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Convergence theorems for the Perron

integral and Sklyarenko’s condition

Štefan Schwabik

Abstract. It is shown that a uniform version of Sklyarenko’s integrability condition for
Perron integrals together with pointwise convergence of a sequence of integrable functions
are sufficient for a convergence theorem for Perron integrals.

Keywords: Kurzweil–Henstock integral, Perron integral

Classification: 26A39

A finite sequence of numbers

D = {α0, τ1, α1, . . . , αk−1, τk, αk}

is called a partition (or division) of the interval [a, b] if

a = α0 < α1 < · · · < αk−1 < αk = b

and
αj−1 ≤ τj ≤ αj , j = 1, 2, . . . , k.

Given an arbitrary positive function δ : [a, b] 7→ (0,+∞), called a gauge on [a, b],
the partition D is said to be δ-fine if

[αj−1, αj ] ⊂ [τj − δ(τj), τj + δ(τj)]

for j = 1, 2, . . . , k.

Definition 1 (Kurzweil, Henstock). A function f : [a, b] 7→ R is said to be
integrable to the value I ∈ R on [a, b] if for every ε > 0 there is a gauge δ on [a, b]
such that

|

k
∑

j=1

f(τj)(αj − αj−1)− I| < ε

for every δ-fine partition of [a, b]. The value I will be denoted by
∫ b
a f(s) ds or

shortly also
∫ b
a f .

For a given f : [a, b] 7→ R and a partition D of [a, b] we use the notation

S(f, D) =

k
∑

j=1

f(τj)(αj − αj−1)

for the corresponding Riemann type integral sum.
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Remark. Definition 1 belongs to J. Kurzweil (1957) and R. Henstock (1961). It is
well known that this definition of an integral is equivalent to the classical concept of
the Perron integral described e.g. in [8]. There is a still growing series of monographs
and textbooks on this type of integration (see e.g. [1], [2], [3], [4], [5], [6]).

Theorem 1. A function f : [a, b] 7→ R is integrable over [a, b] if and only if there
exists F : [a, b] 7→ R and for every ε > 0 there is a δ : [a, b] 7→ (0,+∞) and
a nondecreasing µ : [a, b] 7→ R with µ(a) = 0 , µ(b) ≤ ε such that

(1) |F (x+ h)− F (x)− h.f(x)| ≤ |µ(x + h)− µ(x)|

provided x, x+ h ∈ [a, b] and 0 ≤ |h| < δ(x).

Remark. Theorem 1 gives a Sklyarenko-type necessary and sufficient condition
for integrability of a function. The original result of Sklyarenko was given and
proved in [9] for the Denjoy definition of the integral. The function µ in the original
Sklyarenko’s theorem is assumed to be absolutely continuous in addition to our
requirements. A proof of the result based on the sum definition of the integral
in the form given in Definition 1 can be also given. We postpone the proof of this
result, because the result follows from a more general statement which will be stated
later.
It is easy to show that if the function f : [a, b] 7→ R is integrable then for every

α, β, a ≤ α ≤ β ≤ b we have

∫ β

α

f(s) ds = F (β) − F (α)

where F : [a, b] 7→ R is the function given by Theorem 2. This means in fact that
the function F is an indefinite integral corresponding to the integrable function f .

Definition 2. A system G of functions f : [a, b] 7→ R is called equi-integrable if

(a) every f ∈ G is integrable (in the sense of Definition 1)
(b) to every ε > 0 there exists a gauge δ : [a, b] 7→ (0,+∞) such that for every

δ-fine partition D and any f ∈ G the inequality

|S(f, D)−

∫ b

a

f(s) ds| = |

k
∑

j=1

f(τj)(αj − αj−1)−

∫ b

a

f(s) ds| < ε

holds.

Theorem 2. Let fm : [a, b] 7→ R, m = 1, 2, . . . be a sequence of functions such
that

(2) lim
m→∞

fm(s) = f(s) for s ∈ [a, b].

