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Quadratic functionals with a variable singular end point

Zuzana Došlá, PierLuigi Zezza

Abstract. In this paper we introduce the definition of coupled point with respect to a (scalar)

quadratic functional on a noncompact interval.
In terms of coupled points we prove necessary (and sufficient) conditions for the non-

negativity of these functionals.

Keywords: quadratic functional, singular quadratic functional, Euler-Lagrange equation,
conjugate point, coupled point, singularity condition

Classification: 49B10, 34C10, 34A10

1. Introduction.

Quadratic functionals play a crucial role in the theory of the second variation in
the calculus of variations. V. Zeidan and P. Zezza [5], [6] introduced the concept
of coupled point for variational problems with variable end points, which have the
following accessory boundary value problem:
Minimize

(1) I(η) =
1

2
(ηT (a), ηT (b))Γ

(

η(a)

η(b)

)

+
1

2

∫ b

a
(ηT Pη + 2η′ T Qη + η′ T Rη′) ds

over all absolutely continuous η(·) : [a, b]→ Rn, subject to the boundary conditions

(2) D

(

η(a)

η(b)

)

= 0

where P (·), Q(·), R(·) are n×n matrices, Γ and D are 2n× 2n and 2n× r matrices,
P, Q, R ∈ L∞[a, b], R(·) ≥ αI a.e., α > 0, P, R,Γ are symmetric and rankD = r,
0 ≤ r ≤ 2n.
The idea of coupled point is based on the fact that a solution of the corresponding

Euler-Lagrange equation is continuously extended as a constant. The coupled point
is derived by the per partes method and by the classical lemma of the calculus of
variations and is described in terms of a solution of the Euler-Lagrange equation
satisfying boundary and so called coupling conditions. This definition has the same
meaning of the Jacobi condition for the conjugate and focal point case where one or
both end points are fixed. It means that the non-existence of a point coupled with
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b or with a in (a, b) is a necessary condition for the functional (1) being positive
semidefinite.
The sufficient condition was proved in [7], [8] by Hilbert space (index theory)

method, where the crucial role is played by the ellipticity of the investigated func-
tional.
To extend the definition of coupled point to noncompact interval, we have the

theory of singular quadratic functionals with zero boundary conditions. The “sin-
gularity” of these functionals is caused both by the coefficient functions and by the
class of admissible functions which is larger than the one on the compact interval.
Here, the non-existence of conjugate (focal) point with singular end point together
with the so called singularity condition give necessary and sufficient conditions for
the singular functional being positive semidefinite. The major contribution to this
theory has been made by Morse and Leighton [1] who established an extension of
the conjugate point theory in the scalar case. This work is continued in [2], [3];
other references about singular functionals can be found in [4].
Summarizing, on one hand, we have in the compact interval case two methods –

differential equations theory for necessary condition and index theory for sufficient
condition, on the other hand, the application of index theory in the singular case
even with zero boundary conditions is still a question.1

Hence we start here with scalar case where the boundary conditions (2) can be
classified into three types

D =

(

1 0
0 i

)

i = 0
i = 1

(focal point case)
(conjugate point case)

D = 0 (unconstrained case)
otherwise (non-separated case, e.g. periodic case)

The aim of this paper is to extend the definition of coupled point to a noncompact
interval. To this goal, we describe coupled points in terms of Riccati equation for
the compact interval case and in this way we approach the singular end point case.

2. The variational problem and the Euler-Lagrange equation.

Let r(·), p(·) ∈ AC[a,∞), r(·) > 0, and α, γ ∈ R. Let us consider the following
quadratic functionals2

I(η; a, b) = αη2(a) + γη2(b) +
∫ b
a [r(s)η

′2(s)− p(s)η2(s)] ds,

over all η ∈ W 1,2 [a, b];

I(η; a,∞) : = lim inft→∞ I(η; a, t)

over all η ∈ W
1,2
loc [a,∞);

J(ξ; a, b) = γξ2(a) +
∫ b
a [r(s)ξ

′2(s)− p(s)ξ2(s)] ds,

over all ξ ∈ W 1,2 [a, b] such that ξ(a) = ξ(b);

1From the point of view of index theory, the fact that singular functionals are only weakly
lower semi-continuous in the space W 1,2 is substantial.

2The functional is considered to be an operator defined on the given class of admissible
functions.
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J(ξ; a,∞) = lim inft→∞ J(ξ; a, t)

over all ξ ∈ W
1,2
loc [a,∞) such that ξ(a) = limt→∞ ξ(t).

