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On embeddings into Cp(X) where X is Lindelöf

Masami Sakai

Abstract. A.V. Arkhangel’skii asked that, is it true that every space Y of countable tight-
ness is homeomorphic to a subspace (to a closed subspace) of Cp(X) where X is Lindelöf?
Cp(X) denotes the space of all continuous real-valued functions on a space X with the
topology of pointwise convergence. In this note we show that the two arrows space is
a counterexample for the problem by showing that every separable compact linearly or-
dered topological space is second countable if it is homeomorphic to a subspace of Cp(X)
where X is Lindelöf. Other counterexamples for the problem are also given by making use
of the Cantor tree. In addition, we remark that every separable supercompact space is
first countable if it is homeomorphic to a subspace of Cp(X) where X is Lindelöf.

Keywords: function space, pointwise convergence, linearly ordered topological space, Lin-
delöf space, Cantor tree

Classification: 54C25, 54C35, 54D20

1. Introduction.

In this paper we assume all spaces are Tychonoff topological spaces. N de-
notes the positive integers. Let ω (resp. ω1) denote the first infinite (resp. first
uncountable) ordinal. As usual, we often regard an ordinal as the set of smaller
ordinals. Unexplained notions and terminology are the same as in [2]. We de-
note by Cp(X) the space of all continuous real-valued functions on a space X with
the topology of pointwise convergence. Basic open sets of Cp(X) are of the form
[x1, x2, . . . , xk;U1, U2, . . . , Uk] = {f ∈ Cp(X) : f(xi) ∈ Ui i = 1, 2, . . . , k}, where
k ∈ N , xi ∈ X and each Ui is an open subset of the real-line R. Canonically Cp(X)

is the dense subspace of RX .
In [1, Problem 16] A.V. Arkhangel’skii asked that, is it true that every space Y

of countable tightness is homeomorphic to a subspace of Cp(X) where X is Linde-
löf? In this note we give a compact first countable counterexample for the problem.
In fact, we show that every separable compact linearly ordered topological space
(abbreviated LOTS) is second countable if it is homeomorphic to a subspace of
Cp(X) where X is Lindelöf. Hence the two arrows space [2, 3.10. C] is a compact
first countable counterexample for the problem. Moreover, we show that a first
countable compactification of the Cantor tree and the one-point compactification of
the Cantor tree are also counterexamples for the problem. In addition, we remark
that every separable supercompact space is first countable if it is homeomorphic to
a subspace of Cp(X) where X is Lindelöf (cf. Theorem 2).

2. Results.

The following lemma seems to be well known. As a survey of a LOTS, see [3].
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Lemma 1. Let (X, <) be a separable LOTS, where < is an order on X . If the
number of points with an immediate successor is countable, then X is second count-
able.

Proof: LetD be a countable dense subset ofX . Let P (resp. S) be the set of points
with an immediate successor (resp. predecessor). Then the collection {Ax, Bx : x ∈
D ∪ P ∪ S} is a countable open subbase of X , where Ax = {y ∈ X : y < x} and
Bx = {y ∈ X : y > x}. �

Let Y be a subset of a space X . We set e(Y, X) = sup{|S| : S ⊂ Y and S
is closed discrete in X}. If X is Lindelöf, then for every subset Y of X , e(Y, X)
is countable. We say that a subset Y of Cp(X) separates points of X if for any
distinct x1, x2 ∈ X there is an f ∈ Y such that f(x1) 6= f(x2). For a set X we set
[X ]ω1 = {Y : Y ⊂ X and |Y | = ω1}.

Theorem 1. Let (X, <) be a separable compact LOTS. If there is a subset Y
of Cp(X) which separates points of X with e(Y, Cp(X)) ≤ ω, then X is second

countable.

Proof: Let D be a countable dense subset of X . By Lemma 1 we have only to
prove that the number of points with an immediate successor is countable. Assume
the contrary. Let {aα : α < ω1} be a set of points with an immediate successor.
Let bα be the immediate successor of aα. Since the number of isolated points in X
is countable, we may assume that aα and bα are not isolated. Moreover, we may
assume D ∩ {aα, bα : α < ω1} = ∅. For each α < ω1 we choose an fα ∈ Y
such that fα(aα) 6= fα(bα). Since the real-line R is second countable, there are an
M0 ∈ [ω1]

ω1 and disjoint closed intervals I0, I1 in R such that fα(aα) ∈ Int I0 and
fα(bα) ∈ Int I1 for every α ∈ M0. For every α ∈ M0 we choose cα, dα ∈ D such
that cα < aα, bα < dα, fα([cα, aα]) ⊂ Int I0 and fα([bα, dα]) ⊂ Int I1. There are
an M1 ∈ [M0]

ω1 and c, d ∈ D such that c < aα, bα < d, fα([c, aα]) ⊂ Int I0 and
fα([bα, d]) ⊂ Int I1 for every α ∈ M1.

