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Biequivalence vector spaces

in the alternative set theory

Miroslav Šḿıd, Pavol Zlatoš

Abstract. As a counterpart to classical topological vector spaces in the alternative set the-
ory, biequivalence vector spaces (over the field Q of all rational numbers) are introduced
and their basic properties are listed. A methodological consequence opening a new view to-
wards the relationship between the algebraic and topological dual is quoted. The existence
of various types of valuations on a biequivalence vector space inducing its biequivalence is
proved. Normability is characterized in terms of total convexity of the monad and/or of
the galaxy of 0. Finally, the existence of a rather strong type of basis for a fairly extensive
area of biequivalence vector spaces, containing all the most important particular cases, is
established.
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0. Introduction.

The aim of this paper is to lay a foundation to the investigation of topological (or
perhaps also bornological) vector spaces within the framework of the alternative set
theory (AST), which could enable a rather elementary exposition of some topics of
functional analysis reducing them to the study of formally finite dimensional vector
spaces equipped with some additional “nonsharp” or “hazy” first order structure
representing the topology. Concerning the aspect of linear algebra, in this initial
paper we will restrict our attention to vector spaces over the field Q of all rational
numbers topologized by the usual biequivalence 〈=̇,↔〉 (see Section 1). Neverthe-
less, we hope that the reader will find this restrictions inessential and ready for
generalizations in various directions. The topological structure will be represented,
as usual in AST, by a biequivalence (see [G-Z 1985a]) on (the underlying class
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of) the vector space, and it will be subject to some extremely natural and self-
offering conditions warranting its compatibility with the operations of addition of
vectors and multiplication of vectors by scalars. Such an attempt makes it possible
to investigate simultaneously and in a uniform way indiscernibility and continuity
phenomena on one hand in close connection with the phenomena of accessibility and
boundness (playing an important role in classical topological vector spaces, too) on
the other.
The first steps towards the problematics of topological vector spaces in AST were

already made in the thesis by E. Rampas [Rm 1980], however, in our opinion, it was
the lack of the explicit notion of accessibility which turned to be a serious obstacle to
a more considerable progress. Also, the reader will probably find some connections
between our approach to topological vector spaces and that of nonstandard analysis
as presented e.g. in [H-Mr 1972]. But we would like to stress that it is not our aim
to develop new technical proof tools for the classical functional analysis by means
of ultrapowers, enlargements, nonstandard hulls and similar methods, as it usually
is the case in nonstandard analysis. Our biequivalence vector spaces are treated as
a primary subject of interest and study, independently, to a large extent, of their
classical counterparts, and not as auxiliary constructs. Thus, e.g., the monad of the
infinitesimal vectors and the galaxy of the bounded ones do not result as a product
of an advanced set-theoretical construction, but they are the very starting point of
our exposition included in the basic definition.
The plan of our paper has already been sketched in the Abstract and Contents.

Let us add only that Sections 1, 2, 3 are of a preparatory character, while the
“meat” of the paper starts with Section 4.

1. Notation and preliminaries.

The reader is assumed to be acquainted with the basic notions and results of
the alternative set theory as presented in [V 1979], with the notion of biequivalence
which has been introduced and developed in [G-Z 1985a], [G-Z 1985b], and, of
course, with some fundamentals on linear algebra.
For reader’s convenience we will list some basic facts, the most frequently used

symbols and notational conventions below.
V denotes the universe of sets, sets from V are denoted by small Latin letters,

subclasses of V by capital ones. There is a canonical set-theoretical ordering ≤ of V
such that each nonempty Sd-class has the least element with respect to ≤, and for
each x, the cut {y; y < x} is a set.
N , FN , Z and FZ denote the classes of all natural numbers, finite natural

numbers, integers and finite integers, respectively. The characters i, j, k, m, n
always denote elements of Z or N . Notice the difference to [V 1979], where they
were used to denote elements of FN only.
Q denotes the class of all rational numbers; the small Greek letters α, β, γ, δ, ε,

κ, λ, µ, ν (possibly indexed) always denote elements of Q.

IQ = {α; (∀n ∈ FN)(|α| < 2−n)},
BQ = {α; (∃n ∈ FN)(|α| < 2n)}
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denote the classes of all infinitesimal (infinitely small) and bounded (finitely large)
rationals, respectively. Then Q endowed with the canonical operations and order
becomes an ordered field, BQ is its convex subring and IQ is a convex maximal
ideal in BQ. The quotient BQ/IQ is then the ordered field of real numbers.
The codable class HR of all hyperreal numbers was constructed in [G-Z 1985b]

on the basis of some revealment Sd∗ of the system of all Sd-classes (for the notion
of revealment see [S-V 1980]). However, for the purpose of the present paper it is
quite sufficient to deal with the extension of Q consisting only of all set-theoretically
definable hyperreals, i.e., of Sd-cuts on Q without the last element. They form
a subfield of the ordered field HR. Though HR is not a class from the extended
universe, the pair of relations

p
.
= q ⇔ (∀n ∈ FN)(|p− q| < 2−n),

p↔ q ⇔ (∃n ∈ FN)(|p− q| < 2n)

behaves as a biequivalence on HR. We put

p < · q ⇔ p < q & p ˙6=q

for p, q ∈ HR. Then

IHR = {p ∈ HR; p
.
= 0},

BHR = {p ∈ HR; p↔ 0},
HR+ = {p ∈ HR; 0 < · p}

denote the classes of all infinitesimal, bounded and strictly positive hyperreals,
respectively. Sometimes it will be found convenient to extend HR by adjoining the
least element −∞ and the largest element ∞ to it. For p, q ∈ HR ∪ {−∞,∞},

[p, q] = {α ∈ Q; p ≤ α ≤ q}

always denotes the interval of all rational numbers between p, q.
A function Φ : X −→ HR is simply a relation Φ ⊆ Q × X such that Φ(x) =

Φ′′{x} ∈ HR for each x ∈ X .
As each Sd∗-class (and the more, each Sd-class) A ⊆ Q with an upper bound has

its supremum in HR, the decisive part of the usual functions used in the classical
analysis defined on (some subclass of) Q with values in HR can be put into our
framework and extended to (some subclass of) HR. In particular, we will use the
functions

√
p, pq and lg p = log2 p. Details are left to the reader.

If X is a class and u is a set, then Xu denotes the class of all set-functions
f : u −→ X . If card(u) = n ∈ N , then Xu can be identified with the class Xn of all
ordered n-tuples 〈x1, . . . , xn〉 such that xi ∈ X for each i. Thus whenever placing
a sequence x1, . . . , xn into the brackets 〈 〉, it is understood that the corresponding
function {〈xi, i〉; 1 ≤ i ≤ n} is a set.
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If W = Qm is regarded as a vector space over Q, then its elements will be
represented as ordered m-tuples with lower indices, e.g., x = 〈x1, . . . , xm〉. Si-
milarly, for ordered n-tuples of scalar coefficients 〈α1, . . . , αn〉 ∈ Qn occurring in
linear combinations, a lower indexation will be used. For ordered n-tuples of vectors
〈x1, . . . , xn〉 ∈Wn (even in the caseW is not of the formQm), the upper indexation
is reserved.
Finally, we place here an important lemma on set choice which will be used

several times throughout the paper. In [G-Z 1985b], it was proved for π-relations,
however, its extension to σ-relations, too, presents no difficulty.

Lemma 1.1. Let R be a relation which is a σ-class or a π-class, and u ⊆ dom(R)
be a set. Then there is a set function f such that dom(f) = u and f ⊆ R , i.e.,
〈f(x), x〉 ∈ R for each x ∈ u.

2. Symmetric Sd-closures.

In the present section we will describe the common core of several closure operators
which will occur throughout the paper. Many of the results which will be stated
below, are rather analogous to those known from the classical theory of matroids
(see e.g. [We 1976]). They are included mainly in order to fix the terminology and
notation and to introduce some necessary modifications. On the other hand, this
allows us to reduce most of the proofs to mere sketches or to omit them completely.
Let C be any operation assigning to each set u a class denoted by C(u) or, more

briefly, Cu. Then C will be called an Sd-closure (on the universal class V ) provided
the following conditions are satisfied:

(0) there is a set-theoretical formula ϕ(x, u) such that

(∀u)(C(u) = {x; ϕ(x, u)}),

(1) (∀u)(u ⊆ C(u)),
(2) (∀u, v)(u ⊆ v ⇒ C(u) ⊆ C(v)),
(3) (∀u)(⋃{C(v); v ⊆ C(u)} = C(u)).
An Sd-closure C will be called symmetric if it additionally satisfies the following

exchange condition:

(4) (∀x, y)(∀u)(x ∈ C(u ∪ {y}) \ C(u) ⇒ y ∈ C(u ∪ {x})).
Obviously, if the closure C is symmetric, then the binary relation {〈x, y〉;x ∈

C{y}} is symmetric on the class V \ C(∅).
An Sd-closure C can be extended to operate on all classes X by

C(X) =
⋃

{C(u); u ⊆ X}.

