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THE PERRON PRODUCT INTEGRAL AND GENERALIZED LINEAR 
DIFFERENTIAL EQUATIONS 

STEFAN SCHWABIK, Praha 

(Received December 19, 1988) 

Summary. The concept of the Perron product integral due to J. Jarnik and J. Kurzweil is 
investigated. The class of Perron product integrable „point — interval" functions is extended 
and it is shown that this extension is suitable for the representation of the fundamental matrix 
of generalized linear differential equations. 
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INTRODUCTION 

In the recent paper [2] of J. Jarnik and J. Kurzweil a definition of the Perron 
product integral is given, which is the ,,product form" of an analogous concept of 
the sum integral. In [2] the basic properties of the product integration are developed 
and the product integral is connected with a relatively wide class of linear ordinary 
differential equations of the form 

u -= a(t) u 

where a is an n x ^-matrix valued function. 
Here we use the definition from [2] for a slightly more general class of Perron 

product integrable functions. In Section 1 we consider the properties of the product 
integral in an analogous way as this was done in [2] and in Section 2 we give further 
results which can be applied to generalized linear differential equations of the form 

x(s) = x(a) + l:diA(r)]x(r), se[a,b] 

where A is an n x /i-matrix valued function of bounded variation on [a, b]. The 
concept of generalized linear differential equations is given e.g. in [3] and [4]. 
A product integral representation of the fundamental matrix of a generalized linear 
differential equation is derived under some additional assumptions on the matrix 
valued function A. 
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1. THE PERRON PRODUCT INTEGRAL AND THE CONDITION V 

Let neN and let Un be the ^-dimensional Euclidean space. We denote by L(Un) 
the set of all linear operators from Un to IR" (the n x /z-matrices) and assume that || • || 
is the corresponding operator norm in L(IRn). 

Let [a, b] c U be a compact interval and let J be the set of all compact sub-
intervals in [a, b], i.e. intervals of the form [x, y], where a g x ^ y ^ b. Assume 
that a function V: [a, b] x J -> L(lR'') is given. 

A finite set 

A = {oc09tuocl9t29ot29...,ak_l,tk,oLk} 

is called a partition of the interval [a, b] if 

a = a0 < a t < ... < ak = b 

and 

^ . e f a y ^ a , . ] , j = 1,2, . . . , fe. 

Given a function 8: [a, b] -> (0, +oo), called a gauge on [a, b], the partition A 
of [a, b] is said to be (5-fine, if 

-*i = [>i-i> a . ] c (>/ ~ <5('0> 'i + KU)), i = 1, 2 , . . . , fe . 

For the function V: [a, b] x J -> L(lR") and a given partition A of [a, b] denote 

P(V, A) = V(tk, [a,_1? afc]) V(tk_l9 [a,_2 , a , _ t ] ) . . . V(^, [a0, a,]) = 

= % - * ) ^ - i , / * - i ) . . . % / i ) . 

1.1. Definition. A function V: [a, b] x J -> L(Un) is called Perron product 
integrable if there exists g e L(IR") which is invertible such that for every e > 0 
there is a gauge 5: [a, b] -> (0, + oo) on [a, b] such that 

(1.1) | P ( 7 , . 4 ) - Q | < B 

for every 5-fine partition A of [a, b], 
Q e L(Un) is called the Perron product integral of V over [a, b] and we use the 

notation Q = Y[b
a V(t9 At). 

1.2. Remark. This definition follows exactly the line of definition of the Perron 
product integral given by J. Jarnik and J. Kurzweil in their paper [2]. In [2] the 
notation (PP) \b

a V(t, At) is used for Q. It has to be mentioned that the set of 5-fine 
partitions A of [a, b] is nonempty for every given gauge S on [a, b] (see e.g. [4]). 
Therefore the notion of Perron product integrability given in Definition 1.1 makes 
sense. 

Because the space L(Un) with the operator norm ||*|| is a Banach space (i.e. 
complete), it is easy to see that the following holds. 
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1.3. Proposition. Let V: \a9 b] x J -> L(Un) be given. The following two condi­
tions are equivalent. 

(i) There is a-Qe L(Un) such that for every e > 0 there is a gauge 5: [a, b] -> 
-> (0, +oo) such that ||P(V, A) — Q|| < efOr any 5-fine partition A of \a9 b]. 

(ii) FOr every e > 0 there exists a gauge 5: \a9 b] -> (0, +oo) such that 
||P(V, Aj) — P(V, A2)|| < efOr any b-fine partitions Al9 A2 of [a, b]. 

In the sequel we will assume that the function V: \a9 b] x J -> L(Un) satisfies 
the following condition. 

Condition %?. 

(1.2) V(t, \t9 t]) = I for every t e \a9 b]9 where I e L(Un) is the identity operator 

. in L(Un); 

(1.3) fOr every t e [a, b] and £ > 0 there exists a > 0 such that 

\\v('>l^y])-v(^,y])v(t,[x,t])\\<i: 

for all x9 y e\a9 b]9 t — a < x g t fg y < t + o\ 

(1.4) for every t e \a, b) there is an invertible V+(t) e L(Un) such that 

\im\\V(t,[t,y])-V+(t)\\=0,\.c. 
y-*t + 

HmV(t9\t9y])=V+(t) 
y-+t + 

and for every t e (a9 b] there is an invertible V-(t) e L(Un) such that 

l i m | | V ( t , [ x , t ] ) - 7 . (0 | | = 0 , i.e. 
jc->f-

lim V(t, [x, t]) = r_(0 . 
x - ->t-

1.4. Remark. In [2] it is assumed that the function V: \a9 b] x J -> L(Un) satisfies 
the following condition 

(1.5) fOr every t e \a9 b] and £ > 0 there is a > 0 such that 

\\V(t,[x,y])-l\\ < C 

fOr all x9 y e \a9 b]9 t — a<x^t^y<t + a. 
Since we have 

V{U [*. y\) - V(t, [t, y]) V(t, [x, t]) = V(t, [x, y]) - V(t, [t, y]) + 

+ V(t, [x, t])-I + (V(t, [t, y]) - I) (V(t, [x, t]) - I) = 

= v(*> [*. yl) - I + I - v(}> ['. y\) - v(<> [̂ . 0) + 

+ I-(V(t,[t,y])-I)(V(t,[x,t])-I) 
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we have also 

\\V(t, [x, y]) - V(t, [t, y]) V(t, [x, t])\\ < 

< \\V(t,[x,y])-l\\ + \\V(t,[t,y])-l\\ + | | V ( t , [ x ; t ] ) - / | | + 

+ \\V(t,[t,y])-l\\.\\V(t,[x,t])-l\\. 

This inequality implies that if V: [a, b] x J -> L(Un) satisfies (1.5) then 

11% lx> yl) - v(t, [t, y]) v(t, [x, t])\\ < 3C + C2 

for all x, y e [a, b], t — o<x^tf^y<t + o and this implies that (1.3) given 
in condition <_? is fulfilled. Moreover (1.5) evidently yields lim V(l, [t, y]) = J, 

y - f + 
te[a, b) and lim V{t, [x, t]) = I, te(a, b] and therefore (1.4) as well as (1.2) 

x-+t-

from condition ^ hold. This means that the condition (1.5) introduced by J. Jarnik 
and J. Kurzweil in [2] implies the condition ^ given above. 

1.5. Lemma. Assume that for the function V: [a, b] x J -> L(Un) the condition W 
is satisfied. Then for every t e [a, b] there exists a at = ox(t) > 0 such that 
V(t, [x, y]) e L(Un) is invertible provided x, y e [a, b], t — ol<x=^t=

]y< 
< t + t7_. 

Proof. Let t e [a, b] be given. For a given C > 0 let cr1(r) > 0 be such that for 
x, y e [a, b], t — ot < x __ t = y < t + ox we have 

(1.6) || V(t, [x, y]) - V(t, [t, y]\ V(t, [x, t])\\ < C 

and 

(1.7) I V(t, [x, t]) - V_(t)\\ < C , || V(t, [t, y]) - V+(t)\\ < C 

provided x, y e [a, b], t — ot < x r_ t __ y < t + <T_. (1.3) and (1.4) assure the 
possibility of such a hoice of ot > 0. 

Since V.(t) and V+(t) are invertible operators (we define V-(a) = I, V+(b) = l), 
the operator V+(t) vJ(t) is also invertible with (V+(t) V-(f))"1 = (K-(f))"1 (K+fr))"1. 

We have evidently 

V(t, [x, y]) - V+(t) V_(t) = V(t, [x, y]) - V(t, [t, y]) V(t, [x, t]) + 

+ (V(t, [t, y] - V+(t)) (V(t, [x, t]) - V_(t)) + 

+ V+(t). (V(t, [x,.]) - V_(t)) + (V(t, [t, y] - V+(t)) V_(t) . 

Hence 

II VKt, [x, y]) - V+(t) V_(t)\\ < || V(t, [x, y]) - V(t, [t, y]) V(t, [x, t])\\ + 

+ 1 1 % \}, y]) - V+(t)\\ . \\Vyt, [x, t] - V_(t)\\ + 

+ \\V+(t)\\ . \\V(t, [x, t]) - V_(t)\\ + \\V(t, [t, y] - V+(t)\\ . \\V.(t)\\ , 
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and if x, y e [a, b], t — ox <x<t<y<t + <rl then by (1.6) and (1.7) we have 

||V(r, [x,y]) - V+(t) V_(t)\\ ^ c + C2 + C(||V+(0II + lY-(')ll) = 

= C(l + «V+(t)|| + ||V-(t)||+C). 

Since £ > 0 can be choosen arbitrarily small, the operator V(f, [x, y]) is invertible. 
(It is e.g. sufficient when £ > 0 is choosen in such a way that ((1 + ||^+(0II + 
+ ||V.(0|| + C) < KV-vOrMMOri"1- If e-g- * = t<y then the result 
comes immediately from the second inequality in (1.7) for a sufficiently small £. 
The case x < t = y is a consequence of the first relation in (1.7) and finally for 
x = r = j we have V(f, [x, >!]) -= I and V(f, [x, y]) is evidently invertible. 

1.6. Lemma. Assume that V: [a, b] x J -* L(R") satisfies the condition <_?. 
Then for every t e [a, b] there is a cr2 = o"2(f) > 0 such rhat 

(1.8) ||K(r,[«fr])|g||K.(0|+i|(K_(On|, 
||(V(r>[x,r]))-||^2||(V_(0)-1|| 

for a// x e [a, b] such that t — a2 < x < t and 

(i.9) llnflto'DllgllMOII + ilKnO))-!!, 
ll(n',[',3']))-,ll^2||(V+(o)-i| 

for _.// v e [a, 6] such thaf t < y < t + a2. 

