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Čech complete nearness spaces

H.L. Bentley, W.N. Hunsaker

Dedicated to the memory of Zdeněk Froĺık

Abstract. We study Čech complete and strongly Čech complete topological spaces, as
well as extensions of topological spaces having these properties. Since these two types
of completeness are defined by means of covering properties, it is quite natural that they
should have a convenient formulation in the setting of nearness spaces and that in that
setting these formulations should lead to new insights and results. Our objective here is
to give an internal characterization of (and to study) those nearness structures which are
induced by topological extensions of the two above mentioned types.

Keywords: Čech complete, strongly Čech complete, nearness space

Classification: 54E17, 54D20, 54B30, 54D30

Top denotes the category of topological spaces and Near denotes the category
of all nearness spaces. We assume familiarity with nearness spaces and with how
they can be used to study extensions of topological spaces (see [BH76]). See also
Herrlich’s 1974 papers on nearness spaces [He74a], [He74b], his more recent survey
[He83], and book [He88].
Every nearness space has an underlying topological space whose structure is

determined by the closure operator cl defined by :

x ∈ clA ⇐⇒ {{x}, A} is near in X.

There arises the functor T : Near → Top. Its image is not all of Top, rather it is the
subcategory Tops of all symmetric topological spaces, i.e., those which satisfy the
axiom of Šanin [Ša43]:

x ∈ cl{y} if and only if y ∈ cl{x}.

(These spaces have also been called R0 spaces and essentially T1 spaces.)
The functor T : Near → Tops has a right inverse Tops → Near which turns out to

be a full embedding of Tops as a bicoreflective subcategory of Near; we shall assume
this embedding is an inclusion, an assumption which is tantamount to assuming
that a symmetric topological space has its structure given by the set of open covers,
i.e., a symmetric topological space is a nearness space whose uniform covers are
precisely those covers which are refined by some open cover.
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Herrlich [He74b], [He88] has shown that a nearness space can have its structure
given via any one of the three concepts: uniform cover, near collection, micromeric
(or Cauchy) collection. We assume the reader to be familiar with the relationships
between these concepts but we do remark that Cauchy filters are definable in terms
of uniform covers formally in the same way as in uniform spaces, i.e., every uniform
cover has a member which is also a member of the filter.
We need to recall the ideas surrounding the completion of a nearness space (see

[BH76]). A cluster is a nonempty maximal near collection. A nearness space is said
to be complete provided each cluster A has an adherence point, i.e., ∩ clA 6= ∅
where

clA =
{

clA
∣

∣

∣
A ∈ A

}

.

Under regularity, completeness reduces to the usual concept: A regular nearness
space is complete iff each Cauchy filter converges.
A uniformly continuous map f : X → Y is initial iff each uniform cover A of X

is refined by one of the form

f−1B =
{

f−1B
∣

∣

∣
B ∈ B

}

with B a uniform cover of Y . If f : X → Y is an initial map and A ⊂ X then
opf A denotes the largest open subset G of Y such that intX A = f−1G, i.e.,
opf A = Y \ clY f [X \A]. An initial uniformly continuous map f : X → Y is called
strict provided

{

opf A
∣

∣

∣
A is a uniform cover of X

}

is a base for the uniform covers of Y , where

opf A =
{

opf A
∣

∣

∣
A ∈ A

}

.

By a dense map we mean a uniformly continuous map f : X → Y for which the
image fX is dense in the topological space TY . An initial map f : X → Y into
a regular Y is a strict map iff it is a dense map. Surjective initial maps are always
strict. Observe that if f : X → Y is a dense map then for each subset A of X we
have opf A ⊂ clY fA.
Every nearness space has a completion f : X → Y which is characterized by the

following properties:

(1) f : X → Y is a strict dense injection.
(2) Y is complete.
(3) For each y ∈ Y \ fX , {y} is a closed subset of the topological space TY .

If f : X → Y satisfies the above conditions, then f : X → Y will be called the
completion of X ; it is determined by (1), (2), and (3) up to isomorphism.
We shall be dealing with open filters: a filter F on a topological space is, as

usual, said to be open provided every member of F contains some open member
of F . This condition can be expressed by saying that

intF =
{

intF
∣

∣

∣
F ∈ F

}

corefines F .



Čech complete nearness spaces 317

1. Proposition. Let X and Y be nearness spaces and let f : X → Y be an initial
dense map. Then

(1) If A is a collection of subsets of X such that intA corefines A then A is
near in X iff opf A is near in Y .

