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On Liouville theorem and the regularity of weak solutions
to some nonlinear elliptic systems of higher order

L. BALANDA, E. Viszus

Abstract. The aim of this paper is to show that Liouville type property is a sufficient and
necessary condition for the regularity of weak solutions of nonlinear elliptic systems of the
higher order.
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Introduction.

In this paper, we shall deal with nonlinear elliptic systems. More precisely, we
shall consider the following problem.
Let Q be a bounded domain with Lipschitz boundary in R™, n > 2. Let us denote

o(n, k) = ("H]j_l) and o(n, k) = ("'};k), n,k € N. We shall study the weak solutions
u € [H*®(Q)]V to the system

Y (DDl (@ () = D (DS,
lo| <k la|<k
i=1,...,N; z€Q, k>1,

y(u) ={D%%":i=1,...,N; |a| <k}

(0.1)

By a weak solution of (0.1) we mean a function v € [HF(Q)|N (H*(Q) = H*2(Q)
— Sobolev space, u = (ul,...,u"N) — see [4]) such that

)

N N
02 % /Q a1 )Didr =3 Y [iD% dr, e D).

i=1|a|<k i=1|a|<k

The authors are indebted to Professor J. Necas for the very valuable advice concerning the
paper
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We shall suppose that:

(0.3) al, e CY @ x RNk -y —1 N, |a| <k,

N .
oat . ;
(0.4) > o7 @mE >0,
ij=1 |o|=|8=k I3

(z,1) € (Q x RNeMR)) - ¢ e RNO(WR) ¢ 22,

: i e HYPe (0 =—F

p>2(k+1), i=1,...,N, |of <k

where p > n,

Let us denote for M > 0,G > 0:

[(M] ={u € [H°(Q)]" : u solves (0.1) and lull grx.00 (v < MY,

N
G ={fh e HYP(): Y > |fill ey < G}

=1 |a|<k
‘We shall use the notations

yi(u) ={D%" :i=1,...,N;|a| < k—1},
Yo(u) ={D' :i=1,...,N;|a| =k},
PN —{(Py,...,Px): P, — polynomial with deg(P;) < m,
i=1,...,N}, m>0,
B(z®, R) ={z e R" : |z — 2°| < R}.

Definition 0.6. The condition (L) of the Liouville type is satisfied for the sys-
tem (0.1) if for V20 € Q, £ € RNe(mk=1) " the only weak solutions in R™ to the
system

(0.7) > (=)Dl (20, €, 92 (v))) =0, i=1,....N

|a|=k

with bounded derivatives of k-th order are polynomials of at most k-th degree (i.e.
vE Pév ).

Definition 0.8. We say that the system (0.1) has a property of regularity (R) if
for vzl € Q, ¢ e RNQ("vk_l), M > 0 there exist n > 0,¢ > 0 and p € (0,1) such
that every weak solution u (in R™) of the system (0.7) with |D%u‘| < M, |a| = k,
i=1,..., N, belongs to the space [C**(B(0,7))]"" and

HUH [Ck,u(m)]N =6
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It will be proved in this paper that the property (L) implies the interior regularity,
i.e. if u is a weak solution to (0.1) then u € [CFH(Q)]N, where ' cC Q,u €
0,1=3)

It will be also shown that (R) = (L).

These results generalize the results of [2], [3]. In [2], [3], the analogous assertions
are proved for nonlinear elliptic systems of the second order. The history of the
regularity problem and the Liouville’s property is described in [2], [3], [5].

1. Some lemmas.

By standard arguments (see [6]), we could prove

Lemma 1.1. Let u € [H**®(Q)]"N be a weak solution to the system (0.1) and let
(0.3), (0.4), (0.5) be satisfied. Then u € [HFFL(Q)V.

loc
In our next considerations, we shall use the result from [1]. This result concerns
the solutions u € [H* ()N N [HF~1°(Q)]V of quasilinear elliptic systems of the
type