Now, the condition (3) can be rewritten into a more comprehensive and familiar
form

(3’) (∀u)(CC(u) = C(u)).
Till the end of the section, C denotes a fixed but otherwise arbitrary Sd-closure.



Biequivalence vector spaces in the alternative set theory 521

Proposition 2.1. (a) There is a normal formula ψ(x,X) such that

(∀X)(C(X) = {x; ψ(x,X)}).

(b) (∀X)(X ⊆ C(X)).
(c) (∀X,Y )(X ⊆ Y ⇒ C(X) ⊆ C(Y )).
(d) If X is an Sd-class (σ-class, π-class), then so is C(X) and it holds

CC(X) = C(X).

(e) If C is symmetric, then

(∀x, y)(∀X)(x ∈ C(X ∪ {y}) \ C(X) ⇒ y ∈ C(X ∪ {x})).

Proof: (a), (b), (c) and the first part of (d) are trivial. To complete (d), consider
an x ∈ CC(X). Then x ∈ C(v) for some v ⊆ C(X). This means that the relation

R = {〈u, y〉; y ∈ v & u ⊆ X & y ∈ C(u)},

which is an Sd-class (σ-class, π-class) if X has the corresponding property, has
domain v. By the set-choice Lemma 1.1., there is a function f ⊆ R with the
domain v, i.e., f(y) ⊆ X and y ∈ C(f(y)) for each y ∈ v. Then for the set
w =

⋃
rng(f) ⊆ X it holds v ⊆ C(w), hence

x ∈ C(v) ⊆ CC(w) = C(w) ⊆ C(X).

(e) If x ∈ C(X∪{y})\C(X), then obviously x ∈ C(u∪{y})\C(u) for some u ⊆ X .
As C is symmetric,

y ∈ C(u ∪ {x}) ⊆ C(X ∪ {x}).
�

Notice that the equality CC(X) = C(X) cannot be proved for arbitrary classes X .
All the same, C(X) still will be called the closure of X (with respect to C).
A class X will be called C-independent if

X ∩ C(∅) = ∅ and (∀x ∈ X)(C{x} ∩ C(X \ {x}) ⊆ C(∅)).

It is routine to check that a class X is C-independent iff each set u ⊆ X is
C-independent.
Proposition 2.2. If X is a C-independent class, then

(∀x ∈ X)(x /∈ C(X \ {x})).
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If C is symmetric, then also the reversed implication holds for each σ- or π-class X .
Proof: Let X be independent. Assume that there is an x ∈ X such that x ∈
C(X \ {x}). Then even

x ∈ X ∩ C{x} ∩ C(X \ {x}) ⊆ X ∩ C(∅) = ∅.

Now, assume x /∈ C(X \ {x}) for each x ∈ X . Then obviously x /∈ C(∅) for each
x ∈ X . If there were an y ∈ (C{x} ∩ C(X \ {x})) \ C(∅), then, by the symmetry of
C and by 2.1 (d), it would follow

x ∈ C{y} ⊆ CC(X \ {x}) = C(X \ {x}).

�

A classX will be called C-generating if C(X) = V . A C-independent C-generating
class will be called a C-basis.
Theorem 2.3. Let C be a symmetric Sd-closure. Then for each C-independent Sd-
class X0 and each C-generating Sd-class X1 such that X0 ⊆ X1 there is a C-basis
X such that Sd(X) and X0 ⊆ X ⊆ X1.

Proof: Using the canonical Sd-ordering of the universal class V , one can construct,
by induction over N , an Sd-function F such that either dom(F ) ∈ N or dom(F ) =
N and for each n ∈ N either F (n) is the first element of the Sd-classX1\C(X0∪F ′′n)
if it is nonempty, or F ′′{n} = ∅ if X1 \ C(X0 ∪F ′′n) = ∅. It can be easily seen that
the Sd-class X = X0 ∪ rng(F ) ⊆ X1 is C-generating. Using the exchange condition
and an induction argument, one can verify that it is C-independent, too. �

Also, the following Steinitz inequality can be established in essentially the same
way as in the classical case.

Proposition 2.4. Let C be a symmetric Sd-closure and u, v be sets. If u is C-
independent and v is C-generating, then card(u) ≤ card(v).
Corollary 2.5. Let C be as above and both X,Y be Sd-classes and C-bases. If
one of them is a set, then also the remaining one is a set with the same number of
elements.

Finally, let us remark, that all the notions and results of this section can directly
be restated to Sd-closures on arbitrary Sd-classes (not just V ).

3. Vector spaces over Q.

A vector space over the field Q of all rational numbers is an arbitrary class W
endowed with the operations of addition + :W×W −→W and scalar multiplication
· : Q×W −→ W , subject to the usual axioms. If in addition the class W and the
operations + and · are set-theoretically definable, then W will be called an Sd-
vector space over Q. Unless otherwise said, the term “vector space” always means
an Sd-vector space over Q.
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Till the end of this section W denotes a fixed but otherwise an arbitrary vector
space. Note that the fact of the set-theoretical definability of the basic operations
in W enables us to define by induction expressions like

n∑

i=1

αix
i = α1x

1 + · · ·+ αnx
n,

where 〈α1, . . . , αn〉 ∈ Qn, 〈x1, . . . , xn〉 ∈ Wn, for all natural numbers n, and not
just for the finite ones.
For A ⊆ Q,X, Y ⊆W and n ∈ N , the following notation will frequently be used:

X + Y = {x+ y; x ∈ X, y ∈ Y },
A ·X = {α · x; α ∈ A, x ∈ X},
X : A = {x ∈W ; A · {x} ⊆ X},
n ⋆ X = {x1 + · · ·+ xn; 〈x1, . . . , xn〉 ∈ Xn},

[X ] =
{ n∑

i=1

αix
i; n ∈ N, 〈α1, . . . , αn〉 ∈ Qn, 〈x1, . . . , xn〉 ∈ Xn

}
,

X̂ = {αx+ (1− α)y; α ∈ [0, 1], x, y ∈ X},

〈X〉 =
{ n∑

i=0

αix
i; n ∈ N, 〈α0, . . . , αn〉 ∈ [0, 1]n+1,

n∑

i=0

αi = 1, 〈x0, . . . , xn〉 ∈ Xn+1
}
.

If A = {α} is a singleton, then {α} ·X will be denoted simply by α ·X . Obviously,
for all A ⊆ Q, X,Y ⊆W , it holds

A ·X ⊆ Y ⇔ X ⊆ Y : A.

If n ∈ N , then obviously n ·X ⊆ n ⋆ X for each X , but, in general, the inclusion is
proper.
As it can easily be seen, both [ ], 〈 〉 (regarded as operations on the sets u ⊆W ,

only) are Sd-closures on (the underlying class of) the vector space W . [X ] will be
called the linear span of X and 〈X〉 will be called the convex hull of X . Moreover,
the Sd-closure [ ] is even symmetric, so that all the notions and results of the
previous section directly apply. We will use the terms “algebraically independent”,
“algebraic basis”, etc. instead of “[ ]-independent”, “[ ]-basis”, etc. In particular,
2.3 and 2.5 imply

Theorem 3.1. For every algebraically independent Sd-class X0 and every alge-
braically generating Sd-class X1 such that X0 ⊆ X1 ⊆ W , there is an algebraic
basis X such that X0 ⊆ X ⊆ X1 and Sd(X). Moreover, if X,Y ⊆ W are both
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Sd-classes and algebraic bases and one of them is a set, then also the remaining one
is a set with the same number of elements.