(2) If F is an open filter on X then opf F is an open filterbase on Y , i.e., it
generates an open filter.

Proof: (1): If A is near and intA corefines A then intA is near. Since f is
uniformly continuous, f intA is near in Y . Since f is an initial map, opf A corefines
f intA, and it follows that opf A is near in Y .

(2): Since f is a dense map, clY fA corefines opf A. Thus, if opf A is near in Y

then so is clY fA. Y being a nearness space, it then follows that fA is near in Y .
Since f is initial, fA being near in Y implies that A is near in X . �

Čech complete and strongly Čech complete spaces

Froĺık [Fr60] introduced the concept of a set of open covers α being complete.
His definition required those open filters which are α-Cauchy to have an adherence
point. Froĺık showed that spaces possessing such a set of open covers have many
interesting properties, and that among Tychonoff spaces, these are precisely the
Čech complete spaces. Fletcher and Lindgren [FL72] modified Froĺık’s definition by
requiring that the open α-Cauchy filters should converge. Furthermore, they called
a set α of open covers of the latter type “complete” and those which Froĺık called
complete, they called “weakly complete”. Froĺık’s use of the term “complete” was
natural for him since he used only the one concept, and Fletcher’s and Lindgren’s
use of different terminology was natural for them since they were concerned with
both concepts. Since, as Fletcher and Lindgren showed, these two concepts do
not coincide (even for paracompact Hausdorff spaces), one must be very careful
about terminology. In order to avoid creating confusion, we use the terminology of
Fletcher and Lindgren.

2. Definition. Let X be a topological space and let α be a collection of nonempty
covers of X .

(1) A filter (or filterbase) F on X is said to be α-Cauchy iff for every cover
U ∈ α there exist U ∈ U and F ∈ F with F ⊂ U .

(2) The collection α is said to be complete iff every open α-Cauchy filter
converges.

(3) The collection α is said to be weakly complete iff every open α-Cauchy
filter has an adherence point.

Clearly, in the preceding conditions (1) and (2), we equivalently could have re-
quired every open α-Cauchy filterbase to converge (respectively, to have an adher-
ence point).

3. Definition.

(1) A topological space X is said to be Čech-complete iff there exists a count-
able, weakly complete collection α of open covers of X .
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(2) A topological space X is said to be strongly Čech-complete iff there
exists a countable, complete collection α of open covers of X .

Since every complete collection is also weakly complete, it follows that every
strongly Čech complete space is also Čech complete.
Note that we have defined “Čech completeness” without any restriction that the

space involved be Tychonoff. Since we will be concerned with quite general spaces,
any restriction to Tychonoffness would be unnaturally hampering.

Čech complete extensions: constrained spaces

We are concerned with the following general type of problem:

Let P be a property of topological spaces. Characterize those spaces X

that have an extension Y with property P .

Solving problems of this type usually involves introducing other types of structure
on X , e.g., metrics, uniformities, proximities, nearnesses, etc. Bentley and Her-
rlich [BH76] used nearness structures to solve several problems of this type; they
considered extensions with the properties: Hausdorffness, regularity, compactness,
paracompactness, topological completeness, and others. Brandenburg [Br77], and
independently, Carlson [Ca80] solved the problem for developable spaces and for
complete Moore spaces. This is only a partial listing; during the last fifteen years
quite a few problems of this type have been solved using nearness structures [Be77],
[Ca79], [Ca81], [He88], [BHO89], [Be91].
We need to make matters more precise.
Let a symmetric topological space Y be an extension of a topological space X ,

i.e., X is a dense subspace of Y . Then a nearness structure on X is determined by
defining a collection A of subsets X to be near iff A has an adherence point in Y ,
i.e., iff

∩{ clY A |A ∈ A} 6= ∅.

This nearness structure is said to be the nearness structure on X induced by

the extension Y .
Nearness spaces induced by an extension are always subtopological, i.e., every

near collection is contained in a near grill. The somewhat stronger condition that
every near collection is contained in a cluster is satisfied when the nearness space
is induced by a strict extension. In that case, the induced nearness space is said
to be concrete. The concrete nearness spaces are precisely those whose comple-
tion is topological. For an explanation of these ideas, see [BH76], [Be75], [He74b],
[He83], [Be76], and especially [He88].