(12) > > (=plpH ALl @ @)D) = Y (~1llDg,

I=1 |al<k | <k
18|=k
z€eN, 1=1,...,N,

with the following assumptions
(1.3) ALl e c@x RNe(mATL),

p
14 LP>(Q = >2(k+1
( ) gae ()a pa k_|a|+1ap>n7p_ (+)7
(1.5) YooY A OG>0,

63=1 |a|=|8|=k

forallz €Q, €€ RNe(nk=1) Ce RNo(n:k) ¢#0.
If we denote

(M) ={u € [H* )N n[HF52°(Q)]Y : u is a solution to (1.2)
and U[Hk—l,oo(Q)}N < M/}, M > 0,
N
G ={gh € LP*(Q): > > llghlirai@) <G} G >0,
=1 |a|<k

A= sup {Z Aaﬁ
|§|<M 7] O‘vﬁ

[S9
U, R) =R~ /B( . Z S D) — (D%l 0 ) da

21\a|k1
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where u € [H*1(Q)Y, (Daui)m()ﬂ means the integral mean value D%’ in
B(2°, R), we shall state the following

Lemma 1.6. Suppose that u € [M'] and the right-hand sides of the system 1.2
belong to [G']. Let (1.3),(1.4),(1.5) be satisfied. Let Q' be a domain such that
' ccQ. Let

1.7 lim inf U(x,R) =0

(1.7) Jiminf U, )

uniformly with respect to x € ', u € [M']. Then u € [C*~LH@Q)N, e (0,1 - 7)
and the a-priori estimate

HUH[Ckfl,p‘(ﬁ/)}N S C(M/7 G/7 A/7§/)7 c> 07

holds uniformly with respect to the class [M'] U [G'].

This lemma (in a slightly generalized form) is proved in [1]. In [1], the problems
analogous to those in this paper are solved for quasilinear elliptic systems of higher
order. In both papers, the methods of proofs are based on the same idea. The
crucial point is to show that the Liouville property implies the assumption (1.7).
But the methods are technically different.

2. Main results.

Theorem 2.1. Let u € [M] and the right-hand sides of the system (0.1) belong
to [G]. Let Q' be a domain such that Q' CC Q. Suppose that (0.3), (0.4), (0.5) and
the condition (L) be satisfied. Then there exists a constant ¢ = c¢(Q', M, G) such
that

n
H’UJH[ch,u(ﬁ/)]N <e¢, pe(0,1- E)

PrOOF: For all 2 € Q' and R > 0, we define the transformation T,op : y =

Tpop(x) = :c—Rx(" For u € [M] (u = (u!,...,u")), we define on O 0 = T,or(Q) :

u' (20 + Ry) B Z DYt ()

i _
(2.2) umOR(y) - Rk Rk_h"y!

Y7,
[vI<k
1 =1 N.

From (2.2), it follows that for i =1,..., N
Dl p(0) =0, o] <k—1,

. ) i(r0
Daul(xoRy) _ Rk—|a\DauszR(y) + Z R|~/—a|B%a DW:(m )y“/—a

<k '
(2.3) s

3

laf <k,

D' (20 4+ Ry) = DauioR(y) a.e. in Opop, |a| =k.
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B,y o — constants which are related to the derivatives of “y7”. Let us choose
a number a > 0. Then there exists Ry > 0 such that for V¥ e ¥ and 0 < R < Ry
B(0,2a) C Oyop. From (2.3) it follows that D% o p, la] < k,i=1,...,N, are
bounded uniformly with respect to 20 € @/ and 0 < R < Ry. Clearly there exists
a constant ¢ > 0 such that for all z0 € ¥ and 0 < R < Ry

(2.4) lugo Rk (B0,2a)) ¥ =T

Putting RF cpi(x_—lf()) € D(Q) in (0.2) as a test function and using the transformation
z = 20 + Ry we have
(2.5)

N
> / RE=1olal, (2% + Ry, 7 (u(a® + Ry)), 72(u(2° + Ry))) D¢ (y) dy =
i=1 |a|<k”’ OO

N . .
>y / RE=lal £ (29 4 Ry) DO (y) dy.

