) for n = 1, 2, . . . . It is obvious that
{δn} is a sequence of functions in D converging to the Dirac δ function δ.
For an arbitrary distribution f in D′ the function fn is defined by

fn(x) = (f ∗ δn)(x) = 〈f(x − t), δn(t)〉.

It follows that {fn} is a sequence of infinitely differentiable functions converging to
the distribution f .
The following definition for the product of two distributions in D′ was given

in [3]:
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Definition 1. Let f and g be distributions in D′ and let fn = f ∗δn and gn = g∗δn.

The product f · g is said to exist and be equal to the distribution h on the open
interval (a, b), where −∞ ≤ a ≤ b ≤ ∞, if and only if

〈f · g, φ〉 = lim
n→∞

〈fngn, φ〉 = 〈h, φ〉,

for all φ in D(a, b).

This definition generalizes the usual definition of a product of a distribution and
an infinitely differentiable function or of a product of a distribution and a sufficiently
smooth function and is clearly commutative.
The next definition for the neutrix product f ◦ g of two distributions f and g in

D′ was given in [5].

Definition 2. Let f and g be distributions in D′ and let fn = f ∗δn and gn = g∗δn.

The neutrix product f ◦ g of f and g is said to exist and be equal to h on the open
interval (a, b), if and only if

N– lim
n→∞

〈fngn, φ〉 = 〈h, φ〉,

for all φ in D(a, b), where N is the neutrix, see van der Corput [2], having domain
N′ = {1, 2, . . . , n, . . . } and the range N′′ the real numbers, with negligible functions

finite linear sums of the functions

nλ lnr−1 n, lnr n

for λ > 0 and r = 1, 2, . . . and all functions which converge to zero in the normal
sense as n tends to infinity.

Note that if
lim

n→∞
〈fngn, φ〉 = 〈h, φ〉

for all φ inD(a, b), the neutrix product f◦g reduces to the product f ·g of Definition 1
and so Definition 2 is a generalization of Definition 1. It is clear that the neutrix
product f ◦ g is commutative.
The following theorem holds, see [1].

Theorem 1. Let f and g be distributions in D′ and suppose that the neutrix

products f ◦ g and f ◦ g′ (or f ′ ◦ g) exist on the open interval (a, b). Then the
neutrix product f ′ ◦ g (or f ◦ g′) exists and

(f ◦ g)′ = f ′ ◦ g + f ◦ g′

on this interval.

In order to define a neutrix product f ◦ g of two distributions f and g in D′
m,

a δ-sequence in Dm was defined in [1] by

δn(x) = δn(x1, . . . , xm) = nmρ(nx1) . . . ρ(nxm)
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for n = 1, 2, . . . . It is obvious that {δn} is a sequence of infinitely differentiable
functions converging to δ in the sense that

lim
n→∞

〈δn(x), φ(x)〉 = 〈δ(x), φ(x)〉 = φ(0)

for all test functions φ in Dm.

In the following, we use an alternative definition of a δ-sequence, which is easier
to work with. From now on the function δn(x) will be defined by

δn(x) = n1ρ(n1x1) . . . nmρ(nmxm)

for n1, . . . , nm = 1, 2, . . . , where n = (n1, . . . , nm). It is obvious that {δn} is
a sequence of infinitely differentiable functions converging to δ in the sense that

lim
n1→∞

. . . lim
nm→∞

〈δn(x), φ(x)〉 = 〈δ(x), φ(x)〉 = φ(0)

for all test functions φ in Dm, the result being independent of the order in which
the limits are taken.

For an arbitrary distribution f in D′
m the function fn is defined by

fn(x) = (f ∗ δn)(x) = 〈f(x− t), δn(t)〉,

where t is in Rm. It follows that {fn} is a sequence of infinitely differentiable
functions converging to f , in the sense that

lim
n1→∞

. . . lim
nm→∞

〈fn(x), φ(x)〉 = 〈f(x), φ(x)〉

for all φ in Dm, the result again being independent of the order in which the limits
are taken.

For our next definition and our main results we need the following lemmas, see
Schwartz [7].