4. Definition. A nearness space X is said to be constrained iff there exists
a countable set α of open uniform covers of X such that every open α-Cauchy filter
is near in X (“open” here means open in the underlying topological space TX ofX).

Equivalently, we could have required that every open α-Cauchy filterbase be
near.
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In order to shorten the language, whenever α is a countable set of open uniform
covers of a nearness space X such that every open α-Cauchy filter is near in X , then
we shall say that α demonstrates the constrainedness of X , or equivalently,
that X is constrained by α.
We let Cnstra denote the full subcategory of Near consisting of all constrained

spaces.

5. Proposition. A symmetric topological space is Čech complete iff as a nearness
space it is constrained.

The underlying topological space TX of a constrained nearness space X can fail
to be constrained (i.e., Čech complete). (See Example 1.)
In the next few propositions, we shall be exhibiting the fact that constrainedness

is preserved under certain constructions.

6. Proposition. Let X and Y be nearness spaces and let f : X → Y be a strict
dense map. Then X is constrained iff Y is constrained.

Proof: Assume that X is constrained by α. We will show that the countable set
of open uniform covers

opf α =
{

opf U
∣

∣

∣
U ∈ α

}

demonstrates the constrainedness of Y . Let G be an open (opf α)-Cauchy filter
on Y . Then the filter F on X generated by

{

f−1G

∣

∣

∣
G ∈ G

}

is an open filter on X which is easily seen to be α-Cauchy. Therefore F is near in
X and it follows easily that G is near in Y .
For the proof in the converse direction, assume that Y is constrained by β. For

every U ∈ β select GU , an open uniform cover of X such that opf U refines U , and
let

α =
{

GU

∣

∣

∣
U ∈ β

}

.

It follows from Proposition 1 that α demonstrates the constrainedness of X . �

7. Corollary. A nearness space is constrained if and only if its completion is
constrained.

The following theorem is one of our main results; it is a corollary to the foregoing
results.

8. Theorem. Let X be a nearness space. Then the following are equivalent:

(1) X carries the nearness structure induced by a Čech complete strict extension
TX → Y with Y a symmetric topological space.

(2) X is concrete and constrained.
(3) The completion of X is both topological and Čech complete.

The next few propositions address the preservation of constrainedness under
products and sums.
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9. Proposition. Cnstra is countably productive in Near.

Proof: Let (Xi)i∈I be a family of constrained nearness spaces with I a countable
set and let (πi : X → Xi)i∈I be the Near product. For each i ∈ I let αi demonstrate
the constrainedness of Xi. We shall show that

α =
{

π−1
i Bi

∣

∣

∣
i ∈ I and Bi ∈ αi

}

demonstrates the constrainedness ofX . Clearly, α is a countable set of open uniform
covers of X . Let F be an open α-Cauchy filter on X . We need to show that F
is near in X . Let G be a maximal open filter on X such that F ⊂ G. Clearly, G
is α-Cauchy. It is sufficient to show that G is near in X . For each i ∈ I, πiG is
a maximal open filter on X and it is easy to see that πiG is αi-Cauchy. Therefore,
πiG is near in Xi. In order to show that G is near in X , let U be a uniform cover
of X . There exists a finite subset J of I and there exists a family (Bi)i∈J such that
Bi is a uniform cover of Xi and

∧

i∈J π−1
i Bi refines U .

For each i ∈ I there exists Bi ∈ Bi which meets every member of πiG. There exists
U ∈ U such that

⋂

i∈J

π−1
i Bi ⊂ U

The maximality of πiG guarantees that Bi ∈ πiG. For each i ∈ J , select Gi ∈ G
such that Bi = πiGi and define G =

⋂

i∈J Gi. Then G ∈ G, and since G ⊂ U ,
U ∈ G. Therefore, U meets every member of G and it follows that G is near in X .

�

10. Proposition. Cnstra is finitely summable in Near.

Proof: Let (fi : Xi → X)i∈I be a sum in Near with each Xi constrained and with
I finite. For each i ∈ I let αi demonstrate the constrainedness of Xi. Then the set

α =
{

⋃

i∈I

fiBi

∣

∣

∣
(Bi)i∈I ∈

∏

i∈I

αi

}

is a countable set of open uniform covers of X which demonstrates the constrained-
ness of X .