)Y and for vyop = %, the

From Lemma 1.1 it follows that uop € =10 oo

loc
following equation in variations holds:

N da’ .
> D /O Rk“"“‘a—; - D' (y) dy+
OR

20

i=1 |o|<k
N dal
k—la| % 1 pk=|8l pB,,J
* Z Z o R o (7 DPvop(y)+
=1 |a|<k * 2R I3
(2.6) 1BI<k
_ DYu(z%) . 5 . ~
+ > BB s, =y TN D ) dy =
lv|<k
B+ <y
=Y > [ ey mypegi)ay
i=1 |a|<k 7 Os0R "
(We omitted the arguments in %, %, r=(0,...,0,1,0,...,0) € R™.)
From (0.5) it follows that
il Of8 p=n
(27) RN 222 @0+ Ry 250,20y < c1l@)R 7o - G

Now putting in (2.6) ¢* = v:iORX%’ i =1,...,N, where x € D(B(0,2a)),0 <
X < 1,x =1 on B(0,a) and using the standard argumentation ((0.4), uniform
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boundedness of %‘;—%, ZQT%’ Holder inequality and (2.7)), we obtain the estimates

e Z > / DIl XF) (D00 - XF) dy

ij=1 |a|=|p|=k 7 B(0:20) %

1
and J < c3J2 + ¢4, where c3,cq4 > 0 are some constants.
The last inequality implies that there exists a constant c5 > 0 such that

(2.8) viop(y))?dy < J<c
; |azk/(0a R\ Y 5

for all 20 € Q',u € [M],R € (0,Ro]. (2.4) and (2.8) imply that there exists
a constant cg such that

(2.9) lugorll[Fr+1(B0,0))N < C6
for all 20 € ', u € [M] and R € (0, Ry].

Now we shall prove that

N
(2.10) liminf(» > R—"/ DU (z) — (DYu") g0 g|* dz) =0
B(zY,R) ’

+
R=0" 521 o=k

holds uniformly with respect to z° € @' and u € [M]. Let us suppose the contrary.
Then there exists {25}22, C ¥,25 - T € U, {R}X; CRT Ry — 0,{us}2, C
[M] and € > 0 such that

N
i) 3% R;"/ D% (2) — (Dul)ge g, |2 d > e.
S e

Putting « = m,m € N (N = {1,2,...}) and using (2.9) and the diagonalization
process, we obtain a function P € [H*+1(B(0,m))]" such that for all m € N:

(2.12) Uspsp, — P in [HFH(B(0,m))]N weakly,
(2.13) Usgsp, — P in [Hk(B(Oum))]Nv
(2.14) D%l o — D*P' ace. in B(0,m),

la| <k, i=1,...,N.
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(2.3), (2.14) imply that there exists a constant 7 > 0 such that
(2.15) |IDYPH <7, la|=k, i=1,...,N.

Now let ¢ € [D(R™)]V. Tt is clear that there exist m, Ry such that suppty C
B(0,m) C Oyop for all 2° € @/ and 0 < R < R;.

Putting ¢ =1 in (2.5), we have
2. 16)

k
/ ! a; (CL' + Rsy, '71(“5(55 + Rsy))a'ﬁ(us(xs + Rsy)))'
z:l o<k Y BOM)

- DY (y) dy =
-y ¥ / RETIe sfi (45 4 Ry DO (y) dy.

For |o| < k,i=1,...,N

k—la

|Rl§ ‘a|zDa¢|<cR — 0, if s — oo.

Using the Lebesgue’s dominated convergence theorem, we have

(2.17) lim k=lelgi Doyt dy = o.

§=% JB(0,m)
From the imbedding H**°(Q) < H*P(Q) < C*~1(Q) it follows that

71 (us(z® + Rsy)) — n(P(T)), in B(0,m),s — oo,
Yo(us(z® + Rsy)) = v2(uszsr, (¥)) — 72(P(y)) a.e. in B(0,m), s — oo.

Then for i = 1,..., N, |a| < k, the continuity of a?, and Lebesgue’s theorem imply

lim ap,(z° + Rsy, 71 (us(z® + Rsy)), 2 (us(2® + Rsy)))-
§700 JB(0,m)

(2.18) - DY (y) dy =

= [ @ (P@) (P D ) dy
B(0,m)

Now for i = 1,..., N, if |a| = k, then pq = p and H"P(Q) << C(Q). Using this

fact and Lebesgue s theorem we have (k > 1)

(219)  lim fila® + Ra) D0 ) dy = 1@ [ D)y =0,
§700 JB(0,m) B(0,m)
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If |a| < k,pa > n then using the same argument we have

(2.20) lim RETIol sl (45 4 Ruy)DOi(y) dy = 0.