Problem. We seek necessary (and) sufficient conditions for the nonnegativity of
the objective functionals.
To be more clear, let (X ) be one of the following statements

(P) I(η; a, b) ≥ 0 (compact interval, unconstrained case)
(S) I(η; a,∞) ≥ 0 (noncompact interval, unconstrained case)
(P P) J(ξ; a, b) ≥ 0 (compact interval, periodic case)
(P S) J(ξ; a,∞) ≥ 0 (noncompact interval, periodic case)

We study the validity of the statement (X ).

Remark 1. i) If a quadratic functional is bounded from below for all admissible
functions then its infimum over this class of admissible functions is zero.
ii) The problems on a noncompact interval concern functionals with singular

end point and they are formulated on the half-line for stressing the singularity (at

t = ∞). Under the transformation x = 1s we get the problem with the singularity
at s = 0 which is treated for conjugate and focal points in [1], [2], [3]. On the other
hand, the conjugate point problem of [1], [2], [3] can be rewritten as the problem of
finding conditions for

(S1)

{

lim inft→∞

∫ t
a [r(s)η

′2(s)− p(s)η2(s)] ds ≥ 0

over all η ∈ W
1,2
loc [a,∞) such that η(a) = 0 = limt→∞ η(t)

and the focal point case (S2) is the one with the only boundary condition η(a) = 0.3

Agreement. Throughout the paper we use the bold bracket ( ) to indicate the
alternative cases.

Since our goal is to study the nonnegativity of quadratic functionals with variable
end points, in accordance with [5], [6], we test the validity of (X ) for constant
functions.

Definition 1. The functional I(η; a, b) (I(η; a,∞)) and J(ξ; a, b) (J(ξ; a,∞)) is
said to be regular if

k := α+ γ − (lim sup
b→∞

)

∫ b

a
p(s) ds ≥ 0 and

k := γ − (lim sup
b→∞

)

∫ b

a
p(s) ds ≥ 0, respectively.

The Euler-Lagrange equation associated with the objective functionals is

(3) (r(t)y′)′ + p(t)y = 0, t ∈ I = [a, b] (I = [a,∞)) (a.e.).

3In the terminology of [1-3], such functions are called “A-admissible ”and “F -admissible func-
tions”, respectively.
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It is well-known that the quadratic functional I(η; a, b) over all η such that η(a) =
0 = η(b) is nonnegative if and only if (3) is disconjugate on (a, b). Let us recall that
if t1 and t2 are distinct values on I then these values are said to be (mutually)
conjugate relative to (3) if there exists a nontrivial solution y of (3) such that
y(t1) = 0 = y(t2). If there exist no pair of conjugate points on I then (3) is said to
be disconjugate on I. A point t2 > t1 is said to be a (right) focal point with t1 if
there exists a non-trivial solution y of (3) such that y(t2) = 0, y

′(t1) = 0.
It is also known that the disconjugacy is related to the existence of solutions of

a Riccati equation in the case of focal or conjugate points. If (3) is disconjugate
on a subinterval I0 of I then there exists a solution y of (3) for which y(t) 6= 0 on
I0. Then the function w(t) = r(t)y′(t)y−1(t) is a solution of the Riccati differential
equation

(4) w′(t) + r−1(t)w2(t) + p(t) = 0, t ∈ I0( a.e.).

Conversely, if w is a solution of (4) on I0 and if y(t) = δ exp
∫ t
a r−1w ds, δ 6= 0, then

y(t) 6= 0 on I0, y is a solution of (3) and w = ry′y−1 on I0. Moreover, if y(t) 6= 0 on
[a, b], the boundary conditions r(a)y′(a) = αy(a), r(b)y′(b) = γy(b) and y(a) = y(b)

are equivalent to w(a) = α, w(b) = γ and
∫ b
a r−1w ds = 0, respectively.

It means that in the conjugate and focal point case the existence of a solution of
the Riccati equation can be used to provide necessary and sufficient conditions for
a nonnegativity of the quadratic functional.
A similar statement can be proved in the case of free-end-points and periodic

conditions.

Lemma 1. (i) I(η; a, b) ≥ 0 if and only if the solution w of (4) satisfying w(a) = α

exists on [a, b] and w(b) + γ ≥ 0.
(ii) J(ξ; a, b) ≥ 0 holds if and only if there exists a solution w of (4) satisfying

∫ b
a r−1(s)w(s) ds = 0 and w(b)− w(a) + γ ≥ 0.