We put F = {fα : α ∈ M1}. We would like to show that F is closed discrete
in Cp(X). Let π be the projection from Cp(X) onto Cp([c, d]). Note that π(fα) 6=
π(fβ) for distinct α, β ∈ M1. We have only to show that π(F ) is closed discrete in

Cp([c, d]). Assume f ∈ π(F ) for an f ∈ Cp([c, d]), then obviously f([c, d]) ⊂ I0 ∪ I1,
f(c) ∈ I0 and f(d) ∈ I1. We set b = min{x : f(x) ∈ I1} and a = max{x : c ≤ x
< b}, b and a exist because X is compact and f is continuous. [a, b;R−I1, R−I0] is
a neighborhood of f , but it is easy to see that |[a, b;R−I1, R−I0]∩π(F )| ≤ 1. This
means that π(F ) is closed discrete in Cp([c, d]). Consequently e(Y, Cp(X)) > ω.

�

Corollary 1. Let X be a separable compact LOTS which is homeomorphic to
a subspace of Cp(X). If Y has a dense subset D such that e(D, Y ) ≤ ω, then X is
second countable.

Proof: Let j be an embedding from X into Cp(Y ). We define a map i from Y to
Cp(X) by i(y) (x) = j(x) (y). Note that i is continuous and i(Y ) separates points
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of X . Since i(D) is dense in i(Y ), i(D) also separates points of X . Therefore, by
Theorem 1, X is second countable because of e(i(D), Cp(X)) ≤ ω. �

Corollary 2. Let X be a separable compact LOTS. If X is homeomorphic to

a subspace of Cp(Y ) where Y is Lindelöf, then X is second countable.

Example 1. LetX be the two arrows space of Alexandroff and Urysohn [2, 3.10. C].
It is known that X is first countable, separable compact LOTS which is not second
countable. By virtue of Corollary 2, X is a compact first countable counterexample
for Arkhangel’skii’s problem.

It is known that every compact LOTS is supercompact [4]. However, the author
does not know whether every separable supercompact space is second countable if
it is homeomorphic to a subspace of Cp(X) where X is Lindelöf. At least, such
a space is first countable, see Theorem 2.
We give other counterexamples for the problem. Those spaces are given in [4,

1.1.17, 1.1.18] as examples of compact spaces which are not the continuous image
of a supercompact space. We start with the Cantor tree. Let ω2 be the set of
functions from ω to 2 = {0, 1}. We set ω

˜ 2 = {f |n : f ∈ ω2, n ∈ ω}, where f |n
is the restriction of f to the domain n. In other words, ω

˜ 2 is the set of finite
sequences of 0’s and 1’s. Then the set T = ω

˜ 2 ∪
ω2 is a tree by the usual partial

order ⊂. Exactly speaking, f ⊂ g means that g is an extension of f . We equip T
with the tree topology. Every point of ω˜ 2 is isolated and basic open sets of a point
f ∈ ω2 are of the form {f}∪ {f |m : m ≥ n}, where n ∈ ω. T is first countable and
locally compact. Let K be the first countable compactification of T constructed by
J. van Mill in [4, 1.1.17]. For the sake of completeness we cite the construction.
Let K be {0} × ω

˜ 2 ∪ {1, 2} × ω2. We topologize K by assigning to each x ∈ K
a neighborhood base {U(x, n) : n ∈ ω}. For 〈i, f〉 ∈ K define

U(〈i, f〉, n) =





{〈i, f〉} if i = 0

{〈i, f〉} ∪ {〈0, f |m〉 : m ≥ n} if i = 1

{〈j, g〉 ∈ K : j ∈ 3, f |n ⊂ g} − U(〈1, f〉, 0) if i = 2.