$§70° JB(0,m)

If || < k, po = n, then H1P2(Q) < L4(Q) for all ¢ > 1.
Choosing ¢ so that k — |a| — % > 0 and using Holder inequality, we obtain

k— ; . k—|a]—2 .
| / RETIl spi 05 4 Ry DO (y) dy| < csRe  * | *Fill ey <
(2 21) B(0,m)

k
< cg Rg -G — 0 for s — 0.

If |a| < k,pa < n, then HPa(Q) «— Li=(Q), where % =1 _ %
Using Holder inequality, we have

Jo— . .
| / R Sf&(wS+Rsy)D‘W(y)dy!§
m

2.22 (k=lal+1)(1-
( ) < ci1oRs H sfaHan (Q) <
k—lal+1
<c11R( i) -G — 0 for s— oo.

These facts imply that

S 5 [ (P )0 )y~

=1 |a|=k
for all ¢ e [DR™)]V.

From (2.15) and the condition (L) it follows that P € PN. (2.3), (2.11) and (2.13)
imply

e < liminf Ry Z Z/ | Dl (z) — (D%ul) s g, |* dx <

5—00
i=1 |al=k B(z*,Rs)

< hmmfz Z / |D%ugpsr, (y) — DYPH2 dy = 0.

B(0,1)

From this it follows that (2.10) holds uniformly with respect to 20 € ' and u € [M].
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Now from (0.2), we obtain an equation in variations which has the following form

o’ .
ZE:Z/@ 7, y() D (5) D do =
ij=1 st=1 |o|<k anﬁ K
|Bl=k
(2.23) i Z": 3 /{8fi da’
(0% (07
' = = (7, v(u)—
Pl LY Oxrs  Oxs
N . .
dat ou’
=2 X S m)D? (G| Dl d
=1 1=k 97 *
where dg¢ — the symbol of Kronecker delta.
Putting
i Of  9dadl oa’ ou’
2.24 §=ta_ o - o D
(2.24) 95= 50, ~ Dz, @) JZ::I |ﬁz<:k o, (@7 (@)D (5-)

and using the fact that u € [M], we obtain the assertion:
There exists a constant G’ > 0 such that

n
(2.25) Z > N5l oo <
1=1 s=1 |a|<k
Fori,j=1,...,N;s,t=1,...,n; |of <k, |8 =k, we define

A S R) = b= (0 (1), ),

af 775
z €0,k € RNne(nk=1) 5 ¢ RNo(nA),
It is clear that (u € [C*~1(Q)]Y)
il re) N k—1
(2.26) AsteCQAxR no(n,k— ))

af

Putting U] = gg“cj forj=1,...,N,t=1,...,nin (2.23), we obtain a quasilinear
system

(2.27)
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It is a matter of routine calculation to verify the assumptions of Lemma 1.6 for the

system (2.27). (These assumptions hold uniformly with respect to all u € [M].)
Now from Lemma 1.6 it follows that there exists a constant ¢ > 0 such that for

u € [M],u e [CFHQ)N and H“Hck,u(ﬁ/)]N <ec. O
By the standard method from [2], we shall prove

Theorem 2.28. Suppose that the system (0.1) has the property of regularity (R).
Then Liouville’s property (L) holds.

PRrOOF: Let 20 € Q,¢ € RVe(A=1) and 4 be a solution (in R™) to the system

S % [ e 6D o) s =0

(2:29) i=1 |a|=k
p € [DRM)Y
such that for M >0
2.30 D' <M, |a|=k, i=1,...,N.
(2.30) | : : Ve
For R > 0, we define
: u'(Ry)
U‘ZR(y) = Rk , 1= 17 7N

Putting () as a test function in (2.29) and using transformation z = Ry, we
obtain
D> [ ehla® & relum)D¢ () dy =

i=1 |a=k
(2.30) and the property (R) imply

(2.31) | D% (y) — Dulg(0)] < clyl”,
o] =k, i=1,...,N,R>0,y € B(0,n),n>0, ue<(0,1).

Now let us choose x € R™. Then there exists R > 0 such that yr = % € B(0,7)
for all R > Ry. Using (2.31), we obtain

. . H
|Du*(z) — D*u*(0)] < c%, |a] =k, R > Ry,
i=1,....N.

For R tending to infinity, we have that u € P]gv . 0
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