Assume that u is an algebraic basis in W with n elements and u = {x1, . . . , xn}
is its fixed set enumeration. Then W can directly be identified with the vector
space Qn of all ordered n-tuples of rationals with componentwise defined operations.
If there is a proper Sd-class X forming an algebraic basis of W , then there is an

Sd-bijection F : N ≈ X . Writing xn instead of F (n) and regarding every linear
combination α0x

0+α1x
1+ · · ·+αnx

n, where 〈α0, . . . , αn〉 ∈ Qn+1, as a polynomial
in the variable x, one directly obtains an identification of W with the vector space
Q[x] of all polynomials (including those of an infinite degree) in one variable x
over Q with operations defined coeficientwise. Thus we have proved the following
theorem:

Theorem 3.2. For every vector spaceW there is an Sd-function F which is a linear
isomorphism of W either onto Q[x] or onto Qn for a uniquely defined n ∈ N .

Consequently, the algebraic structure of Sd-vector spaces over Q (and over any
set-theoretically definable field, as well) is rather a simple one. However, some vector
spaces of more complex structure can, and also do, occur as (not set-theoretically
definable) subspaces of Q[x] or of the Qn’s. This fact is only welcome because it
convinces us that our original definition is not too restrictive, and the remaining
spaces which could form the counterpart of some classical ones, did not disappear as
it could seem in view of the last theorem, but they still are included as subspaces in
the spaces forming the main subject of our study. This even justifies the restriction
of our initial investigation of basic vector spaces to spaces of the form Qn. Indeed,
if C ⊆ N is any nonempty proper cut without the last element (see [K-Z 1988]) and
C ⊆ n ∈ N , then the (not Sd-) vector space QC [x] of those polynomials from Q[x]
whose degree belongs to C, can directly be identified with the subspace

Qn|C = {x ∈ Qn; (∀k ≤ n)(k /∈ C ⇒ xk = 0)}
of Qn. On the other hand, especially if C is a revealed and additive (or even mul-
tiplicative) cut, then QC [x] and Q

n|C reflect, in some sense, most of the properties
of the space Q[x].
In order to generalize the notion of subspace, let us consider a subring A of Q

and an additive subgroup X of W . Then X will be called an A-submodule of W ,
or simply an A-module, if A ·X ⊆ X .
In the forthcoming sections, not only subspaces but in particular, BQ-modules

will play a remarkable role.
Every set-theoretically definable linear map F : Qm −→ Qn can be represented

by a matrix a ∈ Qn×m in the obvious way. In particular, every set-theoretically
definable linear functional F : Qm −→ Q is uniquely determined by a vector x ∈
Qm. Thus to be able to start the study of the duals of the spaces Qm, what remains
is to fix the notation of the scalar or inner product

x · y = x1y1 + · · ·+ xmym

for x, y ∈ Qm.
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4. Biequivalence vector spaces.

A biequivalence vector space (BVS) is a triple 〈W,M,G〉, where W is a (set-
theoretically definable) vector space (over Q), M is a π-class, G is a σ-class and the
following conditions hold:

(0) 0 ∈M ⊆ G ⊆W,
(1) M +M ⊆M,
(2) G+G ⊆ G,
(3) IQ ·G ⊆M.

The elements of M will be called infinitely small or infinitesimal vectors and the
elements of G will be called finitely large or bounded vectors. The vectors from
W \G are then called infinitely large.
Lemma 4.1. Let 〈W,M,G〉 be a BVS. Then
(a) (∀x ∈M)(∃α ∈ Q \BQ)(α · x ∈M),
(b) (∀x ∈ W \G)(∃α ∈ IQ)(α · x ∈W \G).

Proof: (a) If x ∈ M , then C = {n ∈ N ; nx ∈ M} is a π-class and, by (1),
FN ⊆ C. Since FN is not a π-class, C \ FN 6= ∅. (b) can be proved in a similar
way. �

Proposition 4.2. Let 〈W,M,G〉 be a BVS. Then also the following conditions
hold:

(4) BQ ·M ⊆M,
(5) BQ ·G ⊆ G,

i.e., M and G are BQ-submodules of W .

Proof: (4) Let α ∈ BQ, x ∈M . By 4.1 (a), β ·x ∈M for some β ∈ Q \BQ. Then
α
β ∈ IQ and, by (3), α · x = α

β · (β · x) ∈M .

(5) Let α ∈ BQ, x ∈ G. Assume that α · x /∈ G. By 4.1 (b), there is a β ∈ IQ
such that β ·α · x /∈ G. But β ·α ∈ IQ, hence β ·α · x ∈M ⊆ G by (0) and (3). �

The name “biequivalence vector space” is justified by the following obvious
proposition.

Proposition 4.3. Let 〈W,M,G〉 be a BVS. Then the pair of relations 〈 .=M ,↔G〉
defined by

x
.
=M y ⇔ x− y ∈M,

x↔G y ⇔ x− y ∈ G

is a biequivalence on W .

One can easily express the conditions (1)–(5) as a kind of continuity in terms of
the biequivalence 〈 .=M ,↔G〉 instead of M , G, now. Obviously, M is the monad
and G is the galaxy of the zero vector 0 with respect to 〈 .=M ,↔G〉. More generally,
{x}+M is the monad and {x}+G is the galaxy of any x ∈ W . Similarly, X +M
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is the figure and X + G is the expansion of any class X ⊆ W with respect to the
biequivalence 〈 .=M ,↔G〉.
The conditions (0)–(5) also guarantee that the factorization BQ/IQ yielding the

field of real numbers and the factorizationG/M of the BQ-moduleG with respect to
its submoduleM are compatible, i.e., the multiplication · : BQ/IS×G/M −→ G/M
is correctly defined by

(α+ IQ)(x +M) = αx +M

for α ∈ BQ, x ∈ G. Thus G/M naturally becomes a topological vector space over
the field BQ/IQ of reals, endowed with the metrizable topology induced by the
π-equivalence

.
=M (cf. [M 1979], [G-Z 1985b]); it will be called the realization of

〈W,M,G〉.
The following lemma can easily be proved, even without the assumption that M

is a π-class and G is a σ-class.

Lemma 4.4. LetW be a vector space and 〈W,M,G〉 be a triple of classes satisfying
the conditions (0)–(5). Then

(a) (Q \ IQ) · (W \M) ⊆W \M,
(b) (Q \ IQ) · (W \G) ⊆W \G,
(c) (Q \BQ) · (W \M) ⊆W \G.

Proposition 4.5. Let 〈W,M,G〉 be a BVS. Then
(a) M = IQ ·G,
(b) G =M : IQ,

in other words, each of the classes M , G uniquely determines the remaining one.

Proof: (a) IQ · G ⊆ M holds by (3). Let x ∈ M . By 4.1 (a), αx ∈ M ⊆ G for

some α ∈ Q \BQ. Then 1α ∈ IQ and x = 1α (αx).

(b) If x ∈ G, then IQ · {x} ⊆M by (3) again. If IQ · {x} ⊆M , then, according
to 4.1 (b), x cannot belong to W \G. �

Let us recall that a class X ⊆ W in a vector space W is called balanced if
[−1, 1] ·X ⊆ X .

A class S will be called a bounded neighbourhood of 0 in a BVS 〈W,M,G〉 if S
is an Sd-class and M ⊆ S ⊆ G.

A sequence {Sn; n ∈ FZ} of balanced Sd-classes Sn ⊆ W in a vector space W
is called a bigenerating sequence provided there is a λ ∈ BQ, λ ≥ 1, such that for
each n ∈ FZ it holds

Sn + Sn ⊆ Sn+1 ⊆ 2λ · Sn.

Let S ⊆ W be a balanced Sd-class in a vector space W and λ ∈ BQ, λ ≥ 1.
Then the pair 〈S, λ〉 will be called a generating pair in W if it holds

Ŝ ⊆ λ · S.
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Theorem 4.6. Let X be a vector space and M , G be subclasses of W . Then the
following conditions are equivalent:

(a) 〈W,M,G〉 is a biequivalence vector space;
(b) the triple 〈W,M,G〉 satisfies the conditions (0)–(3) from the definition of
a BVS and there is an Sd-class S such that M ⊆ S ⊆ G;

(c) 〈W,M,G〉 is as in (b) and there exists a generating pair 〈S, λ〉 such that
M ⊆ S ⊆ G;

(d) there is a bigenerating sequence {Sn; n ∈ FZ} in W such that

M =
⋂

{Sn; n ∈ FZ}, G =
⋃

{Sn; n ∈ FZ}.

