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A note on universal minimal dynamical systems

S lawomir Turek

Abstract. Let M(G) denote the phase space of the universal minimal dynamical system

for a group G. Our aim is to show that M(G) is homeomorphic to the absolute of D2
ω

,

whenever G is a countable Abelian group.

Keywords: dynamical system, universal minimal dynamical system, Abelian group, abso-
lute

Classification: 54H20

Let G be a group and X a compact space. We call an action of the group G on
space X a homomorphism Φ from G into the group of homeomorphisms of X . The
pair (X, G) is called a dynamical system and the space X a phase space of the
system (X, G); we will write gx for Φ(g)(x), g ∈ G, x ∈ X .

A dynamical system (X, G) is called minimal if the set {gx : g ∈ G} is dense
in X for each x ∈ X . The system (X, G) is minimal iff for each non-empty open
set U ⊆ X there are g1, . . . , gn ∈ G such that g1U ∪ · · · ∪ gnU = X .

Let (X, G) and (Y, G) be dynamical systems and let ϕ : X → Y be a continuous
map. If ϕ◦g = g◦ϕ for any g ∈ G then ϕ is called a homomorphism of the system
(X, G) into the system (Y, G). If in addition ϕ is a homeomorphism of spaces, then
ϕ is called an isomorphism of dynamical systems.

The dynamical system (X, G) is called a universal minimal dynamical sys-
tem for a group G if the following conditions hold:

(a) (X, G) is a minimal dynamical system,
(b) if (Y, G) is a minimal dynamical system then there exists a homomorphism

ϕ : (X, G) → (Y, G).

The well-known results of Ellis [4; 7.13, 7.16] say that for every group G there is
a universal minimal dynamical system which is unique up to an isomorphism. The
phase space of this system is homeomorphic to a closed subspace of the Čech–Stone
compactification of the discrete space G. Let M(G) denote the phase space of the
universal minimal dynamical system for a group G.

It was proved by van Douwen [3] that for every infinite Abelian group G

πw(M(G)) > |G|, where πw(X) denotes π-weight of X . Balcar and B laszczyk [1]
have shown that if (X, G) is a minimal dynamical system and X is an extremally
disconnected space and G is a countable group then X is homeomorphic to the

absolute of the Cantor cube Dπw(X). On the other hand, it is known (cf. van
Douwen [3]) that M(G) has to be extremally disconnected. We will show that if G
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is an Abelian group then πw(M(G)) = 2|G|. Therefore M(G) is homeomorphic to

the absolute of D2ω

, for every countable Abelian group G.
A continuous map ϕ : X → Y is semi-open if int ϕ(U) 6= ∅ for every non-empty

open set U ⊆ X .
The following lemma is known; see e.g. [6]. We will include its proof for com-

pleteness.

Lemma 1. Homomorphisms of minimal dynamical systems are semi-open and

“onto”.

Proof: Let ϕ be a homomorphism of a minimal system (X, G) into a minimal
system (Y, G). If x ∈ X then {gϕ(x) : g ∈ G} is dense in Y . Hence ϕ(X) = ϕ(cl{gx :
g ∈ G}) = cl ϕ({gx : g ∈ G}) = cl{ϕ(gx) : g ∈ G} = cl{gϕ(x) : g ∈ G} = Y .

Let U be a non-empty open subset of X . Let us choose a non-empty open set V

so that cl V ⊆ U . Since (X, G) is minimal, then there exist g1, . . . , gn from G such
that g1V ∪ · · · ∪ gnV = X . Thus

Y = ϕ(X) = ϕ(g1V ∪ · · · ∪ gnV ) = ϕ(g1V ) ∪ · · · ∪ (gnV ) =

= g1ϕ(V ) ∪ · · · ∪ gnϕ(V )

and hence

∅ 6= int ϕ(cl V ) ⊆ int ϕ(U).

�

Lemma 2. If there exists a semi-open map of X onto Y , then πw(Y ) ≤ πw(X).

The proof of the above lemma is clear. �

Let G be an Abelian group and let Hom(G,T) denote the group of all homo-
morphisms from G into the circle group T = {z ∈ C : |z| = 1}. It is well known

that Hom(G,T) is point-separating and the power of Hom(G,T) equals 2|G|; see
[5; 22.17, 24.47].

Let the homomorphism e : G → THom(G,T) be defined by the formula:

e(g)(h) = h(g), for g ∈ G, h ∈ Hom(G,T).

The range e(G) is a subgroup of the compact topological group THom(G,T), where

THom(G,T) is regarded with the Tichonoff topology. Hence bG = cl(e(G)) is a com-
pact topological group. The group bG is the so-called Bohr compactification of the
(discrete) Abelian group G.

It is not hard to see that G acts on bG in the following way:

Φ(g)(x) = e(g) · x; g ∈ G, x ∈ bG.

Then (bG, G) forms a minimal dynamical system. Indeed, if x ∈ bG then fx :
bG → bG defined by fx(y) = x · y, is a homeomorphism. Hence {gx : g ∈ G} =
fx(e(G)) is dense in bG.

The following lemma is known; see e.g. [2; 3.6. (ii)].
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Lemma 3. If X is a topological group then w(X) = πw(X).

For any locally compact Abelian group K, let K̂ denote the group of all the
continuous homomorphisms of K into T, endowed with a compact-open topology.
It is known that w(K) = w(K̂) and bK = (K̂)d ,̂ where Xd denotes a space X with
a discrete topology; see [5; 24.14, 26.12].

Theorem. If G is an Abelian group then πw(M(G)) = 2|G|.

Proof: Since (bG, G) is a minimal dynamical system, then there exists a homo-
morphism ϕ : (M(G), G) → (bG, G). Lemmas 1, 2 and 3 imply

w(bG) = πw(bG) ≤ πw(M(G)).

From the above remarks, we get

w(bG) = w((Ĝ)d )̂ = w((Ĝ)d) = |Ĝ| = |Hom(G,T)| = 2|G|,

because G is a discrete space.

The inequality πw(M(G)) ≤ 2|G| follows from the fact that M(G) is homeomor-
phic to a closed subset of βG.

�

The result of [1] leads to the following:

Corollary. If G is a countable Abelian group then M(G) is homeomorphic to the

absolute of D2ω

.
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