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Smoothness for systems of degenerate

variational inequalities with natural growth

Martin Fuchs

Abstract. We extend a regularity theorem of Hildebrandt and Widman [3] to certain de-
generate systems of variational inequalities and prove Hölder-continuity of solutions which
are in some sense stationary.
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0. Introduction.

We consider systems of variational inequalities of the form

(0.1)

∫

Ω
A(u)|Du|p−2Du · D(v − u) dx ≥

∫

Ω
f(·, u, Du) · (v − u) dx

for all v ∈ K := H1,p(Ω, K) such that spt(u− v) ⊂⊂ Ω , where K is a convex set in

R
N and p denotes some real number in the interval [2, n] , n denoting the dimension
of the domain Ω . Our main purpose is to prove (partial) regularity for solutions
u ∈ K of (0.1) in the case that the right-hand side is of natural growth, i.e. we
require

| f(x, y, Q) | ≤ a · ( |Q|p + 1)

for some positive constant a. To my knowledge there is only a theorem of Hilde-
brandt and Widman [3] concerning the quadratic case p = 2 which can be summa-
rized as follows:

(0.2) If A ≥ λ > 0 and if a < λ/ diam K

is satisfied then any solution u of (0.1) is of class C0,α on the whole domain Ω .

Since these authors make use of the Green’s function technique it is rather clear
that for general p > 2 one has to find completely new arguments. We start with
the observation that (0.2) is sufficient to prove a Caccioppoli inequality for u giv-
ing Du ∈ L

q
loc for some q > p and hence partial regularity apart from a closed

singular set of vanishing Hn−q-measure. Of course the convexity of K is essential
in two ways: it is needed to derive Caccioppoli’s inequality and to show that local
solutions w of D( |Dw|p−2Dw) = 0 for boundary values u are admissible. Unfor-
tunately we did not succeed in proving everywhere regularity by the way giving
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a complete extension of the above mentioned theorem of Hildebrandt and Wid-
man. Our contribution concerns the following case: suppose that f is of the special
form f(x, y, Q) = 12 DA(y) |Q|p and that in addition u is a stationary point of the
functional F(u) :=

∫

ΩA(u) |Du|p dx with respect to reparametrizations of Ω . This
enables us to consider blow-up sequences at possible singularities which are shown
to converge strongly to a homogeneous (degree zero) tangent map u0 in the space

H1,ploc (Ω) and from (0.2) it follows that u0 must be trivial so that the singular set is
empty. Hence our main result can be summarized as follows:

Suppose that u ∈ K satisfies d
dt/0

F
(

u + t(v − u)
)

≥ 0 for all v ∈ K such

that spt(u − v) ⊂⊂ Ω . Then if (0.2) holds and if u is also stationary we have
u ∈ C0,α(Ω) .

1. Notations and results.

We here specify our assumptions and introduce some notations which will be used
throughout the paper. Let Br(x0) := {x ∈ R

n : |x − x0| < r} , we often write Br

when x0 is fixed and use the symbol B to denote the open unit ball with center
at 0 . For a compact convex set K in R

N and a real number 2 ≤ p < n we introduce
the class K := {u ∈ H1,p(B, RN ) : u(x) ∈ K a.e.} of all vector-valued Sobolev
functions with values in the prescribed set K. Moreover, we are given a smooth
function A : Rn → R with the property

(1.1) λ ≤ A(y), y ∈ K,

for some positive number λ. For the functions u ∈ K and balls Br(x0) ⊂ B we then
define the energy

F
(

u, Br(x0)
)

:=

∫

Br(x0)
A(u) |Du|p dx.

Theorem 1.1. Suppose u ∈ K satisfies

(1.2) lim
t↓0

t−1 ·
[

F
(

u+ t(v − u), B
)

−F(u, B)
]

≥ 0

for all v ∈ K with the property spt(u − v) ⊂⊂ B. Then, if the smallness condition

(1.3) sup
K

|DA| < 2 · λ · (diam K)−1

holds, we have u ∈ C0,α(B′) for some open subset B′ of B such that
Hn−p(B − B′) = 0.