Proof: (a)⇒(b) and (d)⇒(a) are trivial. To prove the remaining implications, let
us state the following claim:

(∗) Let the triple 〈W,M,G〉 satisfy the conditions (0)–(3) from the definition
of a BVS. Let S, T be any Sd-classes such that M ⊆ S and T ⊆ G. Then
there is a µ ∈ BQ such that T ⊆ µ · S.

Indeed, if this is not the case, then there is a sequence {xk; 1 ≤ k ∈ FN} ⊆ T

such that 1kx
k /∈ S for each k. Hence there is an infinite k ∈ N and an x ∈ T such

that 1kx /∈ S. But 1k ∈ IQ and T ⊆ G imply 1kx ∈M ⊆ S.
Now, let S be an Sd-class such that M ⊆ S ⊆ G. Then S0 = [−1, 1] · S is

a balanced Sd-class still satisfying M ⊆ S0 ⊆ G. By (∗) there is a λ ∈ BQ,

λ ≥ 1, such that Ŝ0 ⊆ λ · S0, hence 〈S0, λ〉 is a generating pair. This proves
(b)⇒(c). Concerning (c)⇒(d), let us start with a generating pair 〈S, λ〉 such that
M ⊆ S ⊆ G. We put

Sn = (2λ)
n · S

for each n ∈ FZ. Obviously {Sn; n ∈ FZ} is a sequence of balanced Sd-classes and
even

Sn + Sn = 2 · (
1

2
· Sn +

1

2
· Sn) ⊆ 2 · Ŝn ⊆ 2λ · Sn = Sn+1

holds for each n. The inclusions

M ⊆
⋂

{Sn; n ∈ FZ},
⋃

{Sn; n ∈ FZ} ⊆ G

are obvious. The reversed inclusions easily follow from (∗). �

In particular, a vector space W with subclasses M , G satisfying the condi-
tions (0)–(3) is a BVS, i.e., M is a π-class and G is a σ-class, if and only if there is
an Sd-class S between them, i.e., M ⊆ S ⊆ G.
Unless else explicitly said, till the end of this section, 〈W,M,G〉 denotes a fixed

but otherwise arbitrary BVS.
Let us denote

W̊ =M : Q, W̃ = Q ·G.
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Intuitively, the class

W̊ = {x ∈ Q; (∀α ∈ Q)(αx ∈M)}

consists of extremely small vectors which cannot be made visible or extracted out
of the monad M by any scalar multiple. The class

W̃ = {x ∈W ; (∃α ∈ Q \ {0})(αx ∈ G)}

consists of those vectors which, though perhaps infinitely large, still possess a cer-

tain imaginable size; the remaining vectors forming the class W \ W̃ cannot be
attracted into the galaxy G by any nonzero scalar multiple and are completely not

attainable from the galaxy G. In this sense, the classes W̊ \ {0} and W \ W̃ , pro-
vided nonempty, could be interpreted as representing two different types of hidden
parameters. However, we withstand the temptation to re-open the offering question
for the present and will proceed in a less dramatic way.

Theorem 4.7. (a) W̊ and W̃ are subspaces (i.e., Q-submodules) of W and

0 ∈ W̊ ⊆M ⊆ G ⊆ W̃ ⊆W ;

(b) W̊ = G : Q and W̃ = Q ·M ;
(c) W̊ and W̃ are Sd-classes.

Proof: (a) is trivial.
(b) We will prove only the nontrivial inclusion ⊇ in the first assertion; the second

one can be proved analogously. Let x be such that Q · {x} ⊆ G. Suppose x /∈ W̊ ,
i.e., αx ∈ G \M for some α. It suffices to take an arbitrary β ∈ Q \BQ and 4.4 (c)
implies βαx /∈ G, contradicting the choice of x.

(c) From the definition, it follows that W̊ is a π-class and W̃ is a σ-class; (b)

implies that W̊ is a σ-class and W̃ is a π-class. �

Using the facts just proved, we can “ignore” the classes W̊ \ {0} and W \ W̃
restricting us to the “imaginably large” vectors, i.e., to the class W̃ , and identifying
the “extremely small” ones, i.e., the class W̊ , with the zero vector 0. More exactly,

the triple 〈W̃/W̊ ,M/W̊ ,G/W̊ 〉 obtained by the restriction and factorization can be
represented (coded) via an appropriate set-theoretical choice as a BVS 〈W1,M1, G1〉
such that W1 ⊆ W̃ ⊆W , W1 ∩ W̊ = {0},M1 =M ∩W1 and G1 = G∩W1, already
satisfying W̊1 = {0}, W̃1 = W1. Owing to the possibility of such a construction, it
would be quite sufficient for the purpose of the present paper, to deal with biequi-

valence vector spaces 〈W,M,G〉 satisfying W̊ = {0}, W̃ = W , which will be called
trim.
Now, revisiting the proof of Theorem 4.6, notice that the definition of the classes

Sn makes sense for all n ∈ Z, not just for finite ones. We leave to the reader the
easy proof of the following theorem:
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Theorem 4.8. Let 〈W,M,G〉 be a BVS, 〈S, λ〉 be a generating pair inW such that
M ⊆ S ⊆ G and Sn = (2λ)

n · S for each n ∈ Z. Then {〈x, n〉 ∈W × Z; x ∈ Sn} is
an Sd-class, Sn + Sn ⊆ Sn+1 = 2λ · Sn holds for each n and

M =
⋂

{Sn; n ∈ FZ}, G =
⋃

{Sn; n ∈ FZ},

W̊ =
⋂

{Sn; n ∈ Z}, W̃ =
⋃

{Sn; n ∈ Z}.

5. Duals.

There is a rather unnatural schism between the algebraic and topological approach
to duals (and more generally, to spaces of linear maps) in the study of topological
vector spaces within the scope of the classical set-theoretical mathematics. The
algebraic dual of a — no matter that topological — vector space consists of all its
linear functionals. However, only the bounded — or if you wish — the continuous
ones are admitted into its topological dual, and several topologies can be introduced
on them (see e.g. [Rb-Rb 1964], [Wi 1978]). This schism seems to be surmounted
by our approach based on the BVS concept and on the representation of vector
spaces in the form Qn, discussed in Section 3.

Proposition 5.1. Let 〈W1,M1, G1〉, 〈W2,M2, G2〉 be two biequivalence vector
spaces and F :W1 −→W2 be a linear mapping. Then the following three conditions
are equivalent:

(a) F ′′G1 ⊆ G2,
(b) F ′′M1 ⊆M2,
(c) F ′′M1 ⊆ G2.

Proof: As F is linear, for all A ⊆ Q, X ⊆W1 it obviously holds

F ′′(A ·X) = A · (F ′′X), F ′′(X : A) ⊆ (F ′′X) : A.

Using this observation, (a)⇒(b) and (c)⇒(a) will be proved by the following com-
putations:
If F ′′G1 ⊆ G2, then

F ′′M1 = F
′′(IQ ·G1) = IQ · (F ′′G1) ⊆ IQ ·G2 =M2.

If F ′′M1 ⊆ G2, then

F ′′G1 = F
′′(M1 : IQ) ⊆ (F ′′M1) : IQ ⊆ G2 : IQ ⊆ G2.

The remaining implication (b)⇒(c) is trivial. �

Linear maps satisfying (a) are called bounded, and those satisfying (b) are called
continuous. Thus we have established for BVS’ an analogue of the well known
classical result: a linear map is continuous iff it is bounded.
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In our approach, all the set-theoretically definable linear functionals on the space
Qn, represented as vectors from Qn using the inner product, fall into the dual space.
The bounded (= continuous) ones are exactly those forming the galaxy of 0 in the
dual. Then the monad of 0 in the dual is already determined uniquely. More
precisely, the dual 〈Qn,M,G〉′ of a BVS 〈Qn,M,G〉 is a triple 〈Qn,M ′, G′〉, where

M ′ = {x ∈ Qn; (∀y ∈ G)(x · y ∈ IQ)}

and

G′ = {x ∈ Qn; (∀y ∈ G)(x · y ∈ BQ)}
= {x ∈ Qn; (∀y ∈M)(x · y ∈ IQ)}
= {x ∈ Qn; (∀y ∈M)(x · y ∈ BQ)}.