Proof. Let us prove (1.8), the proof of (1.9) is analogous. Let t e(a, b]; if t = a, 
there is no x e [a, b] such that x < t. V_(t) e L(Un) is invertible by (1.4). If B e L(Un) 
and \\B - V-(t)\\ < i | | (V-(0)_ 1 | rS t h en by the general result given in [I, VII.6.1] 
B~l e L(Un) exists and 

B-l=(V_(t))-lU(V_(t)-B)(V_(t))-*y. 
k = 0 

Therefore 
00 

IB-I ^ IKV-W)"1!!I(«V-(t) - B | . \\(v_(t))->\\f = 
fc = 0 

кмon 
l-\\V_(t)-B\\.\\(V_(t))->\\ 

Since in this case \\V_(t) - B\\ . |(V_(0)_ 1 | | < ., we have 1 - ||V_(0 - B|| 
. ||(V_(_))~ * || > \ and consequently 

(1.10) | |B->| |<2| |(V_(0)- 1 | | . 

By (1.4) there is a o2(t) > 0 such that if x e [a, ft], t — a2 < x < r, then 

(1.11) | K ( / , [ x , » ] ) - K . ( 0 | | < i | ( K . ( 0 ) - i r i . 
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Hence by (IT0) we have 

| |(V(< , [x,<])-1 | |<2| |(V-( t))-1 | | 

and (1.11) implies also 

H'.l>.<])l $ IWM>.'])- MOII + ||V-(t)|| <i||(v-C))-,« + 
+ IIMOII 

provided t — a2 < x < t, i.e. (1.8) holds for such x e [a, b]. 
For the case t e [a, b) we can find a (r2(t) > 0 such that (1.9) holds for every 

y e [a, b], t < y < t + o\. Taking O*2 = min (o2, o2) we obtain the statement of 
the lemma. 

1.7. Theorem. Let V: [a, b] x J -> L(lR,!) be Perron product integrable over 
[a, b] with j ^ V(t, dt) = Q and assume that for V the condition <€ is satisfied. 

Then there exists a constant K > 0 such that for every se [a, b] the Perron 
product integrals Y\s

a V(t, dt), Y\b
s V(t, dt) exist, the equality 

Y\bsV{t,dt)r\av{t,dt) = rcn*.d0 
holds and 

in:V(t ,don^^, \\{n:v{t,dt)yi\\<K. 

Proof. Let £ > 0 be arbitrary. Let S0: [a, b] -> (0, + oo) be a gauge on [a, b] 
such that 80(t) g min (o~x(t), <x2(t)), *

G [a> b] where 0"i(t), or2(f) are given in Lemma 
1.5 and 1.6 respectively and such that 

(1.12) | | P ( V , d ) - Q l < i | | 0 - T 

holds for every <50-fine partition A of [a, b] and 

(1.13) \\V{t,[x,y])-V{t,[t,y])V{t,[x,t])\\<C 

for t,x,y e [a, b], t — 50(t) < x = t = y < t + S0(t). Then the following holds. 

(1.14) For every t e [a, b] there is a Kt(t) > 0 such that 
(i) if se(t — S0(t), t] n [a, b] and Aj is a b0-fine partition of [a,s] 
then 

max {||P(V,J0||,||(P(V,J0r1} =*,(') 

and 

(ii) if s e [t, t + <5o(0] n [a> &] a r t ^ ^2 *s # b0-fine partition of [5 , b] 
then 

m a x { | | P ( V , J 2 ) | | , l | ( P ( V , / l 2 ) ) - ' | | } ^ ^ ( 0 . 
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For proving (1.14) let us first mention that because we have 50(t) = a^t), Lemma 
1.5 implies that V(t, [x, y\) e L(Rn) is invertible for every t, x, y e [a, b] such that 
t - d0(t) < x ^t _g y < t + 50(t). 

In order to prove (i) from (1.14) let A3 be a <50-fine partition of [t, b~]. Let 

A , = {<x0,tl9ai,...,CLl_1, th oez} 

be the <50-fine partition of [a, s] and let 

-^3 = \ a H - 1 - tl + 2i Ml + li •••» a / c - l > ^> a / . l 

be a 50-fine partition of [f, b]. Set 

A = |a 0 , f1? a l 5 . . . , aj_i, fj, ocj -= s, f/+1 -= t, cci+l = t, 

h+2> 0Cl + 2> •••> a*-l> **> a*j • 

(In the sequel we will use the notation A = J- o (f, [5, (])o_)3 for this construction 
of a partition of the interval [a, b]; A is in fact the union of ordered finite sets in 
which the ordering preserves the ordering of the components Au[s, t, t), A3; by 0 the 
union of ordered sets is denoted as it is denoted in [2] too.) 

It is evident that A is a 50-fine partition of [a, b] and that V(th [ui-u a J ) e L(U"), 
i = 1, 2 , . . . , k are invertible. Hence also P(V, z-i) = V(th [a/_i, a j ) . 
.V(tl_i,[*l_2,*l_i])...V(t1,[oc0,<x1'])eL(Wi) and P(V,A3)= V(tk, [ock.u a j ) . 
• v(h-u [a*-2>a*])--. ^ ! + 2 J k i ) a , + 2 ] ) e ^ " ) are invertible and (1.12) holds. 

By definition we evidently have 

P(V, A) = P(V, A3) V(tl+1, [a„ a l + 1]) P(V, A,) = 

= P(V,<d3)F(f,[s,<])P(F,.d1) 
and 

\P(V A,) - (V(t,[s,.]))" - (P(V, J , ) ) " J S|| = 

= IW, [-, *]))-1 W *>))-' M * 3̂) % [-. <]) IXY -M - e]|| __ 
-l(%[-.0))-1B.|(-'(Y.-<3)r i|.--le"1l"1-

Consequently by Lemma 1.6 we obtain 

(1.15) ||p(V, .401 _; ||p(Y /i,) - (v(t, [s, t}))-1 (p(v, J3))-1 e|| + 

+ ii(%[s.'])riii-ii(Ij(Y^)ri«-«eii-i 
= .(^.[-.fl))-1! • IW.-ia))"1! -(Ufi"1!-1 + llell) = 
^2|KV_(ori«.||(p(Y/i3)riii.aiie-1 + iis«)=/c0(o>o. 

On the other hand we have 

K^K.J.))-1 - Q-^Y^M'.M)! = 
= \\Q-1(Q-P(V,A3)V(t,[s,t-])P(V,Al))(P(V,Al)r

1\\ g 
g|o.-il|.||p(V,j)-el|.||(p(V,j1))-

1«_? 
g lie-1!. .He-1!-1 fl(p(Y.d1))-

1|| = i«(p(V,^r1!! 
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and consequently by Lemma 1.6 we get 

||(P(V,^))-1 _i I W - i ) ) - - Q-'P(V,A3)V(t,[s,q)\\ + 
+ ||e->||. ||p(V,_i3)«. «V(t,[M_)|| =g . I K p ^ o n + 
+ lla-l«.«Ij(K^3)||.(«V-(t)« + .||(V-(t))-1||)> 

i.e. we obtain the inequality 

(1.16) ||(p(V, J.))"1! < 2116-11. ||p(V, A3)\\ («r_(/)|| + .||(V-(t))-'||) = 

= K°(t) > 0 . 

Taking K.(t) = max (X0(r), X°(()) > 0 we conclude by (1.15) and (1.16) that 

maxllWV^OIMIWY^))-1!!}^ '̂) 
holds. A completely analogous reasoning gives also that if s e [f, t + d0(t)) n [a, b] 
and A2 is a (50-fine partition of [s, b] then 

max{\\P(V,A2)\\,\\(P(V,A2))->\\} =K+(t) 

where K+(t) > 0. Putting Kx(t) = max (K_(f), K+(r)) we obtain (1.14). 
Now we will show that the following is satisfied. 

(1.17) For every t e [a, 6] there is a K2(t) > 0 such that 

roBxmv^imy^r^My^^Uim^r'h^H^ 
if s e(t — 50(t), t + &0(t))

 n [a> ^] ^w^ ^l* ^2 ^ r^ arbitrary b0-fine par­
titions of [a, s], [s, b] respectively. 

Let us take e.g. s e [f,. + (5o(0] a n d s e t ^ =---10 A2. Then P(V, A) = 
= ^ ^ A ^ ^ V , ^ ! ) and P(V,A2),P(V,A1)eL(lRM) are invertible by Lemma 1.5. 
Since (1.12) holds we have 

|p(V,_i2)p(V_i1)-o,«<i||e-i||-1 

and 
||P(V, Ax) - (P(V, A2))-> e | | = \\(P(V, A2))-> (P(V, A2) P(V, A,) - Q)\\ < 

zmy.^T'im-T1-
Hence 

(1.18) |p(V,̂ )« = l ^ - O - W _._))-' ell + I IW^)r i • llell = 
^\\(P(V,A2))->\\(±\\Q-i\r + \\Q\\). 

On the other hand we have 

my-^T'-Q-w^i-
= \\Q-\Q - P(V,A2)P(V,A1))(P(V,A1))-

1\\ £ 

g He-1!. «e - p(V,A2)P(V,_;.)« . \\(p(v,-..n < 

<i«(p(V,^))-1ll 
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and henceforth 

||(P(Y^))-1 = \\(P(V,At)r - Q-lP(V,A2)\\ + 
+ | c - - | . \\P(V,A2)\\ = i«(p(Y J ,))-1! + He-1!. «p(v,d2)||, 

i.e. 

(i.i9) «(p(V^1))-1« = 2 « e - 1 « . | | p ( Y ^ ) | . 

By (ii) from (1.14) we get by (1.18) and (1.19) the estimate 

maxdP^JOIMIWY^))-1!!}^ 

gx1(o[2|Q-'| + i | |e- i | - i + «e||] = K t(o>o. 
Similarly we can show that 

max {||P(V, A2)\\, \\(P(V, A,))"11|} = KR(t), KR(t) > 0 , 
and putting e.g. K2(t) = max (KL(t), KR(t)) > 0 we obtain (1.17). 

The sets of the form (t — S0(t), t + S0(t)), t e [a, fc] form an open covering of the 
compact interval [a, b]. Hence there is a finite set {tt, t2,..., fx} a [a, b] such that 

[a, b] cz U (tj - S0(tj), tj + S0(tj)) . 
1=i 

Define K = max {1, K2(t^),K2(t2), ...,K2(tt)} where K2(t) is given by (1.17). 
Then (1.17) implies that the following holds. 