Definition. A function u ∈ K is a stationary point of F(·, B) iff

(1.4)
d

dt/0
F(ut, B) = 0 , ut(x) := u

(

x+ t · X(x)
)

,

holds for all vectorfields X ∈ C10 (B, Rn).
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Theorem 1.2. Let u ∈ K denote a stationary point of F(·, B) which in addition
satisfies (1.2). Then u ∈ C0,α(B) provided the smallness condition (1.3) is satisfied.

Remarks:1) Theorems 1.1, 1.2 easily extend to functionals of the form

u →

∫

B
A(u) (aαβ Dαu · Dβu)p/2 dx

with elliptic coefficients aαβ : B → R.

2) We conjecture that (1.2), (1.3) are sufficient to prove everywhere regularity.

3) Under suitable smallness conditions relating λ , diam (K) and the growth con-
stant a in

|f(x, y, Q)| ≤ a( |Q|p + 1),

a partial regularity result in the spirit of Theorem 1.1 can be deduced for solutions
u ∈ K of the variational inequality

∫

B
A(u) |Du|p−2Du · (Dv − Du) dx ≥

≥

∫

B
f(·, u, Du) · (v − u) dx , v ∈ K , spt(u − v) ⊂⊂ B ,

but again we are unable to exclude singular points.

2. Proof of the partial regularity Theorem 1.1.

Clearly inequality (1.2) is equivalent to

(2.1)

∫

B
A(u) |Du|p−2Du · D(u − v) dx ≤

∫

B

1

2
DA(u) · (v − u) |Du|p dx

for all v ∈ K such that spt(u−v) ⊂⊂ B. Consider a ball B2R(x0) ⊂ B and a cut-off
function

η ∈ C10
(

B2R(x0), [0, 1]
)

, η = 1 on BR(x0) , |Dη| ≤ 2 · R−1 .

Then

v := u+ ηp(u2R − u) , u2R := −

∫

B2R(x0)
u dx ,

is admissible in (2.1) and a standard calculation using (1.3) implies Caccioppoli’s
inequality

(2.2)

∫

BR(x0)
|Du|p dx ≤ c1 · R

−p
∫

B2R(x0)
|u − u2R|

p dx

for some absolute constant c1 independent of u and the ball BR(x0). Quoting [G]
we find an exponent q > p such that

Du ∈ L
q
loc (B, RnN )
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and the following reverse Hölder inequality holds

(2.3)
(

−

∫

BR(x0)
|Du|q dx

)1/q
≤ c3

(

−

∫

B2R(x0)
|Du|p dx

)1/p
.

Let w ∈ H1,p
(

BR(x0), R
N

)

denote the unique minimizer of the functional

F0(v) := A(uR) ·

∫

BR(x0)
|Dv|p dx

for boundary values u |∂BR(x0) . Since u
(

BR(x0)
)

⊂ K and since K is convex,

one easily checks (for example by projecting v onto the set K) that v respects the
side condition and therefore is admissible in (2.1) provided we integrate over the
ball BR(x0) . As in [1, Lemma 3.3] we then can prove the following comparison
inequality

(2.4)

∫

BR(x0)
|Du − Dv|p dx ≤

≤ c4 ·
[

Rp−n
∫

BR(x0)
|Du|p dx

]1−p/q
∫

B2R(x0)
|Du|p dx .

Note that the proof of (2.4) combines (2.3) with standard ellipticity estimates. On
the other hand we know from [5] that

∫

Bρ(x0)
|Dv|p dx ≤ cr

( ρ

R

)n
∫

BR(x0)
|Dv|p dx , 0 < ρ ≤ R ,

which gives on account of (2.4):

Lemma 2.1. Suppose that u ∈ K satisfies (1.2) and that the smallness condi-
tion (1.3) holds. Then there exist constants ε, α ∈ (0, 1) (independent of u) with
the following property: If

(2.5) Rp−n
∫

BR(x0)
|Du|p dx < ε

holds for some ball BR(x0) ⊂ B then u ∈ C0,α
(

BR/2(x0)
)

and

|u(x)− u(y)| ≤ c · |x − y|α , x, y ∈ BR/2(x0) ,

with 0 < c < ∞ independent of u. �

This proves Theorem 1.1 and in view of Caccioppoli’s inequality (2.2) we see that
a point x0 ∈ B is a regular point if and only if

(2.5)′ −

∫

BR(x0)
|u − uR|

p dx < ε′

holds for some ball BR(x0) ⊂ B and a suitable small constant ε′ ∈ (0, 1) .
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3. Monotonicity and everywhere regularity.