Proof: (i) Let the solution of (4) satisfying w(a) = α exist on [a, b] and w(b) ≥ −γ.
Then the validity of (P) follows from the identity

(5)

I(η; a, b) = αη2(a) + γη2(b) + wη2 |ba +

∫ b

a
r−1(rη′ − wη)2 ds =

= η2(a)(α − w(a)) + η2(b)(γ + w(b)) +

∫ b

a
r−1(rη′ − wη)2 ds,

which holds for every η ∈ W 1,2 [a, b], see [4, pp. 73-78]).
Conversely, let (P) hold. Suppose that the solution of (4) satisfying w(a) = α

does not exist on the whole interval [a, b], i.e., there exists c ∈ (a, b] such that

limt→c− w(t) = −∞. Then there exists d < c such that
∫ d
a r−1w2 ds > α + γ −

∫ b
a p ds. Let y be the corresponding solution of (3), i.e. w = ry′y−1. Define

η(t) =

{

y(t) t ∈ [a, d]

y(d) t ∈ [d, b].



Quadratic functionals with a variable singular end point 415

Then η ∈ W 1,2 [a, b] and

I(η; a, b) = y2(a)α+ y2(d)γ +

∫ d

a
(r y′2 − p y2) ds − y2(d)

∫ b

d
p ds =

= y2(a)α+ y2(d)γ + ry′y |da −y2(d)

∫ b

d
p ds =

= y2(a)[α − w(a)] + y2(d)
[

γ + w(d) −

∫ b

d
p ds

]

=

= y2(d)
[

γ + α −

∫ b

a
p ds −

∫ d

a
r−1w2 ds

]

< 0,

which is a contradiction.

Hence w exists on the whole interval [a, b] and the condition w(b)+γ ≥ 0 follows
immediately from (5).

(ii) Proof of the necessity. First we prove that J(ξ; a, b) ≥ 0 implies the discon-
jugacy of the equation (3) on [a, b]. Suppose that b is the first conjugate point with
a and y is a solution of (3) such that y(a) = 0 = y(b). Let t1 ∈ (a, b) be sufficiently
close to a, t2 = sup{t ∈ (a, b)|y(t1) = y(t)}. Define

ξ(t) =











y(t1) t ∈ [a, t1]

y(t) t ∈ [t1, t2]

y(t1) t ∈ [t2, b].

Then ξ is an admissible function, for which it holds

J(ξ; a, b) = γy2(t1)− y2(t1)
[

∫ t1

a
p dt+

∫ b

t2

p dt
]

+

∫ t2

t1

rξ′2 − pξ2 dt =

= y2(t1)
[

γ −

∫ t1

a
p dt −

∫ b

t2

p dt
]

+ y2(t1)[w(t2)− w(t1)],

where w = ry′y−1 exists with regard to the property of y on the whole interval
(a, b). Since limt→a+ w(t) =∞, limt→b− w(t) = −∞, choosing t1 and t2 sufficiently
close to a and b, respectively, we get

w(t2)− w(t1) + γ −

∫ t1

a
p dt −

∫ b

t2

p dt < 0.

Hence J(ξ; a, b) < 0, which is a contradiction and a, b are not conjugate points.

Now, let u, v be the solutions of (3) satisfying initial conditions u(a) = 0, u′(a) =
1, v(b) = 0, v′(b) = −1. Then u, v are linearly independent and positive on (a, b]

and [a, b), respectively, and the solution y =
u(t)
u(b)
+

v(t)
v(a)

is positive on [a, b] and
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satisfies y(a) = y(b). Thus the function w = ry′y−1 exists on [a, b] and satisfies
∫ b
a r−1w dt = 0 and w(b)− w(a) + γ ≥ 0 since for all admissible functions ξ

J(ξ; a, b) = ξ2(a)
[

w(b) − w(a) + γ
]

+

∫ b

a
r−1(rξ′ − wξ)2 dt

and for ξ = y(a) exp
∫ t
a r−1w ds the integral term vanishes.

The proof of the sufficiency is now obvious. �

3. Survey of results.

Here we present a survey of our results which are proved in Sections 4 and 5.

Theorem. Let (X ) be of type (P), (P P), (S). (X ) holds if and only if

(1) the functional is regular
(2) there is no coupled point relative to the functional and, moreover, in case
(S) the singularity condition is satisfied.