Lemma 1. The vector space Xm generated by the functions φ1(x1) . . . φm(xm),
with φ1, . . . , φm in D, is dense in Dm.

Lemma 2. The convolution product of two direct products f1(x) × g1(y) and
f2(x)× g2(y) is equal to the direct product of the convolution products f1 ∗ f2 and
g1 ∗ g2, if the convolution products f1 ∗ f2 and g1 ∗ g2 exist, where f1, f2 ∈ D′

m and

g1, g2 ∈ D′
r, i.e.

(f1 × g1) ∗ (f2 × g2) = (f1 ∗ f2)× (g1 ∗ g2).

We also need the following lemma, see [4].
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Lemma 3.

∫ 1/n

t
skδ
(q)
n (s) ds =

k
∑

i=0

(−1)k+i+1k!

i!
tiδ
(q−k+i−1)
n (t)

for k = 0, 1, 2, . . . , q − 1 and q = 1, 2, . . . and

∫ 1/n

t
sqδ
(q)
n (s) ds =

q
∑

i=1

(−1)q+i+1q!

i!
tiδ
(i−1)
n (t) + (−1)qq![1− Hn(t)],

for q = 1, 2, . . . , where

Hn(t) =

∫ t

−1/n
δn(s) ds.

The next definition is a generalization of Definition 2.

Definition 3. Let f and g be distributions inD′
m and let fn = f∗δn and gn = g∗δn.

If h is a distribution in D′
m such that

N– lim
n1→∞

. . .N– lim
nm→∞

〈fngn, φ〉 = 〈h, φ〉,

or more briefly

N– lim
n→∞

〈fngn, φ〉 = 〈h, φ〉

for all functions φ in Xm with support contained in the interval (a,b), where a =
(a1, . . . , am) and b = (b1, . . . , bm), and h is independent of the order in which the
limits are taken, we say that the neutrix product f ◦ g exists and is equal to h on
(a,b).

Note that if

lim
n→∞

〈fngn, φ〉 = 〈h, φ〉

for all φ in Xm, we simply say that the product f ◦ g = f · g exists and equals h.
Note further that since Xm is dense in Dm, the distribution h in this definition

will be uniquely defined.
The proof of Theorem 1 can be modified to give the following theorem.

Theorem 2. Let f and g be distributions in D′
m and suppose that the neutrix

products f ◦ g and f ◦ Dig (or Dif ◦ g) exist on the open interval (a,b). Then the
neutrix product Dif ◦ g (or f ◦ Dig) exists and

Di(f ◦ g) = Dif ◦ g + f ◦ Dig

on this interval, where Di denotes the partial derivative with respect to xi.
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Theorem 3. Let f and g be distributions in D′
m such that

f(x) = f1(x1)× · · · × fm(xm), g(x) = g1(x1)× · · · × gm(xm),

with f1, . . . , fm, g1, . . . , gm ∈ D′, and suppose that the neutrix products

f1◦g1, . . . , fm◦gm exist and equal h1, . . . , hm respectively. Then the neutrix product

f ◦ g exists and
f ◦ g = h1 × · · · × hm.

In particular, if the products f1 · g1, . . . , fm · gm exist, then the product f · g exists
and is equal to h1 × · · · × hm.

Proof: Putting

fini
(xi) = fi(xi) ∗ δni(xi), gini

(xi) = gi(xi) ∗ δni(xi),

for i = 1, . . . , m and

fn(x) = f1n1(x1)× · · · × fmnm(xm) = f(x) ∗ δn(x),

gn(x) = g1n1(x1)× · · · × gmnm(xm) = g(x) ∗ δn(x),

we have on applying Lemma 2

〈fn(x)gn(x), φ1(x1) . . . φm(xm)〉 =

m
∏

i=1

〈fini
(xi), gini

(xi)φi(xi)〉

for all φ1, . . . , φm. Now since the neutrix product fi ◦ gi exists and equals hi, it
follows that

N– lim
n→∞

〈fn(x)gn(x), φi(xi) . . . φm(xm)〉 =

m
∏

i=1

N– lim
n→∞

〈fini
(xi), gini

(xi)φi(xi)〉

=
m
∏

i=1

N– lim
ni→∞

〈hi, φi〉

= 〈h1 × · · · × hm, φ1 . . . φm〉.