(1.20) There exists a constant K = 1 such that 
(i) if s e (a, b] and Ax is a S0-fine partition of [a, s], then 

maxdP^JOIMIWY^))-1!}^^ 
and 

(ii) if s e [a, b) and A2 is a S0-fine partition of [s, 6], then 

m*x{\\P(V,A2)\\,\\(P(V,A2)ri\\} ZK. 

Now we prove the following statement 
(1.21) Let ae(0, illQ"1!!""1) be given and let S be a gauge on [a, b] such that 

S(t) = S0(t), t e [a, b] and 

\\P(V,A)-Q\\<e 

for every S-fine partition A of [a, &]. 
(i) If SE [a, b) and A2, J4 are arbitrary S-fine partitions of [s, 6], then 

| |P (v , J 2 ) -P(V , J 4 ) | | <2Ks. 

(ii) J/ 5 e(a, b~\ and Au A3 are arbitrary 5-fine partitions of [a, s], then 

|P(V, J ,) ~-P(Y .43)1=2*6 
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(K is the constant given in (1.20)). 
We prove only (i), the proof of (ii) is similar. Let s e [a, b). Denote by Ax an 

arbitrary c5-fine partition of [a, s]. Let us put A5 = At o A2 and A6 = Ax o A4 . 
A5 and A6 are evidently <5-fine partitions of ~a9 b\. Hence 

||P(V, A2) P(V, At)- P(V, .d4) P(V, A,)\\ < 

< | P ( V , . d 5 ) - Q | | + ||P(V, Ab) - C|| < 2e 
and 

||P(V,A2)-P(V,A4)|| = 

= u t ^ K A ^ ^ K A o - ^ K A ^ ^ V ^ ^ ^ V A , ) ) - 1 ! ! = 

_; | | i ^ K , _ 1 2 ) P ( K ^ =2Ke 

by (1.20). The second statement (ii) in (1.21) can be proved analogously. 

By (1.21) and by Proposition 1.3 we have the following result. 

(1.22) If se(a9b) then there exist Q~9 Q+ e L{U") such that for every ee 
e ( 0 , i l l S ^ H 1 ) there is a gauge <5j. ~a, b~ -> (0, +co) on ~a, b] such that 

\\P(V,A,)- Q~\\<E 

for every define partition Avof ~a, s] and 

\\P(V,A2)-Q
+\\<B 

for every define partition A2 of [s, b\. 
Assume that s e (a, b). Let us choose a gauge <52 on [a, b~ such that <52(f) g 

_i min (<5(f), S0(t), d^t), \t — s\) for t + s and <52(s) g S^s). By this choice every 
<52-fkre partition A = {a2, tx, a l 9 . . . , ak_l5 tk, ak} has the property that there exists 
a j e {l, 2 , . . . , k] such that tj = s. For a <52-fine partition A of [a, b~ and <52-fine 
partitions Al9 A2 of [a, s], [s, b] respectively we have by (1.20) the following 
inequality 

(1.23) |P(V,.4) - e + e - | • \\P(V,A) - P(V , .d 2 )P(V ,^ 1 ) | + 

|p(V,.d2)p(V,.d1) - e + e1l < \\P(V,A) - p(v,A2)p(y,Ai)i + 
\\P(V, A2)P(V,At) - Q+P(V,At) + Q+(P(V,At) - Q~)\\ < 

\\P(V,A) - P(V,A2)P(V,At)\\ + \\P(V,A2) - e+|| • |P(Y^)|| + 

\\Q+-P(V,A2)\\. | |P(V ,J 1)-e1| + 

|p(V,.d2)||.|p(V,.d1)-e-N 
||P(V, A) - P(V, A2) P(V, A,)\\ + e(2K + e) . 

For a given <52-fine partition 

A = {*09tl9ul9 . . . ,a y_!, tj = s, cij,tj + l9otj+l9...9ak_l9tk,ak} 

+ 
+ 
<; 

+ 
+ 
< 
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we put 

A_ - {a0, . , , a l 5 ..., tj-^Uj-i} , 

A+ = [otj, ti + 1 , a i + i, ...,afc_l5 rfc,ak} 

and 

A! = A_ o {a,-!, ?,- = s, a,- = s) , 

A2 = {aj-i = s, tj = s, a7-} o A+ , 

then Aj, A2 are evidently c.2-nne partitions of [a, s], [s, b] respectively and 

P(V, A) = P(V,A+) V(s, [«,_. , a,]) P(V _1_) , 

P ( K , _ , ) = F ( S , [ « J M , S ] ) P ( K - - ) , 

P ( V ^ ) = P (V_ l + )V ( s , [ s , a , ] ) . 

Moreover 

||P(V A) - P(V, A2) P(V, Al}\ = \\P(V,A+) V(s, [a ,_ t , a,]) P(V z1_) -

- P(V, A+) V(s, [s, a,]) V(s, [«,_, , s]) P(V _1_)|j = 

= | |P (V , z l + ) [V ( s , [ a ,_ 1 , a , ] ) -

- V(s, [s, a,]) V(s, [_,_,, s])] P(V _ _ ) | _̂  K^ 

by (1.20) and (1.13) because we have 0/_1? ^ e [a, b] and s — S0(s) < s — c)2(s) < 
< 0/_i ___ s ^ â  < s + <52(s) < s + 80(s). 

Using (1.23) we therefore obtain 

IP(V,A) - e + Q - | | < K2c + e(2K + e). 

Taking e.g. ( = _/K2 and using the fact that 

||P(V,A) - 2| | < e 

for every _>2-fine partition A of [a, b] (see (1.21)) we obtain 

||e-e+Q1l __ \\Q-P(VA)\\ + 
+ ||P(V, A) - Q+Q~\ < e + s + s(2K + e) = e(2 + 2K + e) 

and consequently because e > 0 can be choosen arbitrarily we get 

(1.24) Q = Q+Q~. 

Since QeL(U") is invertible, we have by (1.24) Q~1Q+Q~ = I and consequently 
Q~XQ+ e L(R") is the inverse to Q~ (Q~x Q+ is the left inverse to Q~ but we have 
also Q~Q1Q+Q~ = Q~ and consequently Q~Q~1Q+ = I; i.e. Q~1Q+ is also 
the right inverse to Q~). Similarly it can be shown that Q+ e L(IR") is also invertible 
with (e+)-x = Q-Q-1. 
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This yields by (1.22) that the Perron product integrals J]* V(t, dt) = Q~, 
Y\b

s V(t, dt) = Q+ exist and (1.24) is in fact the equality 

(1.25) n * V{t, dt) = n_ V{t, dt) Y\sa V(U dt) 

from the statement. 
The estimates \\Y\s

a V(t, df)|| = K, ||(f]a V(t, dt))"1|| = K are simple consequences 
of (1.20) and of (1.25). 

1.8. Lemma. Assume that V: [a, b] x J -> L(HT) satisfies the condition (€ and 
the Perron product integral Y\b

a V(t, dt) = Q exists. 
Let us define <£: [a, b] -> L(M!1) by the relations 

(1.26) <P(a) = I , <P(s) = n « F(*\ dr), se (a, b] . 

The function </> /s u>e/7 defined and its values are invertible elements of L(Un), 
<*>(_.) = Q. 

For a given e > 0 let 3: [a, b] —> (0, + GO) be a gauge on [a, b] such that 

(1.27) ||R(V, A) - <P(b)l = ||P(V, A) - n . V(t, -01 < -

holds for every b-fine partition A of [a, b]. Assume that we have a :g pt ^ ^ g 
^ 7 l _g & ^ . 2 g y2 ^ ... ^ /}„ _g c.m g ?ra __ * wh.r. 

£_ " <5(c;) < Pj _i £,- _S yj <. Zj + 8(Zj), y = 1, 2 , . . . , m . 
Then 

(1.28) ||(*(y-)r' nz», [Pm, y--i]) *(/U(^(ym-,))-1 • 
• v"(?„, [ft.-., y«-i]) *(/?_-i)... (*(yi))_1 • 
.n«i.D»i.yi])*(^i)-^N _(«(*))"£II « • 

Proof. The function <£: [a, b] -> L((Rn) is well defined by Theorem 1.7 and the 
same theorem yields also the invertibility of the values of this function. By Theorem 
1.7 also the product integral YYc V{U dt) exists over every interval [c, d\ cz [a, b]. 

Let us denote y0 = a and fim+1 = b. 
Since the integral Y\yj+ ' (̂*> d 0 e x 1 s t s f° r every j = 0 , 1 , . . . , m we have by defini­

tion the following: 
For every r\ > 0 there is a gauge &y. [yj9 / ^ + 1 j -> (0, +oo) such that 5j(t) < d(t), 

tebj>Pj+i] a n d 

(i.29) nP(V,A,)-rer1 %doii = i w ^ L > - *o»i+o(*(yi)ri <n 
for every (5-fine partition Aj of [yj9 ^J + 1 ] , I = 0 ,1 , 2 , . . . m. 

For 5,-fine partitions Aj of [y,-, ^ y + 1 ] , j = 0 , 1 , . . . , m let us set 

A = ^ ( ^ [ j S i . y J J o ^ o ^ 

A evidently forms a d-fine partition of [a, b] and therefore (1.27) holds for this 
partition. Hence 
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(1.30) |(#(6))-' P(V,A) - 1\\ = \\(<P(b))-> \P(V,A) - <P(b)]\\ < «(<*>(!>))-'I «• 

Further we have evidently 

P(V, A) = P(V, Am) V(im, [pm, ym]) P(V, Am_,)... 

. . . P ^ / J ^ V ^ . ^ ^ J J ^ V A o ) 
and 

(<_>(!>))-' P(V, A) = (0(b))~l P(V, Am) V(i„„ [Pm, lm\)... 

... P(V, A,) K(£,, [/?., 7 l]) P(V, Jo) = (4>(j8m+,))"' P(V, __„) <P(ym). 

• Wvm))_1 v(£~, [/3m, 7m]) <K/U (*(/_.))-' I>(K - i - i ) *(v-i) • 

• K v - i ) ) " 1 - * ) ( * ) ) • ' p(V,_i1)^0(0(7,))-' • 

' • r(A, [j?,, 7l]) i<iff_> (*(/J,))-' p(V, ^o) *(?0) • 

Denoting 

(<P(PJ+.))"' P(V, A,.) <%.) = A, + / , . = 0, l,..., m 
and 

(<_>().,.))- > V&, [/?,, y7]) *(/?;) = Z; + I , J = 1, 2,. . . , m 

we obtain 

(<P(b))->P(V,A) = 

= (/ + Am)(/ + zm)(_ + A^H/ + Z__.).. .(/ + A.)(/ + Z,)(/ + Ao) 

and (1.30) can be rewritten in the form 

(1.31) ||(J + Am)(l + Zm)(l + _4m_.Y..(J + _4.)(J + Z.)(J + A0) - /|| < 

<||(4>(b))->||e. 