Since 〈Q, IQ,BQ〉 obviously is a BVS, the fact that all the three expressions for G′

coincide follows from the previous proposition. Note that from the definition of M ′

it also follows that it is a π-class; the fact that G′ is a σ-class is due to the last
expression for G′. Also the satisfaction of the conditions (0)–(3) from the previous
section is evident for 〈Qn,M ′, G′〉. Thus we have proved the following result.
Theorem 5.2. If 〈Qn,M,G〉 is a BVS, then its dual 〈Qn,M ′, G′〉 is a BVS, too.
A BVS 〈Qn,M,G〉 is called reflexive if 〈Qn,M,G〉′′ = 〈Qn,M,G〉. Note that

the inclusions M ⊆M ′′, G ⊆ G′′ are trivial.
In essentially the same way, given two biequivalence vector spaces 〈Qm,M1, G1〉

and 〈Qn,M2, G2〉, the vector space Qn×m of all n × m matrices over Q can be
converted into a BVS 〈Qn×m,M,G〉 putting

M = {a ∈ Qn×m; (∀x ∈ G1)(a · x ∈M2)},
G = {a ∈ Qn×m; (∀x ∈M1)(a · x ∈ G2)},

where a · x denotes the usual multiplication of matrices and the elements of Qm,
Qn are regarded as column vectors.
We will close the section by a rather important and instructive example. The

reader can compare our approach and results with those in [H-Mr 1983b]. Let p be
a positive hyperreal number or the sign of infinity ∞ and n be a natural number
(to avoid trivialities, we assume n > 1). For each x ∈ Qn, we put

‖x‖p =

{ (
|x1|p + · · ·+ |xn|p

)1/p
if 0 < p <∞,

max{|x1|, . . . , |xn|} if p =∞.

Then, as it can easily be seen, ‖ · ‖p : Q
n −→ HR,

‖x‖p = 0 ⇔ x = 0,

‖α · x‖p = |α| · ‖x‖p,

‖x+ y‖p ≤ max
{
1, 21/p−1} · (‖x‖p + ‖y‖p)



Biequivalence vector spaces in the alternative set theory 531

hold for all α ∈ Q, x, y ∈ Qn, and the last quoted estimation is the best possible.
Therefore, putting

Mp(n) = {x ∈ Qn; ‖x‖p ∈ IHR},
Gp(n) = {x ∈ Qn; ‖x‖p ∈ BHR},

the triple Lp(n) = 〈Qn,Mp(n), Gp(n)〉 becomes a BVS if and only if p is not infin-
itesimal.
Now, let q be another positive hyperreal or ∞. As the proof of the following

assertion can be fulfilled by rather elementary means, we venture to omit it.

Proposition 5.3. For all admitted n, p, q, each of the conditions

Mp(n) =Mq(n), Gp(n) = Gq(n)

is equivalent to (1
p
− 1
q

)
· lgn ∈ BHR.

Corollary 5.4. (a) If n is finite, then for all p, q ∈ HR+ ∪ {∞}, the biequivalence
vector spaces Lp(n), Lq(n) coincide.

(b) If p ∈ HR+, then Lp(n) = L∞(n) iff lgn < kp for some k ∈ FN .

It also follows that for each n ∈ N , p ∈ HR+ ∪ {∞}, there is an α ∈ Q, α ·> 0,
such that Lp(n) = Lα(n). If p 6= ∞, then obviously we can require α .

= p. But in
general, the condition p

.
= q is not sufficient for Lp(n) = Lq(n).

For infinite n, the spaces Lp(n) remind of their classical counterparts, namely the
ℓp and Lp spaces. Concerning their relationship to the latter ones, more precisely
to the spaces Lp[0, 1] (with the usual Lebesgue measure on the real interval [0, 1]),
it probably would appear more transparent if we started with the definition

|||x ||| p =





(
|x1|p+···+|xn|p

n

)1/p
if 0 < p <∞

max{|x1|, . . . , |xn|} if p =∞

instead of the original one. Indeed, the last definition can be viewed as an infinite
sum representation of the classical p-norm given by the Lebesgue integral

‖f‖p =





(∫ 1
0 |f(t)|p dt

)1/p
if 0 < p <∞

sup{|f(t)|; t ∈ [0, 1]} if p =∞

for the classical functions f ∈ Lp[0, 1]. However, as for each x ∈ Qn it holds

‖x‖p = n
1/p · |||x ||| p ,
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the new biequivalence vector spaces obtained in this way are canonically isomorphic
to our original Lp(n)’s through an Sd-map. Thus everything established for the
Lp(n)’s immediately applies to the new BVS’ defined by using ||| · ||| p instead of ‖ · ‖p.
One remarkable thing is the behavior of the duals of the spaces Lp(n) which is

much nicer than that of their classical analogues. Let us put for each p ∈ HR+∪{∞}

p′ =





p
p−1 if 1 < p <∞
∞ if 0 < · p ≤ 1
1 if p =∞.

Then the following result can be proved in a fairly standard way.

Proposition 5.5. For all admitted n, p, it holds

Lp(n)
′ = Lp′(n) .

Note that the stated equality holds not only if 1 ≤ p < ∞, as in the classical
situation, but also for p =∞, and even if 0 < · p < 1. On the other hand, as proved
in [Dy 1940], the classical spaces Lp have no continuous functionals except the zero
constant map if 0 < p < 1.
To translate the last proposition to the biequivalence vector spaces defined

through the “integral” norm ||| · ||| p , one only has to substitute the more “integral
reminding” inner product

x • y = 1
n

(
x1y1 + · · ·+ xnyn

)

on Qn into the place of the original x · y.
Propositions 5.3 and 5.5 have the following consequence.

Proposition 5.6. The biequivalence vector space Lp(n) is reflexive if and only if

p ≥ 1 or
(1
p
− 1

)
· lgn ∈ BHR.

6. Valuations on vector spaces.

Perhaps the most important ones among the classical topological vector spaces are
the Banach spaces. Also in the alternative set theory (where every π-equivalence
automatically induces the structure of a complete metrizable space), it is important
to have some valuations of the size of vectors from a given vector space W . The
prescribed conditions, valuations should be subject to, ought to be strong enough
to enable smooth computations and to guarantee that any valuation on W induced
the structure of a BVS on W . On the other hand, they may not be too restrictive,
as it would be desirable, any BVS 〈W,M,G〉 could be obtained in this way from
a suitable valuation on W . As it will be shown in this section, the solution of the
raised problem lies in the following definition.
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Let W be a vector space, p, q ∈ BHR \ IHR, p > 0, q > 0. An Sd-function
Φ will be called a (p, q)-valuation on W provided dom(Φ) is a subspace of W ,
rng(Φ) ⊆ HR and for all α ∈ Q, x, y ∈ dom(Φ) the following two conditions hold:

Φ(αx) = |α|p ·Φ(x),
Φ(x+ y) ≤ q · (Φ(x) + Φ(y)).

Then obviously also
Φ(0) = 0 and Φ(x) ≥ 0

for each x ∈ dom(Φ). Φ will be called a valuation on W if it is a (p, q)-valuation
for some pair of admitted parameters p, q. A (1, 1)-valuation will be called a norm.
Let Φ be a valuation on a vector space W . We put

ker(Φ) = {x ∈ dom(Φ); Φ(x) = 0},
M(Φ) = {x ∈ dom(Φ); Φ(x) ∈ IHR},
G(Φ) = {x ∈ dom(Φ); Φ(x) ∈ BHR}.

The following proposition is an immediate consequence of the definition of valuation.

Proposition 6.1. Let W be a vector space and Φ be a valuation on W . Then the
triple 〈W,M(Φ), G(Φ)〉 is a BVS satisfying

W̊ = ker(Φ), W̃ = dom(Φ).

A valuation Φ on a vector space W will be called total if ker(Φ) = {0} and
dom(Φ) =W . According to the last proposition a valuation Φ on W is total iff the
BVS 〈W,M(Φ), G(Φ)〉 is trim.
A valuation Φ will be called trivial if ker(Φ) = dom(Φ). A trivial valuation is

a (p, q)-valuation for all possible choices of p, q. However, for a nontrivial valuation
Φ, the parameter p, such that Φ is a (p, q)-valuation for some q, is determined
uniquely. On the other hand, if Φ is a (p, q1)-valuation and q1 ≤ q2, then Φ
obviously is a (p, q2)-valuation, as well. But even in this case there is the least

q0 = inf
{
λ ∈ Q; (∀x, y ∈ dom(Φ))

(
Φ(x+ y) ≤ λ(Φ(x) + Φ(y))

)}

with this property. Finally, the computation

2p · Φ(x) = Φ(2x) ≤ 2q · Φ(x)

shows that if there is a nontrivial (p, q)-valuation, then it holds

2p−1 ≤ q, or equivalently, p ≤ 1 + lg q.