The result of the theorem follows. �

If now

λ = (λ1, . . . , λm), λ1, . . . , λm 6= 0,±1,±2, . . . ,

r = (r1, . . . , rm), r1, . . . , rm = 0, 1, 2, . . . ,

we define

cosec(πλ) = cosec(πλ1) . . . cosec(πλm),

(−1)r = (−1)r1+···+rm , r! = r1! . . . rm!,

xλ
+ = (x1)

λ1
+ × · · · × (xm)

λm
+ , xλ

− = (−x)
λ
+,

xr+ = (x1)
r1
+ × · · · × (xm)

rm
+ , xr− = (−x)

r
+,

δ(r)(x) = δ(r1)(x1)× · · · × δ(rm)(xm).

We then have
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Theorem 4. The neutrix products xλ
+ ◦ x−λ−r

− and x−λ−r
− ◦ xλ

+ exist in D′
m and

xλ
+ ◦ x−λ−r

− = x−λ−r
− ◦ xλ

+ =
(−π)m cosec(πλ)

2m(r− 1)!
δ(r−1)(x),

for λ1, . . . , λm 6= ±1,±2, . . . and r1, . . . , rm = 1, 2, . . . , where

r− 1 = (r1 − 1, . . . , rm − 1).

In particular, the products xλ
+ ·x

−λ−1
− and x−λ−1

− ·xλ
+ exist in D

′
m for λ1, . . . , λm 6=

0,±1,±2, . . . .

Proof: In the one variable case, suppose first of all that λ > −1 and choose
a non-negative integer q such that −λ − r + q > −1. Then

(xλ
+)n = xλ

+ ∗ δn =

∫ x

−1/n
(x − t)λδn(t) dt,

(x−λ−r
− )n = x−λ−r

− ∗ δn =
Γ(λ+ r − q)

Γ(λ+ r)

∫ 1/n

x
(s − x)−λ−r+qδ

(q)
n (s) ds,

where Γ denotes the Gamma function. The support of (xλ
+)n(x

−λ−r
− )n is clearly

contained in the interval (−1/n, 1/n) and it follows that

(1)

Γ(λ+ r)

Γ(λ+ r − q)

∫ 1/n

−1/n
(xλ
+)n(x

−λ−r
− )nxk dx =

=

∫ 1/n

−1/n
δn(t)

∫ 1/n

t
δ
(q)
n (s)

∫ s

t
xk(x − t)λ(s − x)−λ−r+q dx ds dt =

= nr−k−1
∫ 1

−1
ρ(u)

∫ 1

u
ρ(q)(v)

∫ v

u
wk(w − u)λ(v − w)−λ−r+q dw dv du,

where the substitutions nt = u, ns = v and nx = w have been made. Thus

(2) N– lim
n→∞

∫ 1/n

−1/n
(xλ
+)n(x

−λ−r
− )nxk dx = 0

for k = 0, 1, 2, . . . , r − 2 and

(3) lim
n→∞

∫ 1/n

−1/n

∣

∣(xλ
+)n(x

−λ−r
− )nxr

∣

∣ dx = 0

In the particular case k = r − 1, we have on making the substitution x =
t(1− y) + sy
(4)
∫ 1/n

−1/n
δn(t)

∫ 1/n

t
δ
(q)
n (s)

∫ s

t
xr−1(x − t)λ(s − x)−λ−r+q dx ds dt =

=

∫ 1/n

−1/n
δn(t)

∫ 1/n

t
δ
(q)
n (s)

∫ 1

0
(s − t)q−r+1[t(1 − y) + sy]r−1yλ(1− y)−λ−r+q dy ds dt.
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On expanding (s − t)q−r+1 and [t(1 − y) + sy]r−1 in powers of s and t, it follows
that this integral is a linear sum of integrals of the form