If the sequence (fm) is an equi-integrable system then the function f is integrable

and

lim
m→∞

∫ b

a

fm(s) ds =

∫ b

a

f(s) ds.
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Proof: Let ε > 0 be given. By Definition 2 there is a gauge δ on [a, b] such that
for every δ-fine partition

D = {α0, τ1, α1, . . . , αk−1, τk, αk}

of [a, b] we have

|S(fm, D)−

∫ b

a
fm| <

ε

2

for m = 1, 2, . . . . By (2) for every fixed partition D of [a, b] there exists a positive
integer m0 such that for m > m0 the inequality

|S(fm, D)− S(f, D)| =

= |

k
∑

j=1

[

fm(τj)(αj − αj−1)− f(τj)(αj − αj−1)
]

| <
ε

2

holds and this means that

lim
m→∞

S(fm, D) = S(f, D).

Therefore for any δ-fine partition D of [a, b] there is a positive integer m0 such that
for m > m0 we have

(3) |S(f, D)−

∫ b

a

fm| < ε.

First we get from (3) that for all positive integers m, l > m0 the inequality

|

∫ b

a

fm −

∫ b

a

fl| < 2ε

holds. This means that (
∫ b
a fm)

∞

m=1 is a Cauchy sequence in R and it has therefore
a limit

(4) lim
m→∞

∫ b

a

fm = H ∈ R.

The second consequence of (3) is the inequality

|S(f, D)− H | ≤ |S(f, D)−

∫ b

a

fm|+ |

∫ b

a

fm − H | < ε+ |

∫ b

a

fm − H |.

By (4) we obtain from this inequality immediately that for every δ-fine partition D

of [a, b] we have
|S(f, D)− H | < ε

and this means that the integral
∫ b
a f exists and that (4) is satisfied. �
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Remark. Theorem 2 plays a central role in the theory of the Perron integral for
the setting given by Kurzweil’s sum Definition 1. Definition 1 makes transparent
that the integral is in a certain sense the result of a “limit process”. Therefore the
problem of the convergence theorem becomes the problem of interchanging of two
“limiting” processes. It is commonly accepted and known even from elementary
calculus courses that two limits can be interchanged if one of the limits is uniform.
The first possibility when the limit in (2) is uniform leads to a convergence result
which is well known even for the Riemann integral and is not of sufficient power
for applications. The other possibility is given by the theorem above in which the
concept of equi-integrability of the sequence (fm) expresses the uniformity with
respect to m of the “limiting” process of integration. Consequently the proof is also
easy because in fact it follows the classical lines of proving the interchangeability of
two limits when one of them is uniform, see also [6], [7] and [10].

Theorem 3. Let F be a system of functions f : [a, b] 7→ R. The following two

conditions are equivalent.

(a) F is equi-integrable
(b) For every f ∈ F there is a Ff : [a, b] 7→ R and for any ε > 0 there is a gauge

δ : [a, b] 7→ (0,+∞) (independent of f) and a nondecreasing µf : [a, b] 7→ R

such that µf (a) = 0, µf (b) ≤ ε and

(5) |Ff (x+ h)− Ff (x) − h.f(x)| ≤ |µf (x + h)− µf (x)|

provided x, x+ h ∈ [a, b], 0 ≤ |h| ≤ δ(x).