By (1.29) we have 

(1.32) IAJ = \(*(Pj+i)rl P(V, Aj) *fo) " III = 

= IK/VO)-1 IWAj) - tifij+iMvi))-1- *fo)I = I^ 
where K is the constant given by Theorem 1.7,1 = 0 ,1 , . . . , m. 

The estimate (1.32) easily gives the following: 
for every 9 > 0 there is a r\ > 0 such that 

||(/ + Am) (I + Zm) (/ + Am^) ... (/ + A,) (/ + Zx) (/ + A0) -

- ( / + Zm)(/ + Zm_1).. .(/ + Z1)|| < S . 

Hence by (1.31) we have 

||(/ + z-)(/ + z«_.)...(/ + z.)-/||_. 

^ ||(i + Am) (I + Zm) (I + Am.1)...(I + A.) (/ + Z.) (/ + A0) -
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- ( / + zm)(/ +z m _, ) . . . ( /+ z,)|| + 

+ |(_ + Am){l + Zm){l + / 4 m _ 0 . . . ( / + Z,)(I + A0) - l\\ < 9 + 

+ _ (* ( f r ) ) - | -

where 9 > 0 is arbitrary and therefore 

|(7 + Zm)(7 + Z . . . ) . . . ( / + Z.) - / | <; | (*(6))-» | « 

and by the definition of Z,-, 7 = 1,.. . , m we obtain (1.28). 

1.9. Corollary. Assume that V: [a, b] x J -> L(Rn) is Perron product integrable 
over [a, b] and that the condition <& is satisfied. 

Then to every n > 0, t e [a, b] there exists a 5 > 0 such that 

(1.33) ||H7))-IV(r,[^>'])<l>(/3)-III <1 
and 

(1.34) || V(t, [/?, y]) - 0(7) (cD(jS))-' || g K2^ 

provided P,y e\a,b], f — 5 < / ? ^ f ^ f + 5, where 0 : [a, b] -• L(R") /s a/ven 
by (1.26) and K is the constant from Theorem 1.7. 

Proof. Taking e = ^(^(fr)) - 1)!"1 > 0 we obtain (1.33) immediately from 
Lemma 1.8 when 8: [a, b] -> (0, +00) is the gauge on [a, b] corresponding to this 
choice of e. 

Since we have 

\\v(t,[P,y])-<i>(y)(<p(P)ri\\ = 
= ii<%)[*(,)r v(t9[p9y])*(fi)-i'] w r i = 
= Hy)\\ • IIW))"'1 • IIKv))"1 v{t9 [p, ,])*(/») - /| |, 

we obtain (1.34) from (1.33) and from the inequalities ||tf>(.)|| = K, K ^ * ) ) " ! = K 

which hold by Theorem 1.7 for every / e [a, b]. 

1.10. Lemma. Assume that A, Ake L(Un), k = 1,2, ... are invertible such that 

(1.35) limzlfc = A. 
fc->oo 

Then 

(1.36) l i m ^ ) ' 1 = A~l . 
k -+00 

Proof. By (1.35) there is a k0 e N such that for k > k0 we have ||A — Ak|| < 
< HA"1!!"1 and therefore 

II - AkA-*\\ = \\(A - Ak)A-'\\ = \\A - Ak\\ . HA"1! < 1 . 
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Hence A^A l has an inverse given by 
OO 00 

(A.A-/)-1 = K I - AkA-iy = Y((A - Ak)A-*y = AA,-1 • 
/ = 1 1=1 

Consequently 

A,-- = A-,f((A-Afc)A-,), = A-1 + A - i i ( ( A - A t ) A - i y , 
/ = 0 / = 0 

i.e. 

A^-A-'=A-lt({A-Ak)A-y 
i= 1 

and 
00 

|| A - 1 _ A - 1 || < || A - 1 || y ( || A _ A || || A ~ 1 II J < 
| | ^ f c A II = H^1 || z L V l l ^ 1 ^ f t l l • l l ^ 1 II7 = 

/ = 1 

< iij-iH M - ^ l l - N " 1 ! 

for k > k0. 
Since ||A — Afc|| -> 0 for k -» co we obtain from this estimate that 

||Arfc - A"11| -*0 for k->oo, i.e. (1.36) holds . 

1.11. Lemma. If V: [a, b] x J -» L((R'7) satisfies the condition <& and is Perron 
product integrable over [a, b] then 

(1.37) lim 0(j8) = (V - (0 ) - 1 <K0 ^ r t e(a, b] 
p-+t-

and 

(1.38) lim <P(y) = V+(t) 4>(f) for t e [a, b) . 
y-+t + 

Proof. From Corollary 1.9 it follows immediately that 

(1.39) lim UK*))-1 V(t9 [P, t]) 0(P) - I|| = 0 for t e (a, b] 
p->t-

and 

(1.40) lim K^(y))"1 V(t9 [t, y]) 4>(t) - I|| = 0 for t e [a, b). 
y-*t + 

By (1.4) from the condition # we also have 

(1.41) lim \\V(t, [fi91]) - V_(t)|| = 0 for t e (a, b] 
p->t-

and 

(1.42) lim \\V(t9 [r, y]) - K+(f)|| = 0 for t e [a, b) 
y^t + 
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where V_(r), V+(f) e L(Rn) are invertible. Since by Theorem 1.7 we have ||<P(f)|| __ K 
||(^(0)~2II = X > w e Set f o r * E(a* b\ P < l t»e inequality 
i(mr,-(mriv-(t)\\ = 
= ](*(/»))-- - K o r nt, [/?, o) + K o r % p. o) - mri v-(<n = 
= ii-I-Kor1 v(t.\p,t])m] w))-1+(*(«))•* n',[^'])-wo)-1 M0ii = 
= X[||/ - ( $ ( 0 ) - V(t, [p. r]) *(/0|| + ||V(t, [p, t]) - V_(r)||]. 

This inequality together with (1.39) and (1.41) implies 

lim(0(P))-1^(0(t))-tV^t) 
p-t-

and by Lemma 1.10 we obtain immediately (1.37). 
Similarly for t e [a, b), y > t we have 

IK?) - v+(<) * ( 0 ! = ll*(v) - v(t, iu y]) <*>(') + 
+ V(.,[^])<Kt)-V+(0tf(t)|| = 
^||$(y)[/-(0(y))-V(r,[t,r])$(O]|| + 

+ |l.[%['.r])-n(')]<l>(')ll = 
= I<[|I - (*wr' n*. ['. y]) -KOB + ii »u [*. ?]) - MOID] 

and (1.40) with (1.42) imply (1.38). 

1.12. Lemma. Let Y1,Y2,...,Yke _(R"), _ ||y,| = 1,X = (/ + Yk)(I + Yfc_,)... 

.. (/ + Yt) - /, Z = X - _ Y,. Then 

ll*l = 2E||r.|| 
i= 1 

and 

«z« = (_w-
i = i 

k 

Proof. Put A, = ||y..||, i = 1,2, ...,fe, A = £ A, ^ 1, 
We have , = 1 

(1 + Afc) (1 + V i ) .- (1 + A,) = 1 + £ Xj + I AyaAyi + 
1=1 12>11 

^ З ^ J l + " . + Л À - 1 . " ' 
13>./2>11 

+ _ V ; A + • • • + V*-1 • • • h _ e V - ' ... e*' = e* 

Hence 

I ^ J + I V J . + ••• + V*-, ••• K ^ A - l < 2 1 
1=1 12>./l 

and 
I *;A + I hhM, + ••• + Kh-x • • • K = eA - 1 - A = A 2 

J ' J>J ' I h>!2>i\ 

383 



because X = 1. We have evidently 

X = I Yj + I YhYh + ... + YkYk.{ . . . Yx 
1=1 12>11 

and 

z = I V * + I YhYhYh + ... + nr t..... Y. . 
12>11 13>12>11 

Hence 

IWI < I ir>l + I ll^ll • lmj + - + llnll • in-.i... | IN = 
J=I ji>ji 

= Z ^ + I *;A + ••• + V*-i - ^ <2^ = --Zll-Oll 
J = l 12>1l 1=1 

and similarly also 

l|z| = I WH + I V y A + ••• + hk-i ... h < A2' = 
12>J1 J 3 > J 2 > J 1 

= (£ira2-
1=i 

1.13. Theorem. Assume that V: [a, b\ x J -*• L((R") satisfies the condition r€ 
and that for every c e [a, b) the Perron product integral Y\c

a V(U dt) exists. 
Let the limit 

(1.43) l i m V ( b , [ c , 6 ] ) n a ^ d 0 = 6 
c- fc -

exists, where Q e L(W) is invertible. 
Then Vis Perron product integrable over [a, b] and 

(i.44) n*n t .d t) = Q. 

Proof. Let ee(0 , 1) be given. Since the limit (1.43) exists, there is a B e [a, b) 
such that for every c e [B, b) we have 

(1.45) lV(b,[c,b-])YllVit,dt)-Ql <e. 

Let us have a sequence a = c0 < cx < ... , lim cp = b. Since Vis Perron product 
P"+QO 

integrable over every [a, cp], p = 1, 2.. . , there exists a gauge <5p: [0, cp] -> (0, -f- oo), 
p = 1,2,. . . such that for every (5p-fine partition A of [a, cp] we have 

(1.46) \\P(V.A)- Y\c
a
pV(t,dt)\\ < , p = l , 2 , . . . . 

For every t e [a, b) there is exactly one p(t)eN such that t^[cp^v,cp). For 
t e [a, b) let us choose d°(t) > 0 such that 8°(t) g <5p,r) and [t - 8°(t), t + S°(t)] n 
n [ a , b) c [a ,cp ( r )]. 
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Tf ce[a9 b) and A = {a0, ti9 a1 ?..., afc_2, tk_l9 afc_x} is a (5°-fine partition of 
[a, c], then if p(tj) = /?, we have 

[«,-i. «y] c ('. - <*°('.). 0 + *°(h)) c [«> *,] 
and also 

(1.47) [_,._ l f «y] c= (0 - ^ 0 ) . 0 + WJ)) . 

For the partition A ~ we have 

P(V,A~) = V(rfc_l5 [afc_2, a fc_J) V(rfc_2, [afc_3, afc_2]) ... 