The following lemma is essentially due to Price [4] (for p = 2).

Lemma 3.1. Let u ∈ K satisfy (1.4). Then we have

(3.1) 0 =

∫

B
A(u) |Du|p−2

[

|Du|2 divX − pDαu · DβuDαXβ]

dx

for all vectorfields X ∈ C10 (B, Rn) . �

By applying (3.1) to fields of the form

X (x) = γ (|x|)x

for a function γ ∈ C1(R) such that (0 < ρ < 1)

γ′ ≤ 0, γ = 1 on (−∞, ρ/2] , γ = 0 on (ρ,∞) ,

we get

Lemma 3.2 (Monotonicity formula). Suppose that u ∈ K satisfies (1.4). Then

Rp−n
∫

BR

A(u)|Du|p dx − rp−n
∫

Br

A(u)|Du|p dx

= p ·

∫

BR−Br

A(u)|Du|p−2 · |Dru|
2 · |x|p−n dx

holds for balls Br(0) ⊂ BR(0) ⊂ B.

Remarks:1) Dru denotes the radial derivative:Dru
i(x) := ∇ui(x) · x

|x|
.

2) A similar formula is valid for balls with center x0 ∈ B.

We now come to the proof of Theorem 1.2: Let all the assumptions of Theorem 1.2
hold; it clearly suffices to show

(3.2) lim
R↓0

Rp−n
∫

BR(0)
|Du|p dx = 0 ,

i.e. 0 ∈ Reg (u) (= the regular set of u ). To this purpose define a sequence rk ↓ 0
and consider the scaled maps uk(z) := u(rkz), z ∈ B, which belong to the class K

and satisfy (2.1) for all v ∈ K, spt(uk − v) ⊂⊂ B. Since

sup
k

‖uk‖H1,p(B) < ∞ ,

we may extract a subsequence (again denoted by uk) such that

uk →: u0 in L
p
loc, uk → u0 weakly in H

1,p
loc
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and pointwise a.e. The limit u0 is in the class K and let us suppose for the moment
that we already know

(3.3) uk → u0 strongly in H1,ploc .

We then fix an arbitrary point ξ ∈ K and a function η ∈ C10 (0, 1), 0 ≤ η ≤ 1 , and
apply (2.1) with u replaced by uk and v(x) := uk(x) + η(|x|)

(

ξ − uk(x)
)

. (v is
admissible since Im v ⊂ K and spt(uk − v) ⊂⊂ B.) On account of (3.3) we may
pass to the limit k → ∞ in order to deduce

∫

B
A(u0)Du0 · D (η[u0 − ξ]) |Du|p−2 dx ≤

∫

B

1

2
DAu0 · η(ξ − u0) |Du0|

p dx ,

which gives (recall (1.3))

(3.4) δ ·

∫

B
η · |Du0|

p dx+

+

∫

B
A(u0) |Du0|

p−2Dαu0 · (u0 − ξ)η′(|x|)xα · |x|−1 dx ≤ 0

for some δ > 0. By scaling (3.1) is valid also for uk and strong convergence uk → u0
in H

1,p
loc shows that (3.1) holds for the limit u0. Thus Lemma 3.2 extends to u0.

Applying Lemma 3.2 to u we see that

Φ(t) := tp−n
∫

Bt

A(u) |Du|p dx

is an increasing function so that L := limt↓0 Φ(t) exists. On the other hand we have
for any 0 < R < 1

Rp−n
∫

BR

A(u0) |Du0|
p dx =

(3.3)
lim

k→∞
Rp−n

∫

BR

A(uk) |Duk|
p dx

= lim
k→∞

(rk · R)p−n
∫

Brk
·R

A(u) |Du|p dx = L,

which shows Dru0 ≡ 0. Inserting this result into (3.4) we finally arrive at

∫

B
η · |Du0|

p dx = 0

so that Du0 = 0 a.e. on B, and in conclusion

0 =Rp−n
∫

BR(0)
|Du0|

p dx = lim
k→∞

Rp−n
∫

BR(0)
|Duk|

p dx

= lim
k→∞

(rk · R)p−n
∫

Brk·R(0)
|Du|p dx,
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which proves (3.2).