These results can be summarized in the following table (for the definition of
coupled point, see Definitions 2 and 3, for the singularity condition, see Theorem 2).

compact interval noncompact interval

unconstrained case
(P)⇔ (1), (2)
(Theorem 1)

(S)⇔ (1), (2)
(Theorem 2)

periodic case
(P P)⇔ (1), (2)
(Theorem 3)

(P S)⇒ (1), (2)
(Theorem 4)

Important Remark. The necessary condition (2) for (P), (P P) has been proved
in [5], [6] by the per partes method and by the fundamental lemma of the calculus of
variations (the fact that the functional is zero for some admissible function which
is not extremal leads to the contradiction with uniqueness theorem for ordinary
differential equations). On the other hand, the necessary condition (2) for (S), (P S)
does not seem to be suitable to be proved by this lemma. The sufficient condition
for (P), (P P) has been proved in [7], [8] by index theory and in Theorems 1 and 3
it is proved by Riccati equation.
The importance of Riccati equation method for functionals on the noncompact

interval is in the fact that the fundamental lemma of the calculus of variations as
well as index theory are not convenient here.

4. Coupled points in terms of Riccati equation: unconstrained case.

In accordance with [5], a coupled point is defined in case of free-end points on
the compact interval (noncompact interval) by the following

Definition 2. Let y(·) be a nonzero solution of (3) satisfying the condition4

(6) r(a)y′(a)− αy(a) = 0.

4The boundary problem (3), (6) has always a solution which is determined uniquely up to the
multiplicative constant. A similar remark holds for Definition 3, see Section 5.
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A point c ∈ [a, b) (c ∈ [a,∞) ) is said to be coupled point with a relative to
I(η; a, b) ( I(η; a,∞) ) if

r(c)y′(c) + γ y(c)− (lim sup
b→∞

)

∫ b

c
p(s) ds y(c) = 0(71)

y(·) 6≡ y(c) on [c, b] ( [c,∞) ).(81)

Remark 2. The point a is coupled with a relative to I(η; a, b) ( I(η; a,∞) ) if and
only if k = 0 (from Definition 1) and y ≡ const is not extremal on [a, b] ( [a,∞) ).

The first coupled point with a is understood the point a coupled with a or
a coupled point c ∈ (a, b) such that there is no coupled point on [a, c).
Now, we are in a position to formulate the first coupled point in terms of Riccati

equation. For simplicity, I(η; a, ·) denotes I(η; a, b) or I(η; a,∞).

Lemma 2. Let I(η; a, ·) be regular. A point c is the first coupled point with

a relative to I(η; a, ·) if and only if there exists d ∈ (c, b)( (c,∞) ) such that the
solution w of (4) satisfying w(a) = α is defined on [a, d] whereby

∫ c

a
r−1(s)w2(s) ds = k(72)

∫ d

c
r−1(s)w2(s) ds > 0(82)

where k is from Definition 1.

Proof: We shall prove the lemma for the functional I(η; a, b). The proof of the
conclusion for I(η; a,∞) is almost the same and hence will be omitted.
First, let us remember the following argument: If w is a solution of (4) on [a, d]

such that w(a) = α and if y(t) = δ exp
∫ t
a r−1w ds, δ 6= 0, then y(t) 6= 0 on [a, d], y

is a solution of (3), (6) on [a, d], w = ry′y−1 and

(9) w(t) = α −

∫ t

a
r−1(s)w2(s) ds −

∫ t

a
p(s) ds for t ∈ [a, d].

I. If a is coupled with a then in view of Remark 2 the condition (72) is trivially
satisfied and also (82) holds.
Let c ∈ (a, b) be the first coupled point with a and y the corresponding solution

of (3) from Definition 2. Obviously y(c) 6= 0. Indeed, if y(c) = 0 then y′(c) = 0
and y(t) ≡ 0 which would be a contradiction with the uniqueness theorem. First,
suppose that w(t) satisfying w(a) = α exists on all [a, c]. Since y(c) 6= 0 we can
divide (71) by y(c) and we get

w(c) + γ −

∫ b

c
p(s) ds = 0.

Substituting for w(c) in (9), we get (72).
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We shall prove that w(t) really exists on all [a, c]. Suppose there exists t0 ∈ (a, c]

such that |w(t0−)| = ∞. Then limt→t0−
∫ t
a r−1(s)w2(s) ds = ∞ and there exists

d ∈ (a, t0) such that

∫ d

a
r−1(s)w2(s) ds = k = α+ γ −

∫ d

a
p(s) ds −

∫ b

d
p(s) ds.

From (9) and the fact y(d) 6= 0 it holds

r(d)y′(d) + γ y(d)−

∫ b

d
p(s) ds y(d) = 0,

i.e. d ∈ (a, c) is a coupled point with a, which is a contradiction.