... V(tl9 [a0, ax]) = AmAm_i . . . A ! 

where Ay, j = 1,2, ...,m is the ordered product of all factors V(lx, [a,_1? aj), 
1 g / ̂  fc - 1 with tt e [ c ^ - p cp.]9 i.e. 

*4j = % i + v [«._+.,-,. «r ,+J) % y + , , - i > [ar,+s,-2> a o + . ^ . J ) . -

. . . % . , [ar._1?ar.]) 

and fry, trj+r ..., ^ + 5 j e [cp y.„ cpJ with 1 g r ^ r,. + s,. _S k - 1. By the property 
(1.47) of the partition A" we also have 

[a f_1? a,] c (ti - SpJji), tt + 5Pj(t,)), / = E> r_. + 1, ..., r ; + s_ . 

Using (1.46) and Lemma 1.8 we obtain 

| | ( ]> + s > *% dt))"1 V(t„+S,, [«..+.,.„ a r,+ s .]).. . 

•••%,.K.-1,«0i)n^n',dt)-/|i = 

= I K E I ^ nf dt))-1 ̂  n ^ n*. *o - In < 
_. sKn^nt^o)-1!! _ s 
-2p>+*Kn.">nt,dO)-ii 2p>+* 

for every j = 1,2,..., m. Hence 

Є 

• 1 < Є (1-48) I | | ( n ^ + s ' V(t, dt))~l Aj -fc, V(t, dt) - j | £ £ - i -
. = i j=i2PJ 

Denoting Yj - (n^+ 5> V(t, dO)"1 -4, F I^ F ( r . dt) - L j = 1, 2,. . . , m we have by 
m 

(1.48) ___; ||1^|| < e < 1 and for 
J = I 

X - (/ + ym)(/ + y . , 0 . . . (/ + Уi) - / = 

= ( П Г 1 П'.dt))"1 U - i ••• A, П. П<>dt) - I = 

= ( П Г 1 v(ř,dO)"1 л.Am-i ••• A, -1 = (Цl v(t,dtyчқy, л-) - I 
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we obtain by Lemma 1.12 the estimate 
m 

(1-49) |*|| ='\\(nCaV(t,dt))->P(V,A-)-l\\ _ 2 I | 1 } J <2e, 

which does not depend on c e [a, b). 
Define now a gauge <5 on [a, b] as follows. For t e [a, b) put 

0 < 5(t) < min (b - t, &°(t)) 
and 

0 < S(b) < b - B. 

If A = {a0, tj, a1? . . . , oik-u tk, ock) is an arbitrary <5-fine partition of [a, fc] then 
by the choice of the gauge S we have necessarily tk = <xk = b and ak_x e(B , b). We 
have also A = A" o (b, [afc_j, b]) where 

_T = {a0, rl5 a l 9 . . . , ak_2, ffc_l5 a ^ . J 

and P(V, A) = V(b, [afc_l5 ft]) P(V, A"). Hence we have 

(1.50) ||P(V,A) - e| | = ||V(b, [«,_,,&]) P(V,A") - Q\\ = 

= 17(6, [a,. , , b]) Ulk-1 V(U dt) (UT-1 V(t, dt))"1 P(V, A~) - Q|| --

= ||V(6, [a,.,, b]) n ? " 1 K(r, dt) [ ( n ? - % dt))"1 P(V, -d') - /] + 

+ V(b,[aft_1,b])nak-1%dO- 6|| _S 

^ [|V(b, [a,.,, b] nr 1 n^ ^) - e|| + ||e«]. 
.iKn?" i^dor ,^^")-^i + 
+ ll^Ca*-,^])]!?-'^^)- e||. 

Since P < cck_t < b we have by (1.45) 

and by (1.49) we get 

IKn?"' V(t,dt))-1P(V,A-)-l\\<2s. 

Hence (1.50) yields 

\\P(V, A) - Q\\ < (e + |e| |) • 2s + e = £(2e + 1 + 2||e|) 

for an arbitrary 5-fine partition A of [a, b], i.e. the Perron product integral Y\a V(t, dt) 
exists and its value is Q by definition. 

In a completely similar way also the following result can be proved. 

1.14. Theorem. Assume that V: [a, &] x J —> L(U") satisfies the condition (€. 
Assume further that for every c e ( a , b ] the Perron product integral Y\aV(t,dt) 
exists. Let the limit 
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limYFeV(t,dt)V(a,[a,c])= Q 

c-*a + 

exists, where Q e L(Un) is invertible. 

Then V is Perron product integrable over [a, b] and 
YtV(t,dt)=Q. 

Remark. It is not difficult to check, that if V: [a, b] x J -> L(Un) satisfies con­
dition <€ and if Vis Perron product integrable over [a, b], then for every d e (a, b] 
we have 

\imYllV(t,dt) = (V^d))-* Y[aV(t,dt) 
c^d-

and similarly for d e [a, b] 

]\mY£v(t,dt) = niv(t,dt){v4d))-1. 
C^d + 

If d e(a, b) then 

Y\b
a V(t, dt) = lim HI V\t, At) V+(d) Vjd) lim [ £ V{t, dt) . 

c-*d+ c-*d-

In [2] the following was proved. 

1.15. Lemma. Assume that L=l is such a constant tlutt for every Z e L(Un), 
Z = (Zltm)Lm = ltmmmtH the inequality 

LTl max \ZUm\ ^ ||Z|| = Lmax \ZLm\ 
l,m l,m 

holds. Let 0 < 5 < ^L"4, ZX,Z2, ...,ZreL(Un) and assume that for every p-tuple 
{ji>J2*--»>Jp} <= {1,2, ..., r ] ,y , < j 2 < ... <jp the inequality 

(1.51) ||(I + Z,p)(1 + Z, p . 1 ) . . . ( I + Z J , ) - / | | = .9 

holds. Then 

(1.52) X | | Z j £ A # S , 
1=i 

where M = 4n2L2. 

The following result is a consequence of Lemma 1.15 and Lemma 1.8. 

1.16. Theorem. Assume that V: [a, b] x J -> L({R") satisfies the condition <€ 
and that the Perron product integral []!. Vyt, dt) = Q exists. Let 4>: [a, b] -> L(Un) 
be given by (1.26). 

Let ee(0, ~L~x\\(<P(b))~{\\~1), where Lis the constant from Lemma 1.15 and let 
d: [a, b] -> (0, 4- GO) be such a gauge on [a, b] that 

\\P(V,A)-<P(b)\\<e 
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for every b-fine partition A of [a, b\. 

If 

where 

Zj - 5(Zj) < pj = lj <. yj < Zj + 5(Q , i = l ,2 , . . . , m , 

then 
m 

(i-53) I flOM)-1 ^ [/»,.yj]) m - III = AIIIK*))-1« 
1=1 

where M is the constant from Lemma 1.15 afld 
m 

(i.54) z i i V ^ T ^ r , ] ) - r a n ^ o u = K2Afii(*(fc))"Mi«. 
1=i 

where K is the constant given in Theorem 1.7. 
The proof follows exactly the lines of the proof of an analogous statement given 

in [2, Theorem 2.4]. 
Let us set 

Zj = {*{Yj))~l V(ZJ, [fij, yj]) <P(Pj) -I, j = i,...,m. 

Since all the the assumptions of Lemma 1.8 are satisfied, we obtain by (1.28) the 
inequalities 

\\(I + Zjp)(l + Zip_) ... (I + Zh) - III = | | (*(6))-1 B 

for every p-tuple {jl9 ...9jp} <= {1, 2 , . . . , m}9j1 <j2< ... <jp and by the choice 
of e > 0 we also have HOK^))"1! £ < (lja) IT1. Hence Lemma 1A5 yields 

m 

(1.55) £ | |ZJ^ M||K6)H| a 
J = I 

and (1.53) is satisfied. 
Since \\tf} V(t, dt) = <P(yj) ($($;))-*, j = 1, . . . , m and therefore also 

v({j,lf}j,yj-)-lTl>iv(t,dt) = 

= *(yj) MyjT1 n«y. CM) *fo) - I] ( < W = 
= 4>(r,)z,K/?,)Y\ 

for j = 1, . . . , rn, we obtain by Theorem 1.7 the estimate 

MtM'VM-flilVfrdtilZK'lZjl, j= l,...,m 
which together with (1.55) implies (1.54). 

1.17. Remark. Lemma 1.15 and also its proof given in [2] is strictly based on the 
structure of matrices which represent the operators from L{Un). It is easy to observe 
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that all the statement s given before Lemma 1A5 do not use the structure of IR" and 
L(U") and that in all of them we can replace L(Un) by L(X), where X is an arbitrary 
Banach space and L(X) is the Banach space of all bounded linear operators on X 
equipped with the corresponding operator norm. 

In this connection it is natural to ask whether an analog of Lemma 1A5 holds 
also for infinitedimensional Banach spaces. The following example shows that the 
answer to this question is negative. 

Example (J. Kurzweil). Let X = c0, where c0 is the Banach space of all bounded 
real sequences x = (a,,)̂ °=i such that lim a., = 0 with the norm 

n-+oo 

||x|| = sup {\aij\'9 j e N) , x eX . 

For every i e N define the operator Eh X -> X as follows: 

EiX = y= (Pj)]L_ , where x = (a,.);°=1 and fij = 0 , j e N , 

7 * 2 , - ! , p2i_t = ot2i. 

The operator Et shifts the element a2/ of the sequence x to the 2M-th position and 
sets all the other elements of the resulting sequence to zero. 

It is evident Eh i = 1,2,... are linear operators and that 

(1.56) I£,1 = sup ||F,oc|| = sup |jj,.| = sup |a2l-| = 1 
\\*\\*i 11*11*- 11*11*-

for every i = 1,2, , i.e. E-t e L(X). 

Further it is easy to see that 

(1.57) EtEj = 0 for all ij e N . 

Assume that r\ > 0 is given and define 

Z, = !/£,, I G N . 