It remains to verify (3.3): Choose a point x ∈ B such that

−

∫

Br(x)

∣

∣u0 − (u0)r
∣

∣

p
dz < ε′

holds for some ball Br(x) ⊂ B with ε′ being defined in (2.5). For k sufficiently large
we then have

−

∫

Br(x)

∣

∣uk − (uk)r
∣

∣

p
dz < ε′

and since Lemma 2.1 applies to uk we get the apriori estimate

[uk]C0,α(Br/2(x))
≤ c ≤ ∞

for the Hölder-seminorms with c independent of k. Arzela’s theorem implies
uk → u0 uniformly on Br/2(x) , especially u0 ∈ C0,α

(

Br/2(x)
)

.

Let S0 denote the interior singular set of u0. The preceding arguments show

S0 ⊂ Σ0 := {x ∈ B : lim inf
r↓0

−

∫

Br(x)
|u0 − (u0)r|

p dz > 0} ,

so that Hn−p(S0) ≤ Hn−p(Σ0) = 0 . Fix a number t ∈ (0, 1) and some small δ > 0
and choose a covering

Σ0 ∩ Bt ⊂
∞
⋃

i=1

Bi , Bi := Bri(xi) ⊂⊂ B ,

with the property
∑∞

i=1 rn−p
i < δ . Then we have the following estimate for the

energies on the set 0 =:
∞
⋃

i=1
Bi :

∫

O
|Duk|

p dx ≤
∞
∑

i=1

∫

Bi

|Duk|
p dx

≤ (monotonicity formula for uk) ≤ c ·
∞
∑

i=1

r
n−p
i

∫

B
|Duk|

p dx

= c ·
∞
∑

i=1

rn−p
i

(

rp−n
k

∫

Brk

|Du|p dx
)

≤ (monotonicity formula) ≤ c′ · δ ·

∫

B
|Du|p dx .
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In order to control the energies on the remaining part we choose η ∈ C10
(

B, [0, 1]
)

such that η ≡ 1 on B̄t − O and spt η ∩ So = ∅. For k ∈ N we have

(3.5)k

∫

B
A(uk) |Duk|

p−2Duk · D (uk − v) dx

≤

∫

B

1

2
DA (uk) · (v − uk) |Duk|

p dx ,

v ∈ K , spt (uk − v) ⊂⊂ B ;

choosing v := uk + ηp · (uℓ − uk) in (3.5)k and v := uℓ + ηp(uk − uℓ) in (3.5)ℓ we
arrive at

∫

B

(

A(uk)Duk · D(uk − uℓ) |Duk|
p−2

− A(uℓ)Duℓ · D(uk − uℓ) |Duℓ|
p−2

)

· ηp dx

≤ c1 ·

∫

B
|Dηp| · |uk − uℓ| · {|Duℓ|

p−1 + |Duk|
p−1} dx

+ c2 ·

∫

B
ηp · |uk − uℓ| · {|Duℓ|

p + |Duk|
p} dx,

which turns into an estimate of the form (τ > 0 a positive constant)

τ ·

∫

B
ηp · |Duk − Duℓ|

p dx

≤ c3 ·

∫

B
|uk − uℓ| ·

(

|Dηp| ·
{

|Duℓ|
p−1 + |Duk|

p−1}

+ ηp ·
{

|Duk|
p + |Duℓ|

p}
)

dx.

Recalling sup
{

|uℓ(x)− uk(x)| : x ∈ spt η
}

−−−−−→
ℓ,k→∞

0 we see
∫

B ηp|Duℓ − Duk|
p dx −−−−−→

ℓ,k→∞
0 so that {Duk} is a Cauchy-sequence in L

p
loc(B)

which completes the proof of (3.3). �
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