The space K is separable, compact and first countable, and the open subspace
{0} × ω

˜ 2 ∪ {1} × ω2 is homeomorphic to T .

Example 2. If Y is a subset of Cp(K) which separates points ofK, then e(Y, Cp(K))
> ω. Hence, by the same argument as the two arrows space, K is not homeomorphic
to any subspace of Cp(X) where X is Lindelöf.

Proof: Fix a subset {fα : α ∈ ω1} of
ω2. For every α ∈ ω1 we choose ϕα ∈ Y

such that ϕα(〈1, fα〉) 6= ϕα(〈2, fα〉). Without loss of generality, we may assume
ϕα(〈1, fα〉) < ϕα(〈2, fα〉) for every α ∈ ω1. We choose rational numbers pα and qα

with ϕα(〈1, fα〉) < pα < qα < ϕα(〈2, fα〉). For every α ∈ ω1 there is an nα ∈ ω
such that ϕα(x) < pα for every x ∈ U(〈1, fα〉, nα) and ϕα(x) < qα for every
x ∈ U(〈2, fα〉, nα). Since the variations of (pα, qα) and nα are countable, there are
an M0 ∈ [ω1]

ω1 , rational numbers p and q, and k ∈ ω such that:
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(1) p < q,
(2) ϕα(x) < p for every α ∈ M0 and x ∈ U(〈1, fα〉, k),
(3) ϕα(x) > q for every α ∈ M0 and x ∈ U(〈2, fα〉, k).

Moreover, since every n-th level of the tree T is finite, there is anM1 ∈ [M0]
ω1 such

that:

(4) fα | k = fβ | k for every α, β ∈ M1.

Note that U(〈2, fα〉, k) ∩ {2} × ω2 = U(〈2, fβ〉, k) ∩ {2} × ω2 for every α, β ∈ M1
by (4).
We set Φ = {ϕα : α ∈ M1}. We would like to show that Φ is closed and discrete

in Cp(K). It is easy to see that Φ is a discrete subspace of Cp(K), because of

[〈1, fα〉; (−∞, p)]∩Φ = {ϕα} for every α ∈ M1. Assume that there is a ϕ ∈ Φ−Φ.
We set s0 = fα | k (α ∈ M1), then for every α ∈ M1 ϕα(〈0, s0〉) = ϕα(〈0, fα | k〉) < p
by (2) and (4). Hence ϕ(〈0, s0〉) ≤ p. Let s1 and s̃1 be the successors of s0. We
put Φ(s1) = {ϕα ∈ Φ : fα | k + 1 = s1} and Φ(s̃1) = {ϕα ∈ Φ : fα | k + 1 = s̃1},

then Φ = Φ(s1)∪Φ(s̃1). Without loss of generality, we may assume ϕ ∈ Φ(s1). For
every ϕα ∈ Φ(s1) ϕα(〈0, s1〉) = ϕα(〈0, fα | k+1〉) < p by (2) and (4). By continuing
this operation we obtain a sequence s0 ⊂ s1 ⊂ s2 ⊂ . . . in ω

˜ 2 with ϕ(〈0, si〉) ≤ p
for every i ∈ ω. Let 〈1, g〉 ∈ {1} × ω2 be the limit point of {〈0, si〉 : i ∈ ω}, then
ϕ(〈1, g〉) ≤ p. We take an open neighborhood [〈1, g〉; (−∞, q)] of ϕ. It is not difficult
to see that |[〈1, g〉; (−∞, q)]∩Φ| ≤ 1. This is a contradiction. Φ is closed in Cp(K).
Consequently e(Y, Cp(K)) > ω. �

Let T ∗ = {∞} ∪ T be the one-point compactification of T . T ∗ is a separable
compact space with countable tightness. We need Šanin’s lemma [2, 2.7.10 (c)] to
prove the following Example 3.

Example 3. If Y is a subset of Cp(T
∗) which separates points of T ∗, then

e(Y, Cp(T
∗)) > ω. Hence T ∗ is not homeomorphic to any subspace of Cp(X) where

X is Lindelöf.