Let JiJ2, ...,IP ^ N be an arbitrary p-tuple such that j i < j 2 < ... < j p . Then by 
(1.57) we have 

(I + zJp)(i + zJp_,)...(i + zJt) = i + izJk = i + ntEjk 
k=l k=l 

and 

(1.58) (1 + Zjp) (I + Zjp.) . . . ( / + ZJt) - 1 = rit Eik. 
k=\ 

Since by the definition of Eh i e M we have for x = (otj)?=l e X 

p 

(lEJk)x = ^Ejkx = y = (Pj)U 
k=l k=l 

where ftj = 0 for j * 2yk_1, k = 1, . . . , p and 

P2jk-l=<X2jk> fc=l,2,...,p 
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we obtain 

II t - M = ^ p || t Ejkx\\ = sup \P\ = sup |a2,,| = 1 

and therefore by (1.58) we have 

(1.59) |( / + Z,,)(/ + Z,,_.).. .(/ + Zh) - I\\ = 4 t Ejk\\ = , . 
fc=l 

If we take an arbitrarily large M > 0 and if r e N is such that r > 2(M + 1), 
than we can take r operators of the form Z{ = r\Ei (e.g. Zl9 Z2 , . . . , Zr) and by (1.59) 
we have 

\\{l + ZJJ(I + Zu_l)...(I + Zh)-l\\=r, 

for every p-tuple j u ...Jp e {1, 2,..., r}, j t <j2 < ... <jp and (1.56) yields 

(1.60) i\\Zj\\=in\\Ej\\=rn>2(M + i)n. 
y = i j = \ 

Taking now e.g. rj -= .9/2 then the assumption (1.51) of Lemma 1.15 is satisfied but 
we have by (1.60) the inequality 

I ||Z,.|| > 2(M + 1) ? > MS 
i = i 2 

and this inequality shows that Lemma 1.15 cannot hold for infinite-dimensional 
spaces, because M can be choosen arbitrarily large. 

2. THE CONDITION <<f + AND GENERALIZED LINEAR 
DIFFERENTIAL EQUATIONS 

Let us introduce the following condition for functions V: [a, b] x J -> L(.R"). 

Condition V+. 

There exists a nondecr easing function g: [a, fc] -> IR such that for every t e [a, b] 
there is a Q = 0(f) > 0 such that 

(2.1) \\V(t,ix,y-])-l\\^9(y)-g(x) 

for all x, y e [a, b], t — Q < x g t ̂  y < f + £. 

2.1. Remark. It is easy to see that if V: [a, b] x J -> L((Rn) satisfies the condition 
# + with a continuous nondecreasing function g: [a, b] -> IR then V satisfies (1.5), 
i.e. the condition given by Jarnik and Kurzweil in [2] is fulfilled. 

The following type of a function V motivates the introduction of the condition ^ + . 
Let A: [a, b] -> L(Un) be given such that A e BV([a, b]; L(Un)). Put 

(2.2) V1(t,[xiy-]) = I + A(y)-A(x) 

390 



for x, y e [a, b], x ^ t ^ y. 
If in addition M: [a, b] -> L(Urt) is bounded, i.e. ||M(f)|| ^ Lfor t e [a, b], then 

put 

(2.3) V»(t9 [x, y]) = I + M(t) [A(y) - A(x)] 

for x,ye [a, b]9 x = t = y. 
We have 

II V,(t, [x, y]) - I\\ = \\A(y) - A(x)\\ Z varj A - var* A 

and therefore Vx evidently satisfies the condition # + with g(s) = var* A, s e [a, b]. 
Similarly 

II VY{t, [x, y]) - I = \\M(t) (A(y) - A(x))\\ = L\\A(y) - A(x)\\ Z 

= L(varya A - var* A) 

and V™ satisfies the condition # + with g(s) = Lvar*>4, s e [a, &]. 
If V: [a, b] x J -> L(Un) is such that 

(2.4) V(t, [x, y]) = V(t, [x, t]) + V(t, [t, y]) - I 

for a ^ x S t ^ y = b then 

(2.5) V(t, [x, y]) - V(t, [t, y]) V(t, [x, t]) = (V(t, [t, y]) - I) (V(t, [x, t]) - I) 

because evidently 

(V(t,[t,y])-l)(V(t,[x,t]-I) = 

= v{t, [u y]) V(t, [x91]) - V(t, [x, t]) - V(t, [t, y]) + I. 

It is easy to see that Vl9 V
M given in (2.2), (2.3) respectively, satisfy (2.4). 

If V: [a, b] x J -> L(Un) satisfies the condition # + and (2.4) then by (2.1) and 
(2.5) we have 

\\V(t,[x,y])-V(t,[t,y])V(t,[x,t])\\^ 

< \\V(t, [t, y]) - 1\ . \V(t, [x, t]) - I\ 1 (g(y) - g(t)) (g(t) - g(x)). 

If in this situation for any t e [a, b] either lim g(y) = g(t+) = g(t) or lim g(x) = 
y->t+ x-+t-

= g(t—) = g(t) then it is not difficult to check that V satisfies (1.3) from the con­
dition #. 

For Vj given in (2.2) we have 

\\Vi(t,[x9y]) - V^^y^V^^t]^ = 

~\\(A(y)-A(t))(A(t)-A(x)\\. 

Since A e BV([a, b]; L(Un)) the limits lim .A(x) = .A(*-) and lim A(y) = A(t+) 
. x - * t - y-+f + 
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exist. Denote A+A(t) = A(t + ) - A(t) and A"A(t) = A(t) - A(t-). Hence Vx 

satisfies (1.3) from the condition ^ if and only if A+A(t) A~A(t) = 0, * e [a, b]. 
Similarly for Vf given by (2.3) we get 

I Vf(t, [x, y]) - Vf(t, [t, y]) V?(t, [x, tj)\\ = 

= \\M(t)(A(y)-A(t)).(A(t)-A(x))M(t)\\ 

and again the condition A+.A(t) A~A(t) = 0, t e [a, b] is necessary and sufficient 
for V^ to satisfy (1.3) from the condition % because M is bounded. 

It is easy to see that Vt, V™ given above satisfy also (1.2) from condition #. 
Since lim Vx(t, [t, y]) = I + A+A(t), t e [a, b) and lim Vx(t9 [x, t]) = I + A~A(i>), 

y->t+ x-+t-

t e(a,b] we obtain that Vx satisfies (1.4) from the condition # if and only if I + 
+ A+A(t), t e [a, b) and J + A*~A(t), t e (a, b] are invertible. 

Similarly Vf satisfies (1.4) if and only if I + M(t) A+A(t), te[a, b) and I + 
+ M(t) A"A(t), t e (a, b] are invertible. 

2.2. Lemma. Assume that V: [a, b] x J -> L(Un) is Perron product integrable 
over [a, b] and that the conditions <& and %>+ are satisfied. 

Then for the function <P: [a, b] -> L(Rn) given by 

(2.6) <P(a)=I, 0(s) = Y[aV(t,dt), se(a,b] 

we have $ e BV([a, b]; L(Un)), <P~l e BV([a, b]; L(Un)). 

Proof. Assume that x,y e [a, b], x = y. Then if t e [x, y], we have 

*(y) - <P(x) = ($(y) (^(x))-1 - /) <?>(x) = (Til V\*> <*') - I) <K*) = 

= (IE V(t, dt) - V(t, [x, y]) 4>(x) + (V(t, [x, y]) - I) <P(x) . 

By Theorem 1.7 and by the condition ^ + we therefore have 

(2.7) \\<P(y) - *(x)|| ^ Ki\\YYxV(t, dt) - V(t, [x, y])\\ + g(y) - 9(xJ] 

provided t - g(t) < x = t = y < t + g(t). 

Assume further that e > 0 is given and that d: [a, b] -• (0, + oo) is such a gauge 
on [a, b] that 

\\P(V,A)-*(b)\\ < Б 

holds for every (5-fine partition A on [a, b] and that 5(t) < g(t) for t e [a, b], where 
g(t) > 0 is given in condition <€+'. 

Let now a = s0 < sx < ... < sm = b be given and let 

A* = {*l,t\,*\,...,tlp,*lp} 

be an arbitrary (5-fine partition of [sp-.i, sp], p = 1,..., m. Then by (2.7) we have 
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\\<P(SP) - *(-,_.)! g x ||*(«;) - *(«;-.)|| ^ 
1=1 

^j -E( in%. ,%dO- nt;. [«;-.«;])«+ *(«;)-»(«;-.)) = 
J = I 

= K± iimv nt**) - ^;('. [«;-..«;])«+ %(-,) - *(-,-.)) 
1=1 

for every p = 1,2,..., m and henceforth 

(2.8) } I | | * ( * F ) - * ( - , - . ) N 
p=l 

m kp 

= KZ ziin^'-.n'.do-»?('.[«;-..«;])! + *(#)-*(«)) • 
Using Theorem 1.16 we obtain the estimate 

m kp 

I ziirec.^.do-n';.K-..«;])«^^2w«Kl'))~1l^ 
p = i 1=i 

because evidently A = A1 o A2 o ... o Am is a O^-fine partition of [#, b]. Therefore 
by (2.8) we have 

m 

£ «<%) - *(*.,.,)( ^ X 3 M « ( ^ ) ) - ' | | £ + K(«-(6) - g(a)) 
p=l 

for an arbitrary choice of points a = s0 < sx < ... < sm = b and consequently 
also 

(2.9) var* 0 = K3M\\(<P(b)yl\\ e + K(g(b) - g(a)) < oo , 

i.e. 4>eBV([a,b]; L(Un)). 

It can be observed easily that (2.9) yields the inequality 

varj 0 ^ K(g(b) - g(a)) 

because e > 0 in (2.9) can be taken arbitrarily small. 
Since (0(s))~l = (0(b))"1 Y\b

s V(t, &t), the boundedness of var* 0~x can be shown 
similarly. 

2.3. Lemma. Suppose the assumptions of Lemma 2.2 are satisfied. Then for 
every te [a, &] the Perron-Stieltjes integral 

(2.10) Jj; d[*(r)] Kr))"1 = A(t) e L(Un) 

exists. For A given by (2.10) we have A e BV([a, b\\ L(Un)) and [i - A"A(f)]~\ 
t e (a, 6], [/ + A+A( t)]_ 1 , t e [a, b) exist. 

Proof. By Lemma 2.2 0 and 0"1 are of bounded variation. Therefore the Perron-
Stieltjes integral in (2.10) exists (see e.g. [4] or [3]). A eBV([a, &]; L(Rn)) follows 
from the fact that 0 e BV([a, &]; L(Un)). 
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For every 3 > 0 we have 

A(r)-A(r-5) = JUd[0(r) ] (4>(r) ) - 1 

and therefore 

A~A(t) = lim j ; _ . d[*(r)] (*-'(-)) = lim (<*>(0 - <?(/-)) (^O)"1 = 
t5->0+ 5-*0 + 

__ (•(,) _ •(/-)) (•(0)"1 = I - <KH(<Kor 
(see again [4] for the calculation of this limit). By (1.37) in Lemma 1.11 we have 
* ( » - ) = (V_(t))~l<P(t), i.e. 