�

We end this section with a proposition which is an improvement on Proposition 6
in case we restrict our attention to weakly regular nearness spaces. Recall that
a nearness space X is called weakly regular provided that whenever A is far in X

then A is corefined by some far collection of sets which are open. (For a comparison
of weak regularity and other forms of regularity, see [BLC91].)
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11. Proposition. If X is a weakly regular space which is constrained, then every
subspace of X is constrained as well.

Proof: Let Y be a subspace of X and let α demonstrate the constrainedness of X .
We show that

β =
{

{Y } ∧ U
∣

∣

∣
U ∈ α

}

demonstrates the constrainedness of Y . Let G be an open β-Cauchy filter on Y and
define

F =
{

U ⊂ X
∣

∣

∣
U is open in X and G ⊂ U for some G ∈ G

}

.

One easily sees that F is α-Cauchy and from that it follows that F is near in X .
Since X is weakly regular, it follows that G is near in X , hence also in Y . �

Strongly Čech complete extensions: controlled spaces

12. Definition. A nearness space X is said to be controlled iff there exists
a countable set α of open uniform covers of X such that every open α-Cauchy filter
is Cauchy in X (as before “open” means open in the underlying topological space
TX of X).

We let Cntrol denote the full subcategory of Near consisting of all controlled
spaces.

13. Proposition. A symmetric topological space is strongly Čech complete iff as
a nearness space it is controlled.

The underlying topological space TX of a controlled nearness space X can fail
to be controlled (i.e., strongly Čech complete). (See Example 2.)
Proofs of the propositions appearing in this section are omitted since they are

either simpler than or somewhat analogous to the ones on constrained spaces.

14. Proposition. Let X and Y be nearness spaces and let f : X → Y be a strict
dense map. Then X is controlled iff Y is controlled.

The following proposition shows that controlled spaces are better behaved than
constrained ones (cf. Propositions 6 and 11).

15. Proposition. Cntrol is hereditary in Near.

16. Corollary. A nearness space is controlled if and only if its completion is
controlled.

The above results make evident the proof of the following theorem, which is the
second one of our main results.

17. Theorem. Let X be a nearness space. Then the following are equivalent:

(1) X carries the nearness structure induced by a strongly Čech complete strict
extension TX → Y with Y a symmetric topological space.

(2) X is concrete and controlled.
(3) The completion of X is both topological and strongly Čech complete.
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Controlled merotopic spaces

By relaxing the close tie with topological spaces and moving our investigation
to the setting of merotopic spaces, we can get some additional insight into the
controlled spaces.
Katětov [Ka62], [Ka65] originally axiomatized merotopic spaces by means of

the micromeric (or Cauchy) collections, but he showed that they can be obtained
equivalently by means of uniform covers. A merotopic space is a set X together
with a collection of covers that satisfy all of the axioms for a uniform structure
[Tu40] except (possibly) the star refinement axiom. Herrlich [He74a] has shown that
merotopic structures can be equivalently described by axiomatizing the concept of
near collections. We let Mer denote the category of all merotopic spaces.

Fil denotes the category of all filter spaces, i.e., those merotopic spaces X such
that every micromeric collection is corefined by some Cauchy (i.e., micromeric)
filter (equivalently, every near collection is contained in some near grill [Ro75],
[BHR76]). Recall that Fil is bicoreflective in Mer: for each merotopic space X , the
Fil bicoreflection Fil X → X is the identity map on the set level and Fil X is defined
by requiring that a collection A is micromeric in Fil X if and only if there exists
a Cauchy filter F on X which corefines A.
The following characterization of initial maps in Fil appears in [Ka65] (note that

Katětov used the terminology “projective” instead of “initial”). See also [He74b]
and [LC89]).

18. Proposition. Let X and Y be filter spaces and let f : X → Y be a uniformly
continuous map. Then the following are equivalent:

(1) f : X → Y is initial in Fil.
(2) For any filter F on X , if fF is micromeric in Y then F is a Cauchy filter
on X .

We lift the concept of controlledness to Mer.

19. Definition. A merotopic space X is said to be controlled iff there exists
a countable set α of uniform covers of X such that every α-Cauchy filter is Cauchy
in X .

In order to shorten the language, whenever α is a countable set of covers of
a merotopic space X such that every α-Cauchy filter is Cauchy in X , then we shall
say that α demonstrates the controlledness of X , or equivalently, that X is
controlled by α.

20. Proposition. A nearness space is a controlled nearness space (as defined
in Definition 12) if and only if it is a controlled merotopic space (as defined in
Definition 19).