II. Let w exist on [a, c] and (72), (82) hold. Then a solution y of (3) given by

y(t) = y(a) exp
∫ t
a r−1w ds satisfies (71) and, because w(t) 6≡ 0 on (c, d) for some

d > c, also (81). �

Theorem 1. Let I(η; a, b) be regular. I(η; a, b) ≥ 0 if and only if there exists no
coupled point c ∈ [a, b) with a relative to I(η; a, b).

Proof: I. The necessity. In [5] it has been proved that if I(η; a, b) ≥ 0 then
there exists no coupled point c ∈ (a, b) with a. Hence, to complete the proof of the
necessity we need to show that a is not coupled with a. Let a be coupled with a. By
Lemma 2, there exists d > a such that the solution w of (4) satisfying w(a) = α is

defined on [a, d] and
∫ d
a r−1w2 ds > 0. Now we proceed by the similar way as in the

proof of Lemma 1 (i). Let y be the corresponding solution of (3), i.e. w = ry′y−1,
and define

η(t) =

{

y(t) t ∈ [a, d]

y(d) t ∈ [d, b].

Then I(η; a, b) = y2(d)
(

−
∫ d
a r−1w2 ds

)

< 0, a contradiction.

II. The sufficiency. Suppose there exists no coupled point c ∈ (a, b) with a. Let w
be the solution of (4) satisfying w(a) = α. Then w exists on all [a, b]. Indeed, if there
exists e ∈ (a, b] such that

∫ e
a r−1w2 ds = ∞ then there exists c ∈ (a, b) such that

(72), (82) hold, i.e. by Lemma 2 c is the first coupled point with a, a contradiction.

By Lemma 2, either
∫ b
a r−1w2 ds < k or there exists c ∈ (a, b) such that (72)

holds but
∫ b
c r−1w2 ds = 0.

In the first case we have w(b) = α −
∫ b
a r−1w2 ds −

∫ b
a p ds = α + γ −

∫ b
a p ds −

∫ b
a r−1w2 ds − γ > −γ, and I(η; a, b) is positive definite by Lemma 1.

In the second case w(b) = −γ and I(η; a, b) ≥ 0 with the equality either for

η(t) ≡ 0 or η(t) = η(a) exp
∫ t
a r−1w ds. �
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Theorem 2. Let I(η; a,∞) be regular. I(η; a,∞) ≥ 0 if and only if there exists no
coupled point c ∈ [a,∞) with a relative to I(η; a,∞) and the singularity condition
is satisfied, i.e.

lim inf
t→∞

η2(t)[w(t) + γ] ≥ 0

for each admissible function η(t) for which I(η; a,∞) is finite. Here w(t) is the
solution of (4) such that w(a) = α, which exists because there is no coupled point

with a.

Proof: Let w(t) be the solution of (4) satisfying w(a) = α. If this solution does
not exist on all [a,∞), then by the same argument as in the proof of Theorem 1
there exists c ∈ (a,∞) coupled with a relative to I(η; a,∞).
Denote z[η] = r−1(rη′ − wη)2.
I. The sufficiency. If there exists no coupled point c ∈ (a,∞) with a then,

proceeding in the same way as in the proof of Theorem l, we get lim infb→∞ w(b) =

α+γ−lim supb→∞

[∫ b
a p ds+

∫ b
a r−1w2 ds

]

−γ ≥ k−limb→∞

∫ b
a r−1w2 ds−γ ≥ −γ.

Now, the validity of the singularity condition implies

I(η; a,∞) = lim inf
b→∞

[

η2(b)(w(b) + γ) +

∫ b

a
z[η] dt

]

≥

≥ lim inf
b→∞

η2(b)(w(b) + γ) + lim
b→∞

∫ b

a
z[η] dt ≥ 0

for every admissible function η.

II. The necessity. Let I(η; a,∞) ≥ 0 for every admissible function η. At first,
suppose there exists the first coupled point c ∈ [a,∞) with a. Then, by Lemma 2,
there exists d > c such that for the solution w of (4) satisfying w(a) = α we

have
∫ d
a r−1w2 ds > k. Again, proceeding in the similar way as in the proof of

Lemma 1 (i), let y be the corresponding solution of (3), and define

η(t) =

{

y(t) t ∈ [a, d]

y(d) t ∈ [d,∞).