/ - A-A(o = *(t-)(4>«r = ( M o r *(0(*(0)-' = w o r 
for f e (a, b], where V-(f) is invertible by (1.4) from condition # . 

In a completely analogous way we obtain also 

I + A+A(t) = V+(t) 

for t e [a, b), where V+(f) is invertible by (1.4). 

2.4. Theorem. Suppose the assumptions of Lemma 2.2 are satisfied. Then the 
relation 

(2.11) 0(s) = <P(a) + JJ d[A(r)] *(f), se[a, b] 

holds, where <Z>: [a, b] -> L(R") /S a/ven by (2.6) and A: [a, b] -> L(Rn) /s defined 
by (2.10). 

Proof. Using the substitution theorem for Perron-Stieltjes integrals (see e.g. 
[3,1.4.25]) we have by the definition of A 

J .d[A (0] * (0 = J:dQ_d[«(r)] (*(r))"»] <f(t) = 

= J . d ^ r ) ^ ) ) - 1 *(r) = l .d [$( r ) ] = <P(s) - <Z>(a) 

for every s e [a, b], i.e. (2.11) holds. 
In [3] a theory of generalized linear differential equations of the form 

(2.12) dx = d[A]x + dg 

was developed in the case when A: [a, b] -> L(Rn), A e BV([a, b]; L(Un)), g: [a, b] -> 
-> R", g e BV([a, b]; Un). 

A function x: [a, /?] -> Rn, is said to be a solution of (2A2) on the interval [a, fi] a 
cz [a, b] if for every t,t0 e [a, ft] the equality 

(2.13) x(t) = x(t0) + J|0 d[A(r)] x(r) + g(t) - g(t0) 

is satisfied, where the integral in this relation is taken in the Perron-Stieltjes sense 
(see also [4] for this matter). 

The following results are known for equations of the form (2A2). 
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2.5. Theorem. I. If A e BV([a, b]; L(U")) then the initial value problem 

(2.14) dx = d[A]x + dg9 x(t0) = x e Rn, t0 e [a, b] 

has a unique solution x: [a, b] -> U" on [a, b]for any choice of g e BV([a, b]; R"), 
t0 e [a, 6], x e U" if and only if I + A+A(t)eL(U") is invertible for every te 
e [a, b), I — A~A(f) e L(R") is invertible for every t e (a, b]. (See Theorem III. 1.4 
in [3].) 

Assume that A e BV([a, b]; L(U")) satisfies 

(2.15) [I + A+A(t)]"1 exists for every te[a,b), 

[I — A~A(r)]_1 exists for every t e (a, b] . 

II. There exists a uniquely determined IP: [a, b] -> L(Un) called the fundamental 
matrix of (2.12) such that 

(2.16) ^ ( ' ) = I + l a d [ A ( r ) ] f ( r ) , t e [a, b] . 

*P(t) e L(R") is invertible for every t e [a, b], there exists a constant M > 0 
such that 

(2.17) | | f ( . ) ( f ( s ) ) - , | | ^M, s,te[a,b}. 

(See III.2.2 and III.2.3 in [3].) 
III. The unique solution x(f): [a, 6] ~> L(U") of (2.14) is given by the variation 

of constants formula 

x(t) = ^(t)(nt0))-^x + g(t)^g(t0)-

-^sM0^1(s)](g(s)-g(to)) = 

= g(t)+y(t)(v(t0))-*(x-g(t0))^ 

^ n O J I o ^ - 1 ^ ) ] ^ ) , te[a,b]. 

(See III.2.13 in [3].) 

Using the concept of the generalized linear differential equation (2A2) we can 
reformulate the results of Theorem 2.4 and Lemma 2.3 as follows. 

2.6. Theorem. If V: [a, b] x J -> L(U") is Perron product intearable over [a, b] 
and if it satisfies the conditions # and (&+, then there exists a Ae BV([a, b]; L(Un)) 
which satisfies (2A5) with A = A such that the function <P: [a, b] -> L(U") aiven 
in (2.6) is the fundamental matrix of the aeneralized linear differential equation 
(2.12) with A = A. 

Theorem 2.6 naturally suggests the following problem. 
Given A e BV([a, b]; L(U")) such that (2.15) holds. Construct a function 

V: [a, b] x J -» L(Un) which is Perron product integrable over [a, b], for which 
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the conditions # and # + are fulfilled such that for the function <£: [a, b] -» L^") 
given by (2.6) the equality 

0(S) = I+j^d[A(r)]0(r), s e [ a , b ] 
holds. 

Since by I. from Theorem 2.5 the solution of (2.16) is unique, we are in fact asking 
for a Perron product integral representation of the fundamental matrix W of the 
equation (2.12). 

The problem has a positive answer in the case when A: [a, b] —> L(Un) is such 
that 

(2.18) A E BV([a, b]; L(Un)), A(t-) = A(t) for every t e (a, b] , 

[I + A + A ( t ) ] _ 1 exists for every t e [a, b). 

For A satisfying (2.18) define 

(2.19) V1(t,[x,y])=I + A(y)-A(x), x, y e [a, b] , x ^ t ^ y . 

Using the facts listed in Remark 2.1 it is easy to see that Vx\ [a, b] x J -> L(Un) 
satisfies the conditions % and # + . 

2.7. Lemma. Assume that A satisfies (2.18). If V: [a, b] --> L(Un) is the funda­
mental matrix of (2.12) (see II. in Theorem 2.5), then for every $ > 0 there is 
a gauge S on [a, b] such that 

(2.20) i ||Vlvf,, [a,.,,, a,]) - yfo) (^j-iTl < » 
1=i 

for every 8-fine partition A = {a0, t1, a l 5 , . , , afc_1} tk, ak) of [a, b]. 

Proof. Let s > 0 be given. Since A is continuous from the left, for every t e [a, b] 
there is a 51(t) > 0 such that 

(2.21) var^ A < s 

for x E [a, b], t - S^t) < x = t. 
Since the integral \b

a d[-4(r)] W(r) = I - W(b) exists, by the Saks-Henstock lemma 
(see e.g. [4]) there is a gauge d on [a, b], S(t) < Sx(t), t e [a, b] such that for every 
<5-fine partition A of [a, b] we have 

(2.22) _ ||(A(a;) - 4 - , . . ) ) y(*_) - ft., d[A(r)] V(r)\\ < s. 
1 = 1 

For any <5-fine partition A (2.21) implies 

(2.23) v a r ^ l A < £ , j = 1,2 fe. 

Moreover we have 

(2.24) n ^ W ^ - i ) ) " 1 = I + ^ - 1 d [ A ( r ) ] ^ ) ( n « i - i ) r 1 > _/= l,2,...,fc 
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and for every j = 1, 2, ..., k we have 

(2.25) V.(t„]«,-„«,]) - ^ ( a ^ C f ^ - , ) ) - 1 = 

= / + A(a,) - A(a,_0 - / - # _ . dL4(r)] y ( r ) (V(« ; - . ) ) _ 1 = 

= (A(a,) - A(a,_,))(I - ^ C l ^ - O r 1 ) + 

+ M«J) - 4«,-.)) no) - JS5_. 44'-)] n ^ c l ^ - o r • 
Using (2.23) and (2.17) we have 

l inoH^-t))-1 -III = Bft-.dMrBvCrXy^.O)-1! < 
< var'J. AM < eM . 

Hence using (2.22) and (2.17) we get by (2.25) 
k k 

X flK.fo, [a,.., a,]) - <?(«;) C l^-Or l < I M(«j) " 4«,-.)l ^M + 
J=l y = i 

+ ii(4«;)-^-.))no)-
1=-

- f t^d tA^^II-IK^ j - i ) ) - 1 ! !^ 
^ cM var* A + eM = eM(1 + var* A). 

Taking e = #/[(M + 1) (1 + varj) A)] for an arbitrary d > 0 we obtain immediately 
(2.20). 

Theorem 2.7 in [2] states the following 

2.8. Theorem. Assume that W: [a, b\ -» L(Un) is such that 

max{||W(t)||, HWOr1!!} = M 
where M > 0 is a constant. Let V: [a, b~\ x J -> L(Un) be such that for every 9 > 0 
there exists a gauge d on [a, b] such that 

I IIn^ K-i' *1]) - ^fa) W^-i))""1! < s 
1=1 

provided A is a b-fine partition of [a, b]. 
Then the Perron product integral Y\a V(t, dt) exists and is equal to W(b) (W(a))~1. 
Using this result and Lemma 2.7 we obtain the following. 

2.9. Theorem. Assume that A satisfies (2A8). Then the function Vx: [a, b] x 
x J -> L(Un) given by (2A9) is Perron product integrable over [a, b\ and for 
every s e [a, b] we have 

-^HIM'.dO 
where Y: [a, b\ -* L(U") is the fundamental matrix of (2.12). 
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Let us now replace (2A8) by the following assumption 

(2.26) A e -BV([a, b]; L{Un)), A is continuous at every point t e [ a , b] 

For A : [a, b] -> L(Un) satisfying (2.26) let us define 

(2.27) V2(r, [x, y]) = exp (A(y) - A(x)) = £ M > " / ( x ) ) * . 
k = 0 k! 

2.10. Lemma. If A : [a , b] ~> L(Un) satisfies (2.26) t/ien to every n > 0 fhere 
ex/ste a gauge 5 on [a, b] such that 

(2.28) £ UV^,, _>,-„ «;]) - V2(tp [a,.!, a,])|| < t, 
1=i 

for every <5-fme partition A = (a 0 , t_, a_, . . . , afc__, tfc, a}} Of [a, 6 ] , where V,, V2 

i\s given by (2A9), (2.27) respectively. 

P r o o f . Since A is assumed to be cont inuous in [a , b], for every c e ( 0 , 1) and 
/ e [a , b] there is a (5(f) > 0 such that 

(2.29) \\A(y) - A(x)\\ < e 

for every x, y e [ a , b], t — (5(f) < x _g f _g y < t + 5(t). For such x, y e [a , b] we 
have 

^ ( t , [*, J>]) - V.(r, [x , y]) = exp (A(y) - A(x)) - I - (A(y) - A(x)) = 

_ S. (AQQ - A(x))* 

* = 2 fc! 

and also 

K C [*, >•]) - V2(t, \t, [x, y])\\ < __ " ^ 7^ (x) l | , i • 
k = 2 hi 

Denoting \\A(y) — A(x)\\ = X we have X < e < 1 and this yields 

(2.30) || Vx(t, [x, y]) - V2(t, [x, y[ [x , y])\\ < _. £ = 
fe = 2 fc! 