Proof: The proof can be easily given once the following observations are made
regarding a nearness space X .

(1) If α is a set of uniform covers of X then

α′ =
{

intU
∣

∣

∣
U ∈ α

}
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is a set of open uniform covers of X such that every open α′-Cauchy filter
is also α-Cauchy.

(2) If α is a set of open uniform covers of X and F is an α-Cauchy filter then

G =
{

G ⊂ X
∣

∣

∣
for some F ∈ F , F ⊂ intG

}

is an open α-Cauchy filter such that G ⊂ F . �

The following theorem is quite important in that it frequently enables one to
produce category theoretic proofs of propositions about controlled spaces (e.g., in
Propositions 24 and 27 below); it is preceded by a lemma.

21. Lemma. Let X be a controlled merotopic space. Then there exists a collection
α of uniform covers of X which demonstrates the controlledness of X such that

A,B ∈ α =⇒ A∧ B ∈ α.

22. Theorem. For any merotopic space X the following are equivalent:

(1) X is controlled.
(2) There exists a merotopic space Y having the same underlying set as X so
that Y has a countable base, with Fil X = Fil Y , and with id : X → Y being
uniformly continuous.

(3) There exists a merotopic space Y having a countable base and there exists
a uniformly continuous map f : X → Y with its Fil reflection f : FilX →
Fil Y an initial map in Fil.

23. Corollary. If X is controlled, then so is every X ′ with Fil (X ′) = Fil X and
with id : X ′ → X uniformly continuous.

24. Proposition. A merotopic space with a countable base is controlled.

Proof: Let X have a countable base and let Y = X . Observe that id : X → Y is
uniformly continuous and id : Fil X → Fil Y is initial. �

25. Corollary. Every discrete space and every indiscrete space is controlled.

Proof: If X is discrete then {A} is a base for uniform covers of X where A =
{

{x} |x ∈ X
}

. If X is indiscrete then
{

{X}
}

is a base for uniform covers of X .
�

We recall the nature of final sinks and initial sources in Mer. A sink (fi : Xi →
X)i∈I is final in Mer provided a cover A of X is a uniform cover of X iff for all

i ∈ I, f−1
i A is a uniform cover of Xi. A source (fi : X → Xi)i∈I is initial in Mer

provided a cover A of X is a uniform cover of X iff there exists a finite subset J of
I and a family (Bi)i∈J with Bi a uniform cover of Xi and with

∧

i∈J

(f−1
i Bi) a refinement of A.
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26. Proposition. The property of having a countable base is hereditary, countably
productive, and finitely summable in Mer.

Proof: The proof is given in [He88]: for hereditary see 3.1.11 (7), for countable
productivity see 3.2.12, and for finite summability see 3.3.13. �

27. Proposition. InMer, the property of being controlled is hereditary, countably
productive, and finitely summable.

Proof: The proof that controlledness is hereditary is straightforward. For finite
summability, one can give a direct proof analogous to the proof of Proposition 10.
Alternatively, one can construct a category theoretic proof using Theorem 22 and
Proposition 26.
For countable productivity, we will present a category theoretic proof. Let (fi :

X → Xi)i∈I be an initial source in Mer with each Xi controlled. By Theorem 22,
there exists uniformly continuous maps gi : Xi → Yi with Yi having a countable
base and with each single map gi : Fil Xi → Fil Yi being initial in Fil. Therefore,

(

fi : Fil X → Fil Xi

)

i∈I

is initial in Fil. By the preservation of initiality under composition, it follows that
(

gi ◦ fi : FilX → Fil Yi

)

i∈I

is initial in Fil. Let Y denote theMer product of the spaces (Yi)i∈I and let u : X → Y

be the product of the maps (gi ◦ fi)i∈I . Then it is not difficult to show that
u : Fil X → Fil Y is an initial map in Fil, and the proof is complete. �

Controlled nearness spaces revisited

Because of its close relationship with Top as exemplified in the possibility of
studying extensions internally (Theorems 8 and 17), we are interested more in
the category Near than in the category Mer. Therefore, we now present the ideas
which enable us to modify the characterization of controlled merotopic spaces given
in Theorem 22 to obtain a similar characterization of a wide class of controlled
nearness spaces.
The following notion, due to Brandenburg [Br77], is crucial.