∫ 1/n

−1/n
tq−kδn(t)

∫ 1/n

t
skδ
(q)
n (s) ds dt

for k = 0, 1, . . . q.
On using Lemma 3, we see that when k < q each of these integrals is a linear

sum of integrals of the form

∫ 1/n

−1/n
tq−k+1δn(t)δ

(q−k+i−1)
n (t) dt = 0,

since the integrands are all odd functions.
When k = q we have on using Lemma 3 again

∫ 1/n

−1/n
δn(t)

∫ 1/n

t
sqδ
(q)
n (s) ds dt =

q
∑

i=1

(−1)q+i+1q!

i!

∫ 1/n

−1/n
tiδn(t)δ

(i−1)
n (t) dt+

+ (−1)qq!

∫ 1/n

−1/n
[1− Hn(t)]δn(t) dt

=0 +
(−1)qq!

2
.

It now follows from the equations (1) and (4) that

Γ(λ+ r)

Γ(λ+ r − q)

∫ 1/n

−1/n
(xλ
+)n(x

−λ−r
− )nxr−1 dx =

(−1)qq!

2

∫ 1

o
yλ+r−1(1− y)−λ−r+q dy

=
(−1)qq!

2
B(λ+ r,−λ − r + q + 1)

= (−1)qq!Γ(λ+ r)Γ(−λ − r + q + 1)/2

for λ 6= 0, 1, 2, . . . , where B denotes the Beta function, and so

(5)

∫ 1/n

−1/n
(xλ
+)n(x

−λ−r
− )nxr−1 dx = (−1)qΓ(λ+ r − q)Γ(−λ − r + q + 1)/2

= (−1)qπ cosecπ(λ + r − q)/2

= (−1)rπ cosec(πλ)/2.

Now let φ be an arbitrary function in D. Then we can write

φ(x) =

r−1
∑

k=0

φ(k)(0)

k!
xk +

φ(r)(ξx)

r!
xr,
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where 0 ≤ ξ ≤ 1. Thus

〈(xλ
+)n(x

−λ−r
− )n, φ(x)〉 =

r−1
∑

k=0

φ(k)(0)

k!

∫ 1/n

−1/n
(xλ
+)n(x

−λ−r
− )nxk dx+

+
1

r!
φ(r)(ξx)(xλ

+)n(x
−λ−r
− )nxr dx

and it follows from the equations (2), (3) and (5) that

N– lim
n→∞

〈(xλ
+)n(x

−λ−r
− )n, φ(x)〉 =

(−1)r cosec(πλ)

2(r − 1)!
φ(r−1)(0),

proving that

(6) xλ
+ ◦ x−λ−r

− =
π cosec(πλ)

2(r − 1)!
δ(r−1)(x)

for λ > −1, λ 6= 0, 1, 2, . . . and r = 1, 2, . . . . Note that in the case r = 1 the neutrix

limit is not needed and so the product xλ
+ · x−λ−r

− exists in this case.

Also note that in the case r = 0, the above proof shows that the product xλ
+ ·x

−λ
−

exists and

(7) xλ
+ · x−λ

− = 0

for λ > −1 and λ 6= 0, 1, 2, . . . .
A routine induction proof using the equations (6) and (7) and Theorem 2 now

shows that equation (6) holds for λ 6= 0,±1,±2, . . . and r = 1, 2, . . . , the product
existing in the case r = 1.
Replacing x by −x and λ by −λ − r in the equation (6) proves that

(8) x−λ−r
− ◦ xλ

+ =
π cosec(πλ)

2(r − 1)!
δ(r−1)(x)

for λ 6= 0,±1,±2, . . . and r = 1, 2, . . . , the product existing in the case r = 1.
The results of the theorem now follows immediately on using Theorem 3 and the

equations (6) and (8). �

Theorem 5. The neutrix product xr+ ◦ δ(r+p)(x) exists in D′
m and

(9) xr+ ◦ δ(r+p)(x) =
(−1)r(r+ p)!