Now let us state the converse of Proposition 6.1.
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Theorem 6.2. Let 〈W,M,G〉 be a BVS. Then there are numbers p, q ∈ BHR such
that 0 < · p ≤ 1 ≤ q, a (1, q)-valuation Φ and a (p, 1)-valuation Ψ on W such that

ker(Φ) = ker(Ψ) = W̊ , dom(Φ) = dom(Ψ) = W̃ ,

M(Φ) =M(Ψ) =M, G(Φ) = G(Ψ) = G.

Proof: First we will construct a (1, q)-valuation Φ. Let S be any balanced bounded

neighbourhood of 0 in 〈W,M,G〉. For each x ∈ W̃ , we put

Φ(x) = inf{α ∈ Q; α ≥ 0, x ∈ α · S}.

Then, by a rigorous checking of suitable set formulas, we obtain that Φ : W̃ −→ HR

is an Sd-function and for all α ∈ Q, x ∈ W̃ , it holds

Φ(α · x) = |α| ·Φ(x),

and also the equalities ker(Φ) = W̊ , dom(Φ) = W̃ , M(Φ) = M and G(Φ) = G are
satisfied. Moreover,

{x ∈ W̃ ; Φ(x) < 1} ⊆ S ⊆ {x ∈ W̃ ; Φ(x) ≤ 1}.

By the claim (∗) from the proof of 4.6, there is a λ ∈ BQ, λ ≥ 1, such that Ŝ ⊆ λ·S.
If we put

q0 = inf{λ ∈ Q; λ ≥ 1, Ŝ ⊆ λ · S},
then it is routine to check that q0 ∈ BHR, q0 ≥ 1 and for each q ∈ BQ, q ≥ q0, and

all x, y ∈ W̃ , it holds
Φ(x+ y) ≤ q · (Φ(x) + Φ(y)).

Now, we will construct a (p, 1)-valuation Ψ using the already constructed valua-
tion Φ. We put

T = {x ∈ W̃ ; Φ(x) < 1}.
Then T again is a bounded balanced neighbourhood of 0 in 〈W,M,G〉, and

Φ(x) = inf{α ∈ Q; α ≥ 0, x ∈ α · T }

for x ∈ W̃ . By the already used claim (∗), there is a κ ∈ BQ, κ ≥ 3, such that
T + T + T ⊆ κ · T . For each n ∈ Z, we put

Tn = κ
n · T.

Then the Sd-sequence {Tn; n ∈ Z} satisfies all the conditions of 4.8, and even

Tn + Tn + Tn ⊆ κ · Tn = Tn+1
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holds for each n. Let us denote p = 1/ lg κ, and put

Γ(x) = Φ(x)p

for x ∈ W̃ . Then obviously 0 < · p < · 1 and the fact that Γ is a (p, qp)-valuation
for each q ≥ q0 can be verified by two straightforward computations which are left

to the reader. According to the choice of κ and p, for all x ∈ W̃ , n ∈ Z, we have

Γ(x) < 2n iff Φ(x) < κn iff x ∈ Tn,

hence ker(Γ) = W̊ , dom(Γ) = W̃ , M(Γ) = M and G(Γ) = G. Finally we put for

x ∈ W̃

Ψ(x) = inf
{ k∑

i=0

Γ(xi) ; k ∈ N, 〈x0, ..., xk〉 ∈ W̃ k+1,

k∑

i=0

xi = x
}
.

It is clear immediately from the construction that Ψ is a (p, 1)-valuation on W and

dom(Ψ) = W̃ . The remaining conditions will follow from the inclusions

Tn ⊆ {x ∈ W̃ ; Ψ(x) < 2n} ⊆ Tn+1

holding for each n ∈ Z. In view of the inequality Ψ(x) ≤ Γ(x), the first inclusion is
trivial, since Γ(x) < 2n for x ∈ Tn. To establish the second inclusion, it is enough

to show that for all k ∈ N , 〈x0, ..., xk〉 ∈ W̃ k+1 and n ∈ Z, it holds

Γ(x0) + · · ·+ Γ(xk) < 2n ⇒ x0 + ...+ xk ∈ Tn+1.

This can be done by induction over k. For k = 0, it is trivial. Let k ≥ 1 and
µ = Γ(x0) + · · ·+ Γ(xk) < 2n.

Without loss of generality we can assume that µ > 0 and Γ(x0) ≤ Γ(x1) ≤ · · · ≤
Γ(xk). Let j ≤ k be the least number such that

Γ(x0) + · · ·+ Γ(xj) >
µ

2
.

Then obviously 0 < j ≤ k and

Γ(x0) + ...+ Γ(xj−1) < 2n−1,

hence x0 + ... + xj−1 ∈ Tn by the induction argument. If j = k, then Γ(xk) < 2n

and xk ∈ Tn, hence

x0 + · · ·+ xk−1 + xk ∈ Tn + Tn ⊆ Tn+1.

If j < k, then Γ(xj) < 2n−1 and also

Γ(xj+1) + · · ·+ Γ(xk) < 2n−1.

Again, by the induction presumption, we have xj ∈ Tn, x
j+1+ · · ·+xk ∈ Tn, hence

x0 + · · ·+ xj−1 + xj + xj+1 + · · ·+ xk ∈ Tn + Tn + Tn ⊆ Tn+1.

�

If Ψ is a (p, 1)-valuation, then the function Ψ(x − y) becomes a metric on W̃
invariant with respect to translations (with the possible exception that Ψ(x−y) = 0
iff x− y ∈ W̊ , and not only if x = y).
Let us record the following technical result for the future.
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Lemma 6.3. Let 〈W,M,G〉 be a BVS. Then for each n ∈ N , there is an m ∈ N
such that

n ⋆M ⊆ m ·M, n ⋆ G ⊆ m ·G.

Proof: Let Ψ be the (p, 1)-valuation just constructed. Then for each n ∈ N ,

〈x1, . . . , xn〉 ∈ W̃n, it holds

Ψ(x1 + · · ·+ xn) ≤ n ·max{Ψ(x1), . . . ,Ψ(xn)}.

Thus it suffices to take any m ≥ n1/p. �

Let us recall that a class X in a vector space W is called convex if X̂ = X ,
i.e., if αx + (1 − α)y ∈ X for all x, y ∈ X , α ∈ [0, 1]. X will be called totally
convex if 〈X〉 = X , i.e., if

∑n
i=0 αix

i ∈ X for all n ∈ N , 〈x0, . . . , xn〉 ∈ Xn+1,

〈α0, . . . , αn〉 ∈ [0, 1]n+1 such that α0 + · · ·+ αn = 1. As it can easily be proved by
induction, an Sd-class is totally convex if and only if it is convex. However, as we
shall see within short, this result cannot be generalized even to σ- and π-classes.
A biequivalence vector space 〈W,M,G〉 is called locally convex if there is a convex

bounded neighbourhood of 0 in 〈W,M,G〉.
A BVS 〈W,M,G〉 is called normable if there is a norm (i.e., a (1, 1)-valuation)

Φ on W such that dom(Φ) = W̃ , ker(Φ) = W̊ , M(Φ) =M and G(Φ) = G.
Besides the classical characterization of normability we have

Theorem 6.4. Let 〈W,M,G〉 be a BVS. Then the following conditions are equiv-
alent:

(a) 〈W,M,G〉 is locally convex;
(b) 〈W,M,G〉 is normable;
(c) M is totally convex;
(d) G is totally convex.

Proof: (a)⇒(b) If T is a convex bounded neighbourhood of 0 in 〈W,M,G〉, then

S = T : [−1, 1] = {x ∈ W ; [−1, 1] · {x} ⊆ T }

obviously is a convex balanced bounded neighbourhood of 0 in 〈W,M,G〉. The rest
follows from the first part of the proof of 6.2.
(b)⇒(c) Let Φ be a norm on 〈W,M,G〉 satisfying the conditions required. Let

n ∈ N , 〈x0, . . . , xn〉 ∈ Mn+1, 〈α0, . . . , αn〉 ∈ [0, 1]n+1 and α0 + · · ·+ αn = 1. We
denote

x =
n∑

i=0

αix
i .