28. Definition. Let β be a collection of covers of a set X .

(1) For A ⊂ X , we define

intβ A =
{

x ∈ X
∣

∣

∣
star(x,B) ⊂ A for some B ∈ β

}

.

(2) For A a collection of subsets of X , we define

intβ A =
{

intβ A
∣

∣

∣
A ∈ A

}

.

(3) The collection β is called kernel-normal iff for each A ∈ β there exists
B ∈ β such that B refines intβ A.
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29. Proposition. If α is a kernel normal collection of covers of a set X , then

β =
{

n
∧

i=1

Ai

∣

∣

∣
A1, · · · ,An ∈ α

}

is a kernel normal collection of covers of X .

We let Subtop denote the subcategory of Near whose objects are the subtopo-
logical nearness spaces, i.e., those nearness spaces which are a subspace of some
symmetric topological space. Robertson has proved [Ro75], [BHR76], that

Subtop = Near ∩ Fil.

It is known [Be75] that Subtop is bicoreflective in Near and [Ro75] that its bicore-
flector is the restriction of the bicoreflector Mer → Fil. Also, Subtop is bireflective
in Fil and its bireflector is the restriction of the bireflector Mer → Near.

We need the following result.

30. Proposition. Let X and Y be subtopological nearness spaces and let f : X →
Y be a map. Then f : X → Y is initial in Subtop iff f : X → Y is initial in Fil.

The following theorem is our desired analogue of Theorem 22; it is preceded by
a lemma.

31. Lemma. Let X be a nearness space. Then the following are equivalent:

(1) X is controlled by a kernel normal collection of uniform covers of X .
(2) X is controlled by a kernel normal collection of open uniform covers of X .
(3) X is controlled by a kernel normal collection α of open uniform covers of X
such that

A,B ∈ α =⇒ A∧ B ∈ α.

32. Theorem. For any nearness space, the following are equivalent:

(1) X is controlled by some α which is kernel-normal.
(2) There exists a nearness space Y having the same underlying set as X so
that Y has a countable base, with SX = SY , and with id : X → Y being
uniformly continuous.

(3) There exists a nearness space Y with a countable base and there exists
a uniformly continuous map f : X → Y such that f : SX → SY is an initial
map in Subtop.

33. Question. Do there exist nearness spaces which are controlled but which are
not controlled by a kernel normal collection of uniform covers?
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Čech complete nearness spaces

We introduce the concept of Čech complete nearness spaces. These spaces have
a kind of dual citizenship, i.e., Čech completeness is a hybrid concept partaking
partly of the notion of a constrained nearness space and partly of the notion of
the underlying topological space being Čech complete. Other than to point out the
obvious relationships, we do not study these spaces here.

34. Definition. We say that a nearness space X is Čech complete provided
there exists a countable collection of uniform covers ofX which is a weakly complete
collection of open covers of TX .

35. Proposition. If X is a Čech complete nearness space then its underlying
topological space TX is a Čech complete topological space.

36. Proposition. Every Čech complete nearness space is constrained.

Strongly Čech complete nearness spaces

Analogous to the Čech complete nearness spaces there are the strongly Čech
complete nearness spaces. The remarks we made in the preceding section about
Čech complete nearness spaces apply as well to strongly Čech complete nearness
spaces.

37. Definition. We say that a nearness spaceX is strongly Čech complete pro-
vided there exists a countable collection of uniform covers of X which is a complete
collection of open covers of TX .

Clearly every strongly Čech complete nearness space is also Čech complete.

38. Proposition. If X is a strongly Čech complete nearness space then its under-
lying topological space TX is a strongly Čech complete topological space.

39. Proposition. Every strongly Čech complete nearness space is controlled.

Examples

Example 1. There exists a constrained space X with TX not constrained. Let Z

be a Tychonoff space which is not Čech complete (e.g., the space of rational numbers
with its usual topology). By Proposition 5, Z is not constrained. Let X be the
nearness space with the same underlying set as Z and having the structure induced
by the Stone-Čech compactification Z → βZ. Then X is a nearness subspace of βZ;
in fact, βZ is the completion of X . βZ, being a compact Hausdorff space, is Čech
complete, hence is constrained. By Proposition 7, X is constrained. But TX = Z

is not constrained.

Example 2. There exists a controlled space X with TX not controlled. Let Z

be a Tychonoff space which is not strongly Čech complete (again, e.g., the rational
numbers) and proceed as in Example 1.
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