Then η is admissible and

I(η; a,∞) = y2(a)[α − w(a)] + y2(d)
[

γ + w(d) − lim sup
b→∞

∫ b

d
p ds

]

=

= y2(d)
[

γ + α − lim sup
b→∞

∫ b

a
p ds −

∫ d

a
r−1w2 ds

]

< 0,

which is a contradiction.
Now suppose that there exists no coupled point and the singularity condition

does not hold, i.e. there exists η̄(t) such that

I(η̄; a,∞) = L < ∞, lim inf
t→∞

η̄2(t)[w(t) + γ] < 0.
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Recall that the nonexistence of coupled point implies that the solution w of (4)
satisfying w(a) = α exists on all [a,∞).
Let d ∈ (a,∞) be such that η̄(d) 6= 0 and let y be the solution of (3) satisfy-

ing (6) and y(d) = η̄(d). Observe that such a solution always exists. Indeed, let

u be a nontrivial solution of (3) satisfying (6) and y(t) = u(t)
η̄(d)
u(d)
. Since (3) is

homogeneous, y(t) is the solution of (3) whose existence we needed to prove.
Then the function

η̃(t) =

{

y(t) t ∈ [a, d]

η̄(t) t ∈ [d,∞)

is admissible and

I(η̃; a,∞) = lim inf
b→∞

[

η̃2(b)(w(b) + γ) +

∫ b

a
z[η̃] dt

]

=

= lim inf
b→∞

[

η̄2(b)(w(b) + γ) +

∫ b

d
z[η̄] dt

]

.

We distinguish two cases:

(i) lim infb→∞ η̄2(b)[w(b) + γ] = −l2 > −∞, l 6= 0
(ii) lim infb→∞ η̄2(b)[w(b) + γ] = −∞.

In the first case, the fact that I(η̄; a,∞) < ∞ implies that
∫

∞

a z[η̄]dt < ∞

and hence there exists d such that
∫

∞

d z[η̄] dt < l2. Thus I(η̃; a,∞) < 0, which is
a contradiction.
In the second case we have

∫

∞

a z[η̄] dt = ∞ and hence, there exists e ∈ [a,∞)
such that

∫ e

a
z[η̄] dt = I(η̄; a,∞).

Then I(η̄; a,∞) = lim infb→∞

[

η̄2(b)(w(b) + γ) +
∫ b
e z[η̄] dt

]

+
∫ e
a z[η̄] dt , hence

lim infb→∞

[

η̄2(b)(w(b) + γ) +
∫ b
e z[η̄]dt

]

= 0.
Thus

I(η̃; a,∞) = lim inf
b→∞

[

η̄2(b)(w(b) + γ) +

∫ b

d
z[η̄] dt

]

=

= lim inf
b→∞

[

η̄2(b)(w(b) + γ) +

∫ b

e
z[η̄] dt

]

+

∫ e

d
z[η̄] dt =

∫ e

d
z[η̄] dt.

Choosing d > e we have I(η̃; a,∞) < 0, a contradiction. �

Remark 3. Obviously, the singularity condition is satisfied on the compact interval
[a, b]. In case of zero singular end points the singularity condition coincides with
the one of Morse and Leighton.

5. Coupled points in terms of Riccati equation: periodic case.

In accordance with [5], a coupled point is defined in the periodic case on the
compact interval (noncompact interval) by the following
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Definition 3. Let y(·) be a nonzero solution of (3) satisfying the condition y(a) =
y(c) 6= 0. A point c ∈ [a, b) (c ∈ [a,∞) ) is said to be coupled point with a relative
to J(ξ; a, b) ( J(ξ; a,∞) ) if

r(c)y′(c)− r(a)y′(a) + γ y(a)− (lim sup
b→∞

)

∫ b

c
p(s) ds y(c) = 0

y(·) 6≡ y(c) on [c, b] ([c,∞)).

The first coupled point with a is understood a point a coupled with a or a coupled
point c ∈ (a, b) such that there is no coupled point on [a, c).

Remark 4. Like in the unconstrained case, the point a is coupled with a relative
to J(η; a, b) ( J(η; a,∞) ) if and only if k = 0 (from Definition 1) and y ≡ const is
not extremal on [a, b] ( [a,∞) ).

In the following lemmas J(η; a, ·) denotes J(η; a, b) or J(η; a,∞).

Lemma 3. Let J(ξ; a, ·) be regular. If c is the first coupled point with a relative

to J(ξ; a, ·) then (3) is disconjugate on [a, c].

Proof: The statement may be proved by index theory, see [8, Corollary 3.1], but
to keep the method consistent, we prove it by Riccati technique.