Proof: First let us assume that the condition (b) is satisfied. Let ε > 0 be given
and assume that

D = {α0, τ1, α1, . . . , αk−1, τk, αk}

is an arbitrary δ-fine partition of [a, b] where the gauge δ corresponds to ε by the
condition (b) and is independent of f ∈ F . Then using the inequality from (b) we
obtain

|

k
∑

i=1

f(τi)(αi − αi−1)− (Ff (b)− Ff (a))| =

=|

k
∑

i=1

f(τi)(αi − αi−1)− [Ff (αi)− Ff (αi−1)]| =

=|

k
∑

i=1

f(τi)(αi − τi) + f(τi)(τi − αi−1)− [Ff (αi)− Ff (τi) + Ff (τi)− Ff (αi−1)]| ≤

≤
k

∑

i=1

{|f(τi)(αi − τi)− [Ff (αi)− Ff (τi)]|+

+ |f(τi)(τi − αi−1) + [Ff (τi)− Ff (αi−1)]|} ≤

≤
k

∑

i=1

[µf (αi)− µf (τi) + µf (τi)− µf (αi−1)] =
k

∑

i=1

[µf (αi)− µf (αi−1)] = µf (b) ≤ ε.
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Hence by definition
∫ b
a f(s) ds exists, its value is Ff (b) − Ff (a) and because the

gauge δ does not depend on the choice of f from the system F , the system is
equi-integrable by Definition 2.
Assume that the condition (a) is satisfied (F is equi-integrable in the sense of

Definition 2), i.e. for every ε > 0 there is a gauge δ on [a, b] such that

(6) |S(f, D)−

∫ b

a
f(s) ds| <

ε

2

for every δ-fine partition

D = {α0, τ1, α1, . . . , αk−1, τk, αk}

of [a, b] where S(f, D) =
∑k

i=1 f(τi).(αi − αi−1) and f ∈ F is arbitrary. Denote

Ff (x) =

∫ x

a

f(s) ds for x ∈ [a, b] and f ∈ F .

If a ≤ x < y ≤ b we set

F[x,y] = {g : [x, y] 7→ R; g(s) = f(s), s ∈ [x, y], f ∈ F}.

It is easy to observe that the system F[x,y] is equi-integrable (with the same gauge

δ corresponding to ε > 0 by Definition 2). Hence for every η > 0 there is a
δ1 : [x, y] 7→ (0,+∞) , δ1(ξ) ≤ δ(ξ) for ξ ∈ [x, y] such that for every δ1-fine partition
D1[x,y] of [x, y] we have

(7) |S(f, D1[x,y])−

∫ y

x
f(s) ds| < η for any f ∈ F

where S(f, D1[x,y]) is the integral sum corresponding to the partition D1[x,y]. For

z ∈ [a, b] denote by D[a,z] an arbitrary δ-fine partition of [a, z].

Define

Mf (a) = 0, Mf (x) = sup
D[a,x]

S(f, D[a,x])

and

mf (a) = 0, mf (x) = inf
D[a,x]

S(f, D[a,x])

for x ∈ (a, b] where the supremum and the infimum are taken over all δ-fine parti-
tions of [a, x]. Then

D[a,x] ◦ D1[x,y] = D[a,y]
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is a δ-fine partition of [a, y] where by ◦ the union of partitions is denoted and

S(f, D[a,x]) + S(f, D1[x,y]) = S(f, D[a,y]).

By the definition of Mf , mf respectively we get

mf (y) ≤ S(f, D[a,x]) + S(f, D1[x,y]) = S(f, D[a,y]) ≤ Mf (y)

and also

mf (y) ≤ mf (x) + S(f, D1[x,y]) ≤ Mf (x) + S(f, D1[x,y]) ≤ Mf (y).

Taking (7) into account we conclude that for every η > 0 the inequalities

(8) mf (y)− mf (x)− η <

∫ y

x

f(s) ds < Mf (y)− Mf (x) + η

hold and therefore for every a ≤ x ≤ y ≤ b we have

(9) mf (y)− mf (x) ≤

∫ y

x

f(s) ds ≤ Mf (y)− Mf (x)

because η > 0 in (8) can be chosen arbitrarily.
Assume now that x ∈ [a, b] and 0 ≤ h < δ(x). Then

S(f, D[a,x]) + h.f(x) = S(f, D[a,x+h])

where D[a,x+h] = D[a,x] ◦ {x, x, x+ h} and consequently also

Mf (x) + f(x).h ≤ Mf (x+ h).