Then

Φ(x) ≤
n∑

i=0

αiΦ(x
i) ≤

( n∑

i=0

αi

)
·max{Φ(xi); 0 ≤ i ≤ n} ∈ IHR.
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Hence x ∈M .
(c)⇒(d) is an immediate consequence of the equality G =M : IQ.
(d)⇒(a) Let S be any bounded neighbourhood of 0 in 〈W,M,G〉. As G is totally

convex, S ⊆ 〈S〉 ⊆ G. Thus the Sd-class 〈S〉 is a convex bounded neighbourhood.
�

It could be of some interest that the not normable BVS’ have the following rather
pathological property.

Proposition 6.5. A BVS 〈W,M,G〉 is not normable iff for some n ∈ N there are
〈x0, . . . , xn〉 ∈Mn+1, 〈α0, . . . , αn〉 ∈ Qn+1 such that |α0|+ · · ·+ |αn| ∈ IQ and

n∑

i=0

αix
i /∈ G.

Proof: If 〈W,M,G〉 is not normable, then by the preceding Theorem there is an
n ∈ N and 〈y0, . . . , yn〉 ∈Mn+1, 〈β0, . . . , βn〉 ∈ [0, 1]n+1 such that β0+ · · ·+βn = 1
and

∑
βiy

i /∈M . Then one can find a γ ∈ Q \BQ such that γ2 · yi ∈M for each i.
It suffices to put

xi = γ2 · yi, αi =
βi

γ
.

�

For p ≥ 1, n ≥ 1, the function ‖ · ‖p from Section 5 is a norm on the BVS Lp(n).
Thus for p satisfying

p ≥ 1 or
(1
p
− 1

)
· lgn ∈ BHR,

Lp(n) is normable. If p < 1, then ‖·‖p is not a norm, though it still is a
(
1, 21/p−1

)
-

valuation. On the basis of 6.3, it can easily be verified that for p < 1,
(
1
p −1

)
·lg n /∈

BHR, the BVS Lp(n) is not normable, as the monad Mp(n) (and hence the galaxy
Gp(n), as well) is not totally convex. On the other hand, in every BVS, both the
monad and the galaxy of 0 are convex.

7. The envelope operation.

As a motivational example let us consider the BVS 〈Q2,M,G〉 where

M = {x ∈ Q2; x1 + x2
√
2 ∈ IHR},

G = {x ∈ Q2; x1 + x2
√
2 ∈ BHR}.

It can easily be seen that 〈Q2,M,G〉 is a trim BVS with the two-element algebraic
basis {〈1, 0〉, 〈0, 1〉}. However, from a topological point of view, 〈Q2,M,G〉 is only
one-dimensional, as both the vectors 〈1, 0〉, 〈0, 1〉 “lie on the same line”.
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To be able to apprehend the phenomenon of vectors “lying in a subspace [u]
generated by a set u though not necessarily belonging to [u]”, which can occur in
a BVS over Q, we will introduce the notion of the envelope of a set u defined by

E(u) = {x ∈W ; [{x}] ⊆ [u] +M}

in every BVS 〈W,M,G〉.
In the above example, as one can directly verify, 〈0, 1〉 ∈ E{〈1, 0〉} and vice versa.
Till the end of the section 〈W,M,G〉 denotes a fixed but otherwise arbitrary

BVS. By the way, observe that

E(∅) = E({0}) = W̊ .

Theorem 7.1. E is a symmetric Sd-closure on W .
Proof: It can easily be shown that for each u ⊆W

E(u) = {x ∈W ; [{x}] ⊆ [u] +G}.

As a consequence
E(u) = {x ∈W ; [{x}] ⊆ [u] + S}

for every bounded neighbourhood S of 0. Thus E(u) can be defined by a set-
theoretical formula. Also the following conditions are trivial for any u, v ⊆W :

u ⊆ [u] ⊆ E(u),
u ⊆ v ⇒ E(u) ⊆ E(v),

and additionally
[u] = [v] ⇒ E(u) = E(v).

In order to prove the nontrivial inclusion in the equality

⋃
{E(v); v ⊆ E(u)} = E(u),

let us consider an x belonging to the left side. Take an arbitrary α ∈ Q. Then for
some n there are 〈y1, . . . , yn〉 ∈ E(u)n, 〈β1, . . . , βn〉 ∈ Qn such that

αx−
∑

βiy
i ∈M.

By 6.3, there is an m ∈ N such that 1m · (n ⋆ M) ⊆ M . As for each i ≤ n it holds

yi ∈ E(u), there is a zi ∈ [u] such that

mβiy
i − zi ∈M.

By Lemma 1.1, the elements zi can be chosen in such a way that 〈z1, . . . , zn〉 ∈ [u]n.
We put

z =
1

m
·
∑

zi.
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Then z ∈ [u] and, by the choice of m, it holds
∑

βiy
i − z =

1

m
·
∑
(mβiy

i − zi) ∈M.

Consequently

αx − z =
(
αx−

∑
βiy

i)+
(∑

βiy
i − z

)
∈M,

hence [{y}] ⊆ [u] +M . This proves that for each u ⊆W ,

EE(u) = E(u).

It remains to prove the exchange condition

x ∈ E(u ∪ {y}) \ E(u) ⇒ y ∈ E(u ∪ {x})

for all x, y ∈ W , u ⊆ W . If x /∈ E(u), then αx /∈ [u] +M for some α. Take an
arbitrary β 6= 0. We will prove

βy ∈ [u ∪ {x}] +M.

If y /∈ W̃ , then even y ∈ [u ∪ {x}]. If y ∈ W̃ , then there is a γ ∈ IQ, γ 6= 0, such
that γβy ∈M . As x ∈ E(u ∪ {y}), there is a z ∈ [u] and a δ ∈ Q such that

(∗) α

γ
x− z − δy ∈M.

As γ ∈ IQ, it follows
αx− γz − γδy ∈M.

Since αx /∈ [u] +M , γz ∈ [u], we conclude γδy /∈ M . Therefore |β| < |δ|, in other
words,

∣∣β
δ

∣∣ < 1. Thus multiplying (∗) by β
δ one obtains

αβ

γδ
x− β

δ
z − βy ∈M.

Hence βy ∈ [u ∪ {x}] +M and y ∈ E(u ∪ {x}). �

The theorem just proved, together with 2.3 and 2.5, yields the following conse-
quence.

Theorem 7.2. Let 〈W,M,G〉 be a BVS. Then for every E-independent Sd-classX0
and every E-generating Sd-class X1, such that X0 ⊆ X1 ⊆ W , there is an E-basis
X such that Sd(X) and X0 ⊆ X ⊆ X1. Moreover, if X,Y ⊆W are both Sd-classes
and E-bases and one of them is a set, then also the remaining one is a set with the
same number of elements.
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8. Bases in biequivalence vector spaces.

Through the entire section 〈W,M,G〉 denotes a fixed but otherwise arbitrary BVS.
A class X ⊆W will be called independent (in 〈W,M,G〉) if

X ∩M = ∅ and (∀x ∈ X)([{x}] ∩ ([X \ {x}] +M) ⊆M).

Obviously, a class X is independent iff each its subset is independent.

Proposition 8.1. If X ⊆ W is an independent class, then for each n ∈ N and all
〈α1, . . . , αn〉 ∈ Qn, 〈x1, . . . , xn〉 ∈ Xn, such that xi 6= xj for 1 ≤ i < j ≤ n,

α1x
1 + · · ·+ αnx

n ∈M

implies αi ∈ IQ for each i ≤ n. If X ⊆ G, then this necessary condition is also
sufficient.

Proof: Let X ⊆ W be independent, and 〈α1, . . . , αn〉, 〈x1, . . . , xn〉 satisfy the
corresponding presumptions. Let us denote z =

∑
αjx

j ∈ M . Assume that αi /∈
IQ, i.e., 1αi

∈ BQ. Then

xi =
1

αi

(
z −

∑

j 6=i

αjx
j
)
∈ [X \ {xi}] +M,

hence xi ∈M , contradicting X ∩M = ∅.
Now, let X ⊆ G satisfy the condition of the proposition. X ∩M = ∅ is obvious.