Suppose that there exists t0 ∈ (a, c] which is the (first) conjugate point with a

relative to (3). Then for every x ∈ (a, t0) there exists a solution yx(t) of (3) for
which yx(a) = yx(x) and yx(t) 6= 0 for t ∈ [a, x] (see the proof of Lemma 1 (ii)).
Let wx(t) = r(t)y′x(t)y

−1
x (t) and F (x) =

∫ x
a r−1w2x ds. According to the continuous

dependence on the initial conditions, the function F (x) is continuous and F (x)→ ∞
as x → t0− (since wx(t) → r(t)y′(t)y−1(t) as x → t0, where y(t) is the solution of
(3) for which y(a) = 0 = y(t0) ).

Consequently, there exists e ∈ (a, t) such that F (e) = k, and
∫ d
e r−1w2e ds > 0

for some d > e, i.e. e is coupled point with a relative to J(ξ; a, b), a contradiction.
�

From this proof it follows immediately

Lemma 4. Let J(ξ; a, ·) be regular. A point c is a first coupled point with a relative

to J(ξ; a, ·) if and only if there exists d ∈ (c, b) ((c,∞) ) such that the solution w

of (4) satisfying
∫ c
a r−1w ds = 0 is defined on [a, d] whereby (72) and (82) hold.

Lemma 5. Let J(ξ; a, ·) be regular. Let c ∈ [a, b) be the first coupled point with a

relative to J(ξ; a, ·). Then there exists d ∈ (c, b) ((c,∞) ) such that for the solution

w1 of (4) satisfying
∫ d
a r−1w1 ds = 0 we have

∫ d
a r−1w21 ds > k.

Proof: Let c be the first coupled point with a relative to J(ξ; a, b) and let w be the
solution of (4) satisfying

∫ c
a r−1w ds = 0. By Lemma 4 there exists d ∈ (c, b) such

that
∫ d
a r−1w2 ds > k. Let w1 be the solution of (4) for which

∫ d
a r−1w1 ds = 0.
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Then

∫ d

a
r−1w21 ds −

∫ c

a
r−1w2 ds =

∫ d

a
r−1w21 ds −

∫ d

a
r−1w2 ds+

∫ d

c
r−1w2 ds >

>

∫ d

a
r−1w21 ds −

∫ d

a
r−1w2 ds = ω.

We shall prove that ω > 0. Let u and v be the corresponding solution of (3) to
w and w1, i.e. w = ru′u−1, w1 = rv′v−1 and u(a) = u(c) 6= 0, v(a) = v(d) 6= 0 (the
nonzero boundary conditions are ensured by Lemma 3). Then

(10) w1 − w = r ·
v′u − vu′

uv
.

In view of this, it holds

ω = w1(d)− w1(a)− w(d) + w(a) =

=
r(a)v(a)(v′(a)− u′(a))

v(a)u(a)

[ 1

u(d)v(d)
−

1

u(a)v(a)

]

=

=
r(a)(v′(a)− u′(a))(u(a)− u(d))

u2(a)u(d)v(d)
=

r(a)(v′(a)− u′(a))(v(d) − u(d))

u2(a)u(d)v(d)
.

If v′(a) > u′(a) then v(t) > u(t) on [a, d], since the existence of ξ ∈ (a, d) such
that v(ξ) = u(ξ) implies that the solution v(t)− u(t) has two zeros in [a, d], which
contradicts the disconjugacy of (3) on this interval.
Similarly, if v′(a) < u′(a), then v(t) < u(t) on [a, d]. Consequently, ω > 0 and

∫ d
a r−1w21 ds >

∫ c
a r−1w2 ds = k.

The proof for J(ξ; a,∞) is the same. �

Theorem 3. Let J(ξ; a, b) be regular. J(ξ; a, b) ≥ 0 if and only if there exists no
coupled point c ∈ [a, b) with a relative to J(ξ; a, b).

Proof: I. The necessity. Like the unconstrained case; in [5] it has been proved
that if J(η; a, b) ≥ 0 then there exists no coupled point c ∈ (a, b) with a. Hence
we prove that a is not coupled with a. Let a be coupled with a. By Lemma 5

there exists d > a such that the solution w of (4) satisfying
∫ d
a r−1w ds = 0 we have

∫ d
a r−1w2 ds > 0. Let y be the corresponding solution of (3). Then for the function

η(t) =

{

y(t) t ∈ [a, d]

y(d) t ∈ [d, b]

it holds J(η; a, b) = y2(a)
(

−
∫ d
a r−1w2 ds

)

< 0, a contradiction.