Similarly we obtain also mf (x+ h) ≤ mf (x) + f(x).h , i.e.

(10) mf (x+ h)− mf (x) ≤ f(x).h ≤ Mf (x+ h)− Mf (x);

for the case −δ(x) < h ≤ 0 we get analogous inequalities.
Using (9) for y = x+ h and (10) we get

mf (x+ h)− mf (x)− Mf (x + h) +Mf (x) ≤

∫ x+h

x

f(s) ds − h.f(x) ≤

≤ Mf (x+ h)− Mf (x) − mf (x+ h) +mf (x),

i.e.

|

∫ x+h

x
f(s) ds − h.f(x)| ≤

≤ |Mf (x+ h)− Mf (x)− mf (x + h) +mf (x)| = |µf (x+ h)− µf (x)|
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for x, x + h ∈ [a, b], 0 ≤ |h| < δ(x) where µf (x) = Mf (x) − mf (x) for x ∈ [a, b].
Hence

|Ff (x+ h)− Ff (x) − h.f(x)| ≤ |µf (x + h)− µf (x)|

provided x, x+h ∈ [a, b], and 0 ≤ |h| < δ(x), i.e. (1) is satisfied. It remains to show
that the function µf given by

µf (x) =Mf (x) − mf (x)

for x ∈ [a, b] satisfies all the properties stated in the theorem. We have evidently
µf (a) = 0. Using the definition of Mf and mf we obtain easily f(x).(y2 − y1) +
Mf (y1) ≤ Mf (y2), i.e.

f(x) ≤
Mf (y2)− Mf (y1)

y2 − y1

provided a ≤ y1 ≤ x ≤ y2 ≤ b, |yi − x| < δ(x), i = 1, 2 and similarly also

mf (y2)− mf (y1)

y2 − y1
≤ f(x)

for such x, y1, y2. Hence

µf (y2)− µf (y1)

y2 − y1
=

Mf (y2)− Mf (y1)

y2 − y1
−

mf (y2)− mf (y1)

y2 − y1
≥ f(x)− f(x) = 0

for a ≤ y1 ≤ x ≤ y2 ≤ b, |yi − x| < δ(x), i = 1, 2 and

µf (x+ h)− µf (x)

h
≥ 0

for 0 < |h| < δ(x). Hence

Dµf (x) = lim inf
h→0

µf (x+ h)− µf (x)

h
≥ 0

for every x ∈ [a, b]. Consequently the function µf is nondecreasing on [a, b]. By (6)
we get

∫ b

a

f(s) ds −
ε

2
< S(f, D[a,b]) <

∫ b

a

f(s) ds+
ε

2
.

Consequently we have

∫ b

a
f(s) ds −

ε

2
≤ mf (b) ≤ Mf (b) ≤

∫ b

a
f(s) ds+

ε

2
.

and
0 ≤ µf (b) =Mf (b)− mf (b) ≤ ε.

Since δ does not depend on the choice of f ∈ F by the assumption of equi-
integrability, it is easy to see that the condition (b) is satisfied.

�
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Remark. The condition (b) represents a uniform version of Sklyarenko’s condition
given in Theorem 1 for a system F of functions. Theorem 3 shows the equivalence of
the uniform Sklyarenko condition and the equi-integrability. Hence the requirement
of equi-integrability of the pointwise convergent sequence (fm)

∞

m=1 in Theorem 2
can be replaced by the condition (b) for the sequence (fm)

∞

m=1. Moreover we are
now in the position to give a simple proof of the Sklyarenko-type Theorem 1.

Proof of Theorem 2: If the system of functions F consists of a single function
f : [a, b] 7→ R then the equi-integrability of F reduces to the integrability of f and
the uniform Sklyarenko condition (b) from Theorem 3 is the same as the Sklyarenko
condition (1) given in Theorem 1. Hence Theorem 1 is a corollary of Theorem 3.

�
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