2mp!
δ(p)(x),

for r1, p1, . . . , rm, pm = 0, 1, 2, . . . . In particular, the product x
r
+ · δ(r)(x) exists in

D′
m for r1, . . . , rm = 0, 1, 2, . . . .

Proof: In the one variable case we have

(xr
+)n =

∫ x

−1/n
(x − t)rδn(t) dt.
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The support of (xr
+)nδ

(r+p)
n is clearly contained in the interval (−1/n, 1/n) and it

follows that

(10)

∫ 1/n

−1/n
(xr
+)nδ

(r+p)
n (x)xk dx =

∫ 1/n

−1/n
δn(t)

∫ 1/n

t
xk(x − t)rδ

(r+p)
n (x) dx dt

= np−k
∫ 1

−1
ρ(u)

∫ 1

u
vk(v − u)rρ(r+p)(v) dv du,

where the substitutions nt = u and nx = v have been made. Thus

(11) N– lim
n→∞

∫ 1/n

−1/n
(xr
+)nδ

(r+p)
n (x)xk dx = 0

for k = 0, 1, 2, . . . , p − 1 and

(12) lim
n→∞

∫ 1/n

−1/n

∣

∣(xr
+)nδ

(r+p)
n (x)xp+1

∣

∣ dx = 0

In this particular case k = p we have from the equation (10)

∫ 1/n

−1/n
(xr
+)nδ

(r+p)
n (x)xp dx =

∫ 1/n

−1/n
δn(t)

∫ 1/n

t
xp(x − t)rδ

(r+p)
n (x) dx dt

=

∫ 1/n

−1/n
δn(t)

∫ 1/n

t
xr+pδ

(r+p)
n (x) dx dt,

all other integrals in the sum, obtained by expanding (x − t)r by the binomial
theorem, being zero by Lemma 3. On using Lemma 3 again, it now follows that

(13)

∫ 1/n

−1/n
(xr
+)nδ

(r+p)
n (x)xp dx = (−1)r+p(r + p)!

∫ 1/n

−1/n
δn(t)[1 − Hn(t)] dt

= (−1)r+p(r + p)!/2,

Now let φ be an arbitrary function in D. Then on using the equations (11), (12)
and (13), it follows as in the proof of Theorem 4 that

N– lim
n→∞

〈(xr
+)nδ

(r+p)
n (x)φ(x) dx〉 =

(−1)r+p(r + p)!

2p!
φ(p)(0),

proving that

(14) xr
+δ(r+p)(x) =

(−1)r(r + p)!

2p!
δ(p)(x)

for r, p = 0, 1, 2, . . . . Note that in the case p = 0 the neutrix limit is not needed

and so the product xr
+ · δ(r)(x) exists in this case.

The result of the theorem now follows on using Theorem 3 and the equation (14).
�
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Corollary. The neutrix product xr− ◦ δ(r+p)(x) exists in D′
m and

xr− ◦ δ(r+p)(x) =
(−1)r(r+ p)!

2mp!
δ(p)(x),

for r1, p1, . . . , rm, pm = 0, 1, 2, . . . . In particular, the product x
r
− ◦ δ(r)(x) exists in

D′
m for r1, . . . , rm = 0, 1, 2, . . . .

Proof: The result follows immediately on replacing x by −x in the equation (9).
�

Theorem 6. The neutrix product δ(r)(x) ◦ δ(p)(x) exists and

δ(r)(x) ◦ δ(p)(x) = 0

for r1, p1, . . . , rm, pm = 0, 1, 2, . . . .

Proof: It follows from the equation (14) with r = 0 that

x0+ ◦ δ(p)(x) =
1

2
δ(p)(x)

for p = 0, 1, 2, . . . . Using Theorem 1, it follows that

δ(x) ◦ δ(p)(x) =
1

2
δ(p+1)(x)− x0+δ(p+1)(x) = 0

for p = 0, 1, 2, . . . . It can now be proved easily by induction that

δ(r)(x) ◦ δ(p)(x) = 0

for p = 0, 1, 2, . . . . The result of the theorem follows on using Theorem 3. �
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