Proof: Fix a subset {fα : α ∈ ω1} of
ω2. For every α ∈ ω1 we choose ϕα ∈ Y such

that ϕα(∞) 6= ϕα(fα). Without loss of generality, we may assume ϕα(∞) < ϕα(fα)
for every α ∈ ω1. We choose rational numbers pα and qα with ϕα(∞) < pα < qα <
ϕα(fα) and

ω2 = {f ∈ ω2 : ϕα(f) < pα} ∪ {f ∈ ω2 : ϕα(f) > qα}. There
are an M0 ∈ [ω1]

ω1 and rational numbers p and q such that for every α ∈ M0
ϕα(∞) < p < q < ϕα(fα) and

ω2 = {f ∈ ω2 : ϕα(f) < p} ∪ {f ∈ ω2 : ϕα(f) > q}.
We set Fα = {f ∈ ω2 : ϕα(f) > q} for every α ∈ M0, then Fα is finite and fα ∈ Fα.
By Šanin’s lemma [2, 2.7.10 (c)], there are an M1 ∈ [M0]

ω1 and a finite set F such
that F = Fα ∩ Fβ for every distinct α, β ∈ M1. Since F is finite, without loss of
generality we may assume fα ∈ Fα − F for every α ∈ M1. For every α ∈ M1 we
choose nα ∈ ω with {f |n : f ∈ F, n ∈ ω}∩{fα |n : n ≥ nα} = ∅ and ϕα(fα |n) > q
for every n ≥ nα. Every n-th level of the tree T is finite, therefore there are an
M2 ∈ [M1]

ω1 , s0 ∈
ω
˜ 2 and k ∈ ω such that:

(1) s0 = fα | k for every α ∈ M2,
(2) {f |n : f ∈ F, n ∈ ω} ∩ {fα |n : n ≥ k} = ∅ for every α ∈ M2,
(3) ϕα(fα |n) > q for every α ∈ M2 and n ≥ k.
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We put Φ = {ϕα : α ∈ M2}. We would like to show that Φ is closed and discrete
in Cp(T

∗). It is easy to see that Φ is a discrete subspace of Cp(T
∗), because of

[fα; (q,∞)] ∩ Φ = {ϕα} for every α ∈ M2. Assume that there is a ϕ ∈ Φ − Φ. By
the same argument as Example 2, we obtain a sequence s0 ⊂ s1 ⊂ s2 < . . . in ω

˜ 2
with ϕ(si) ≥ q for every i ∈ ω. Let g ∈ ω2 be the limit point of {si : i ∈ ω}, then
ϕ(g) ≥ q and g ∈ ω2 − F by (2). [g; (p,∞)] is an open neighborhood of ϕ, it is
not difficult to see that |[g; (p,∞)] ∩ Φ| ≤ 1. This is a contradiction. Φ is closed in
Cp(T

∗). Consequently e(Y, Cp(T
∗)) > ω. �

In the rest of the paper, we prove Theorem 2.
Let U be an open collection in a space X . U is said to have property (∗) at x ∈ X

if U satisfies the following three conditions.

(1) x ∈ U for every U ∈ U ,
(2) y 6= x, then y ∈ X − U for some U ∈ U ,
(3) if F is a collection of finite subsets in X such that every U ∈ U contains
some F ∈ F , then there exists a countable subcollection H in F such that
every U ∈ U contains some H ∈ H.

If a point x ∈ X is a Gδ-point, then x has an open collection in X which
has property (∗) at x. If X is compact, then the condition (2) implies that U
is an open subbase at x, “open subbase at x” means that the collection of finite
intersections from U is an open neighborhood base at x. We remark that an open
neighborhood base at x ∈ X has property (∗) at x iff p(x, X) = ω, where p(x, X) is
the supertightness of x in X . For the definition of supertightness, see [5].
For a space X we set Up(X) = {[x;Wn] : x ∈ X, n ∈ N}, where Wn =

(−1/n, 1/n) and [x;Wn] = {f ∈ Cp(X) : f(x) ∈ Wn}. Up(X) is the canonical
open subbase at f0 in Cp(X), where f0 is the constant function to 0.

Lemma 2. Up(X) has property (∗) at f0 if X is Lindelöf.