Assume that x ∈ X , x /∈ u ⊆ X and αx ∈ [u] +M for some α. Then there is an n-
tuple of distinct elements 〈x1, . . . , xn〉 ∈ un and an n-tuple of scalars 〈α1, . . . , αn〉 ∈
Qn such that

αx−
∑

αix
i ∈M.

Then α ∈ IQ, and, as x ∈ G, also αx ∈M . �

A class X ⊆W is called generating (in 〈W,M,G〉) if

[X ] +M =W.

Observe that a set u is generating iff it is E-generating. An independent gener-
ating class X ⊆W will be called a basis of 〈W,M,G〉.
The main result of this section is that every BVS possessing an E-generating

set, in particular, every BVS of the form 〈Qn,M,G〉, has a set basis. In view
of the long period for which the problem of existence of a Schauder basis in any
classical separable Banach space had remained open, until it was solved negatively
by P. Enflo [En 1973], this perhaps might occur rather surprising. On the other
hand, in our case a slight modification of the Auerbach method (see e.g. [Sn 1970])
yields the proof of the result.
Preliminarily we will introduce some notation and state two auxiliary results.

Let u ⊆ W̃ be an E-independent set which will be specified more precisely later,
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and u = {x1, . . . , xn}, n > 0, be its fixed set-enumeration. Then the subspace [u]
of W can be identified with Qn, i.e., each y ∈ [u] can be identified with the n-tuple
〈y1, . . . , yn〉 ∈ Qn of its co-ordinates, uniquely determined by the equation

y =
n∑

i=1

yix
i .

If 〈y1, . . . , yn〉 ∈ [u]n, then D(y1, . . . , yn) denotes the determinant of the n × n-
matrix

(
yi
j

)
formed by the co-ordinates of the column vectors yi.

Lemma 8.2. There is a number κ ∈ Q, κ > 0, such that for each y ∈ [u] ∩G and
each i ≤ n, it holds

|yi| ≤ κ.

Proof: It suffices to show an apparently weaker statement, namely

(∗) (∀i ≤ n)(∃κ ∈ Q, κ > 0)(∀y ∈ [u] ∩G)(|yi| ≤ κ).

The needed conclusion is then a consequence of (∗) and Lemma 1.1. Assume that
(∗) does not hold, i.e., there is an i ≤ n such that

(∀κ ∈ Q)(∃y ∈ [u] ∩G)(|yi| > κ).

We will obtain a contradiction by proving xi ∈ E(u \ {xi}). Take an arbitrary κ
and a y ∈ [u] ∩G such that ∣∣∣ κ

yi

∣∣∣ < 1.

Obviously y =
∑
yjx

j ∈ G. Hence also

κ

yi
y = κxi +

∑

j 6=i

κyj
yi
xj ∈ G.

By 7.1, xi ∈ E(u \ {xi}). �

An immediate consequence of Lemma 8.2 is the following

Lemma 8.3. There is a number λ ∈ Q, λ > 0, such that for each n-tuple
〈y1, . . . , yn〉 ∈ ([u] ∩G)n, it holds

|D(y1, . . . , yn)| ≤ λ.
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Theorem 8.4. Assume that there is a set s ⊆ W such that W̃ ⊆ E(s) holds in
〈W,M,G〉. Then there is an Sd-class X ⊆ W such that X ∩ W̃ ⊆ G and X is
a basis of 〈W,M,G〉. Moreover, for any two Sd-classes X,Y ⊆ W which are bases

of 〈W,M,G〉, X ∩ W̃ , Y ∩ W̃ are sets with the same number of elements, and if one
of the Sd-classes X \ W̃ , Y \ W̃ is a set, then also the remaining one is a set with
the same number of elements.

Proof: There is an Sd-subspace U of W such that W = W̃ +U and W̃ ∩U = {0}.
Then the BVS 〈U,U ∩M,U ∩ G〉 = 〈U, {0}, {0}〉 is trivial and satisfies Ũ = {0}.
Hence every algebraic basis X1 of U already is a basis of 〈U,U ∩M,U ∩G〉. Thus, if
X0, X1 are Sd-classes such that X0 is a basis of 〈W̃ ,M,G〉 and X1 is an algebraic
basis of U , then the Sd-class X = X0 ∪X1 is a basis of 〈W,M,G〉. It remains to
prove the following special case of our Theorem.

Theorem 8.5. Assume that there is a set s ⊆W such that W̃ =W = E(s) holds
in 〈W,M,G〉. Then there is a set v ⊆ G which is a basis of 〈W,M,G〉. Moreover,
if u is an arbitrary E-basis and v is an arbitrary basis of 〈W,M,G〉, then u, v have
the same number of elements.

Proof: As each basis v of 〈W,M,G〉 at the same time is an E-basis of 〈W,M,G〉,
the last assertion is trivial. Let us prove the existence of the basis v. By 7.2, there is
an E-basis u ⊆ s of 〈W,M,G〉. This will be the set u to which Lemmas 8.2 and 8.3
and the preliminarily introduced notation will be applied (the case u = ∅ obviously
can be excluded as trivial). Let us consider the Sd-class

A = {|D(y1, . . . , yn)|; 〈y1, . . . , yn〉 ∈ ([u] ∩ S)n} ⊆ Q,

where S is a fixed bounded balanced neighbourhood in 〈W,M,G〉. By 8.3, there
is a λ > 0 such that α ≤ λ for each α ∈ A. Therefore for each δ > 0, there is
a 〈z1, . . . , zn〉 ∈ ([u] ∩ S)n such that

α ≤ (1 + δ) |D(z1, . . . , zn)|

for each α ∈ A. We will prove that whenever δ ∈ BQ (in particular, we can
choose δ ∈ IQ), then the corresponding set v = {z1, . . . , zn} ⊆ G is a basis of
〈W,M,G〉. First notice that using an appropriate (1, q)-valuation Φ on 〈W,M,G〉,
a 〈γ1, . . . , γn〉 ∈ Qn can be found, such that 〈γ1x1, . . . , γnx

n〉 ∈ (S \ 12 · S)n. Then,
as

D(γ1x
1, . . . , γnx

n) 6= 0,
also

D(z1, . . . , zn) 6= 0,
so that the set v is algebraically independent, and having the same number of
elements as u, it follows [u] = [v] and E(u) = E(v) = W , i.e., v is generating. It
remains to prove its independence. As v ⊆ G, by 8.1 it is enough to show that
whenever 〈α1, . . . , αn〉 ∈ Qn is such that

α1z
1 + · · ·+ αnz

n ∈M,
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then αi ∈ IQ for each i. Assume that αk /∈ IQ for some k ≤ n. Then there is
a β ∈ Q \BQ such that β · ∑αiz

i ∈M ⊆ S. Then

|D(z1, . . . , zn)| =
1

|βαk|
∣∣∣D(z1, . . . , β

∑
αiz

i, . . . , zn)
∣∣∣

≤ 1 + δ|βαk|
|D(z1, . . . , zk, . . . , zn)|,

which is a contradiction, as 1+δ
βαk

∈ IQ. �

Let us conclude the article with two immediate consequences.

Corollary 8.6. Every BVS of the form 〈Qn,M,G〉 has a set basis. All set bases
of the BVS 〈Qn,M,G〉 have the same number of elements ≤ n.

Let us recall that the biequivalence 〈 .=M ,↔G〉 on 〈W,M,G〉 was defined in 4.3.
For the notion of compatible biequivalence see [G-Z 1985a].

Corollary 8.7. For any BVS 〈W,M,G〉 the following conditions are equivalent:
(a) the biequivalence 〈 .=M ,↔G〉 is compatible;
(b) 〈W,M,G〉 has a finite basis;
(c) 〈W,M,G〉 has a finite E-basis.
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[K-Z 1988] Kalina M., Zlatoš P., Arithmetic of cuts and cuts of classes, Comment. Math. Univ.
Carolinae 29, 435–456.
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[Z 1989] Zlatoš P., Topological shapes, in Mlček J. et al. (eds.), “Proc. of the 1st Symposium

on Mathematics in the Alternative Set Theory,” pp. 95–120, Association of Slovak
Mathematicians and Physicists, Bratislava.
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