II. Suppose there exists no point c ∈ [a, b) coupled with a. By Lemma 3, (3) is
disconjugate on [a, b) and if b is conjugate point with a, then by the same way as in
the proof of Lemma 3 it would exist c̃ ∈ [a, b) coupled with a relative to J(ξ; a, b).
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Therefore (3) is disconjugate on [a, b]. By the same argument as in Lemma 1 (ii)
there exists for every c ∈ (a, b] a solution wc of (4) for which

∫ c
a r−1wc ds = 0. Since

[a, b) does not contain a coupled point with a relative to J(ξ; a, b), by Lemma 4 for

every c ∈ [a, b) it holds
∫ c
a r−1w2c ds < k or

∫ c
a r−1w2c ds = k and

∫ d
c r−1w2c ds = 0

for every d > c. Hence also
∫ b
a r−1w2b ds ≤ k, i.e., wb(b) − wb(a) + γ ≥ 0 and the

conclusion holds in view of Lemma 1 (ii). �

Theorem 4 (Necessary condition). Let J(ξ; a,∞) be regular. If J(ξ; a,∞) ≥ 0
then there is no coupled point c ∈ [a,∞) with a relative to J(ξ; a,∞).

Proof: Suppose there exists c ∈ [a,∞), the first coupled point with a relative to
J(ξ; a,∞). Then, by Lemma 5, there exists d > c such that for the solution w of (4)

satisfying
∫ d
a r−1w ds = 0 we have

∫ d
a r−1w2 ds > k. Let y be the corresponding

solution of (3). Proceeding in the same way as in the first part of the proof of
Theorem 3, for the admissible function

η(t) =

{

y(t) t ∈ [a, d]

y(d) t ∈ [d,∞),

it holds J(η; a,∞) = y2(a)
[

−
∫ d
a r−1w2 ds+ γ − lim supb→∞

∫ b
a p ds

]

< 0, which is
a contradiction. �

Example. The following example illustrates the behaviour of the functional
I(η; a,∞) and shows the importance of the coupled point in terms of Riccati equa-
tion for solving the concrete variational problem.
Consider the functional

I(η; a, t) = αη2(a) + γη2(t) +

∫ t

a
[s2η′2(s) +

1

s2
η2(s)] ds , a > 0.

We seek conditions on α, γ, a such that lim inft→∞ I(η; a, t) ≥ 0 over all η ∈

W
1,2
loc [a,∞).

The regularity condition gives k = α+ γ + 1a ≥ 0.
The corresponding Euler-Lagrange equation

(t2y′)′ −
1

t2
y = 0

has solutions e−1/t, e1/t. Hence, the general solutions of the Riccati equation

w′ +
w2

t2
−
1

t2
= 0

are

w(t) =
ce−1/t − e1/t

ce−1/t + e1/t
and w(t) = 1.
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The condition w(a) = α gives c = 1+α
1−α e2/a (for α 6= 1) and hence w(∞) =

limt→∞ w(t) =
(1+α)e2/a

−1+α
(1+α)e2/a+1−α

. According to Theorem 2, for being the functional

nonnegative the singularity condition must hold and it should not exist a coupled
point with a.
Let us consider two examples of the parameters α, γ, a.

1. Let α = 2. Then w(∞) = 3e
2/a+1

3e2/a
−1
=: f(a).

If γ < −2 then the functional is negative on [a,∞) for every a > 0.
If γ > −1 then the functional is positive on [a,∞) for every a > 0.
If γ ∈ (−2,−1) then the equation f(a)+γ = 0 has a solution a0 ∈ (0,∞) and the

functional is indefinite for a ∈ (0, a0) and is nonnegative for a ≥ a0. Let a ∈ (0, a0)
be fixed. Then there exists a coupled point c with a and by Definition 2, its value
is the solution of the equation w(c) + γ + 1c = 0, that is

−3e2/a − e2/c

−3e2/a + e2/c
+ γ +

1

c
= 0.

2. Let a = 2. The functional is nonnegative if and only if the following conditions
are satisfied

(i) α+ γ ≥ −12 (the regularity condition)

(ii) γ > −
e−1+α(1+e)
e+1+α(e−1)

(nonexistence of coupled points).

By other words, the inequalities (i), (ii) with the opposite sign give the domain of
parameters α, γ, for which there exists a coupled point with a, that is, the functional
is indefinite, see the picture.

Concluding remark. The following problems remain open
(i) The singularity condition in periodic case and hence the sufficient condition

for the validity of (P S).

(ii) In case of the compact interval, the nonexistence of coupled point with a and
of coupled point with b are equivalent. It arises the question of this symmetry on
noncompact interval, i.e. how to define the coupled point with ∞.
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