Proof: We have only to examine the condition (3). Let F be a collection of finite
subsets of Cp(X) such that every [x;Wn] ∈ Up(X) contains some Fn

x ∈ F . For
x ∈ X and n ∈ N , we set Un

x =
⋂
{f←(Wn) : f ∈ Fn

x }. Un
x is an open subset

of X which contains x. Since Un = {Un
x : x ∈ X} is an open cover of X and X is

Lindelöf, there exists a countable subset An of X such that Vn = {Un
x : x ∈ An}

is a subcover of Un. Put H = {Fn
x : x ∈

⋃
n∈N An, n ∈ N}. Obviously H is

a countable subset of F . Let [y;Wn] be an arbitrary element in Up(X). Then we
can find x ∈ An with y ∈ Un

x . This means Fn
x ⊂ [y;Wn]. �

Corollary 3. Let Y be a subspace of Cp(X) where X is Lindelöf. Then, for every
y ∈ Y there exists an open subbase at y in Y which has property (∗) at y.

Proof: We may assume y = f0, because Cp(X) is homogeneous. The collection
U = {Y ∩ U : U ∈ Up(X)} is an open subbase at y in Y which has property (∗)
at y. �

A closed subbase for a space is said to be binary if any of its linked (= every
two of its members meet) subcollections has nonvoid intersection. A space is said
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to be supercompact if it has a closed subbase which is binary [4]. Let S be a binary
subbase for a space X . For A ⊂ X , define I(A) ⊂ X by I(A) =

⋂
{S ∈ S : A ⊂ S}.

Lemma 3 [5, Lemma 2.1]. Let S be a binary subbase for X and let p ∈ X . If U
is a neighborhood of p and if A is a subset of X with p ∈ A, then there is a subset
B of A with p ∈ B and I(B) ⊂ U .

Formally the following Lemma 4 is a slight generalization of Theorem 2.2 in [5],
but the proof is quite similar to the proof of Mill and Mills. For the sake of com-
pleteness, we cite the proof.

Lemma 4. Let Y be a separable space which is a continuous image of a supercom-
pact space X . If there exists an open collection U in Y which has property (∗) at
y0 ∈ Y , then the character of y0 in Y is countable.

Proof: Let S be a binary subbase for X which is closed under arbitrary inter-
sections and let f : X → Y be a continuous surjection. Let {dn : n ∈ ω} be
a dense subspace of Y . For every U ∈ U we can find a finite subset J(U) of
S such that

⋃
J(U) ⊂ f←(U) and

⋃
J(U) is a neighborhood of f←(y0). Put

J(U) = {SU
0 , SU

1 , . . . , SU
n(U)}. Fix cn ∈ X with f(cn) = dn. For every k ∈ ω,

U ∈ U and i ∈ {0, 1, . . . n(U)}, we can choose a point ek
i (U) ∈ SU

i ∩
(⋂

{I({s, ck}) :

s ∈ SU
i }

)
, because S is binary. Put Ek(U) = {ek

0(U), e
k
1(U), . . . , e

k
n(U)(U)}. Since

every U ∈ U contains f(Ek(U)) and U has property (∗) at y0, for every k ∈ ω there

exists a countable subcollection Uk of U such that every U ∈ U contains f(Ek(V ))
for some V ∈ Uk. We claim that

⋂
{
⋃

J(U) : U ∈
⋃

k∈ω

Uk} ∩ {cn : n ∈ ω} = f←(y0) ∩ {cn : n ∈ ω} .

This means that the character of y0 in Y is countable. Assume that

x ∈
⋂

{
⋃

J(U) : U ∈
⋃

k∈ω

Uk} ∩ {cn : n ∈ ω} − f←(y0) ∩ {cn : n ∈ ω} .

Select an U0 ∈ U with f(x) ∈ Y − U0. By Lemma 3 there exists a subset C0
of {cn : n ∈ ω} such that x ∈ C0 and I(C0) ⊂ X − f←(U0). Note x ∈ I(C0).

Fix an arbitrary ck ∈ C0. U0 contains f(Ek(V )) for some V ∈ Uk. We select an

SV
i0

∈ J(V ) with x ∈ SV
i0
. Then,

ek
i0
(V ) ∈ SV

i0
∩

(⋂
{I({s, ck}) : s ∈ SV

i0
}
)
⊂ I({x, ck}) ⊂ I(C0) ⊂ X − f←(U0).

This is a contradiction, because of ek
i0
(V ) ∈ f←(U0). �

From Lemma 4 and Corollary 3, we obtain Theorem 2.

Theorem 2. Let Y be a separable space which is a continuous image of a super-
compact space. If Y is a subspace of Cp(X) where X is Lindelöf, then Y is first
countable.
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