-_ e* - 1 - A < A2 = ||A(y) - A(x)||2 = e||A(y) - A(x)\\ 

by (2.29) for x, y e [a, b], f - S(t) < x = t ___ y < t + <5(f). 
Given n > 0; let us choose 

8 Є (°'mi"{''^7Tl}) 
and let d(t) > 0, / e [a, b] be such that (2.29) holds for this choice of e > 0. In this 
case (2.30) has the form 

(2.31) \\V}(t, [x, y]) - V2(t, [x, y])\\ < " \\A(y) - A(x)\\ 
1 4- v a r ° A 
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for .x, >' e [a, b]; * - S(t) < x _§ / rg y < t + (5(f). 
Let now A = {a0, / j , ax , . . . , afc_!, rfc, afc} be an arbitrary (5-fine partition of [a, 6]. 

Then we have by (2.31) 

jV^tj, [a ,_. , a,]) - V2(.„ [«,_. , a,])|| = 

= , + " >M*J)-<«J-M 
1 -F varUA 

and consequently 

i 11̂ .(0. [«_.-.. «.])- ^(0. [«,-„«,])« < 
1=1 

< 7-^-T-- i M«,) - -*(«,-.)! < 7 ^ ^ < * • 
1 + var; ;A , = i 1 + varjJA 

In [2] the following definition is given. 
The functions V,, V2: [a, b] x J -> L(lRn) are called equivalent if for every rj > 0 

there is a gauge 5 on [a, b] such that (2.28) holds for every £-fine partition A 
of [fl,6]. 

In the sense of this definition the functions V,, V2 from (2A9) and (2.27) are 
equivalent by the Lemma 2.9. 

The following analog of Theorem 2.9 in [2] is true 

2.11. Theorem Let the function V: [a, b] x J -> L(Un) is Perron product in-
tegrable over [a, b] and let the condition c€ be satisfied. If V2: [a, 6] x J -> L(U") 
is equivalent to V, then the Perron product integral Y[a V2(t,dt) exists and 

Uav2(t,dt) = Y\av(t,dt). 

Proof. By (1.54) from Theorem 1.16 and by the equivalence of V2 and Vwe obtain 
that for every r\ > 0 there is a gauge 8 on [a, b\ such that for every (5-fine partition A 
of [a, b] we have 

iiiVo,, [«;_„«;]) -m-,nt.dt)« = 
1=i 

= i lino. [«_,-..«,_) - *(«,)(*(«..-,)rii < i 
1=i 

and 

I 11^(0. [«;-i. «,]) " V(t;, [«,-„ «y])| < >? , 
1=1 

where <P(s) = Y\s
a V(/, d/), s e [_;, b\ 

Therefore 

£ ||K2(0, [ « ; - „ « , ] ) " 0( a ; ) (<K«,- . ) ) -1 < 21 
1=1 
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and Theorem 2.8 yields the existence of Yla V2(t, dt) as well as the equality 
FK V2(t, dt) = *(b) (*(«))- ' = Ua V(t9 dt). 

2.12. Theorem. If A: [a, b] -> L(Un) satisfies (2.26) then the functions Vu V2: 
:[a, b] x J ^ L(Un) given by (2A9), (2.27) respectively are both Perron product 
integrable and 

re^Mo = n: ^MO 
for every s e[a, b]. 

Proof. The result follows immediately from the fact that Vt is Perron product 
integrable over [a, b] by Theorem 2.9, because if (2.26) is satisfied, then (2.18) holds 
too. V! and V2 are equivalent by Lemma 2.10 and therefore by Theorem 2.11 also V2 

is Perron product integrable and both integrals have the same value. 

2.13. Remark. Theorem 2A2 gives another representation of the fundamental 
matrix of the equation (2A2), i.e. we have also 

^ ) = F K ^ d O , se[a,b] 

for the fundamental matrix V of (2A2), when A satisfies (2.26) (c.f. Theorem 2.9), 

Let us now consider the general case of A: [a, b] -» L((RW), i.e. the case described 
in Theorem 2.5, which assures the existence of a unique fundamental matrix of the 
system (2A2) 

Assume that A: [a, b] -> L(Un) satisfies 

(2.32) AeBV{[a, &]; L(R")), 

[I + A + A ( r ) ] - 1 exists for every t e [a, b) , 

[/ - A~A(r)]~ l exists for every t e (a, b] . 

For x, v, t e [a, b], x g t = y define 

(2.33) W(t, [x, y]) = [I + A(y) - -4(0] V + 4 * ) " 4 0 ] " 1 • 

If A satisfies (2.32) then we have ||A~A(t)|| < \ except a finite set of points tx, t2,... 
..., tte(a, b]. We have then for t 4= tl,..., tt 

[l-A-A(t)yl=i(A-A(t)f 
fe = 0 

and also 

\\[l-A-A(t)yl\\<t\\A-A(t)f<2. 
k = 0 
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Taking K = max {2; ||[I - A'Afa)]-1^ . . . , | |[/ - A~A(r£)]-J||} we have 

||[I - A"A ( t ) ]" ' || ^ K for every t e (a, b] 

and similarly it can be shown also that 

|| [I + A+A(t)yi I < K* for every t e [a, 6) 

where K* is a constant. 

Since the onesided limits of A exist in [a, b] we can easily state that there is a con­
stant L > 0 such that for every t e [a,b~] there is a S^t) > 0 such that 

[I + A(x) - A(t)y\ [I + A(y) - A(t)yl exist 

and 

(2.34) \\[I + A(x) - A(0]-'| < L , ||[i + A(y) - A(t)-*\\ < L 

provided x, y e [a, b], t - 6t(t) < x <, t g y < t + 5t(t). 
For W: [a, b] x J -> L(W) the following hold: 

W(t,[t,t]) = l, te[a,b], 

W(t, [x, t]) = [/ + A(x) - A(f)]-1 , W(t, [1, y]) = I + A(y) - A(t) 

and consequently 

W(t, [x, y]) = W{t, [t, y]) W(t, [x, t]) , 

provided x, y e [a, b], t — S^t) <x<.t<.y<t + 51(O; finally we have 

lim W(t, [t, y]) = lim / + A(y) - A(t) = / + A+A(t), te[a, b) 
y-*t+ y-+t + 

and 

lim W(t, [x, t]) = lim [I + A(x) - A(t)]'1 = [I - A-A(f)]"1 , te(a, b] 
x - > t - JC-+ f -

by Lemma 1.10. Hence we have verified that Wgiven in (2.33) satisfies the condition #• 
Moreover we have by (2.34) 

II W(U [*, y\) - I\\ = \\[I + A(y) - A(t)] [I + ^(x) - A(r)]"1 - /|| = 

= ||[I + A(y) - A(t) - (I + A(x) - A(t))] [I + A(x) - ^(r)]"M| = 

= \\A(y) - A(x)\\L= L(varM - v a r ^ ) 

provided x j e [a, b], t — 5x(t) < x g t g j < t + ^ ( r ) and therefore we can 
see that IVfrom (2.33) satisfies also the condition # + with the nondecreasing function 
g: [a, b] -> R defined by g(s) = Lvar* A, se [a, b]. 

Let now W: [a, b —> L({RM) be the fundamental matrix of (2A2), see Theorem 2.5. 
Since the Perron-Stieltjes integral j«d[A(r)] *P(r) exists, the Saks-Henstock lemma 
for sum integrals (see e.g. [4]) yields the following: 
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(2.35) For every e > 0 there is a gauge 52 on \a, _ ] , 82(t) _ $i(t), t e [a, o] such 
that if 

a __ & __ .1 __ Vi __ & __ ,2 __ y2 __ ... __ .5- __ _™ _s y„ __ 6 , 

. , - o2(.,) < / ? , _ . ., < 7, < ., + _2(.,) , J = h • • -, m 

then 

f IW7.) - Mfij)) *(ZJ) - « ; « noil < « • 
1=t 

2.14. Lemma. Assume that A: [a, b] -» L([R") satisfies (2.32). Let IP: [a, b] -> 
-> L(R") be the fundamental matrix of (2.12) (see II. in Theorem 2.5). 

Then for every & > 0 there Is a gauge S on [a, b] such thal 

(2.36) £ W..,[_.-..«.]) - !P(«.)(y(a._1))-
1|| < » 

jor eiwj' b-fine partition A = {a0, f,, a,,..., a^^, tk, ak) of [a, _•]. 

Proof. Let £ > 0 be arbitrary and let 5 be a gauge on [A, £>] such that S(t) < 52(t). 
t G [a, _ ] , where <52 is given in (2.35). If A is a <5-fine partition of [a, £>], then 
W(tj, [ay_i, a,]) is well defined (see (2.34)) for j = 1, 2 , . . . , k and we have by defini­
tion and by (2.34), (2.17) 

ll^(t.T«J-i>«J])-
,!/H(,l/(«.-i))_,ll = 

= 1_- + A«J) ~ Ah)1 • [I + 4«,-i) - 4 ' ) ]_ 1 -

-^(^..on-
= |[/ + A(ay) - A(f,) - n«.)(no))Ji] • [I + 4*j-i) - A(tj)ri + 
+ n«j)(n<j)r(V +-4«.-_) - m r 1 - no)(-'(«.-.)rl) < 
< Lp + A(a,) - A(f,) - ^ ( n o ) ) - 1 ! + 

+ M | [ / + A(a,_.) - A(f,)]-i|. „[y(«.-1)(-'(..)r -

- [/ + __(«,_.) - A(f,)]] ^ ( n a y - , ) ) - 1 ! ^ 

g L|[y(..) + (A(a,) - A(fy)) v(tj) - *(«.)](?(..))-. + 

+ ML||[f (ay-0 - V(tj) - (A(ay_0 - __(.,)) *(.,)] ( - » " * ̂ 0 ) • 

. ( ^ a . . , ) ) - 1 ! <- ^M||(A(ay) - A(fy)) V(tj) - ftd[A(r)] !P(r)| + 

+ LM2||(A(fy) - A(aj_t)) V(tj) - .___, d[A(r)] y( r)I 

for every _•* = 1,2,..., k . 
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Using (2.35) and the fact, that A is a <5-fine partition, we obtain from the estimate 
given above the following 

i \\W(tj, [«,_., a,]) - <?(«,.)(na.-i))-1! _. 
7 = 1 

= LMi ||(A(a,) - A(tj)) T(tj) - #d[A ( r ) ] _<(r)|| + 
1=1 

+ LM>i\\(A(tJ)-A(«J_l))V(tJ)-

- j ^ d[A(r)] y(r)|| < eLM(M + 1) . 

Taking now 0 < e < ,9/(LM(M + 1) + 1) for an arbitrary 3 > 0 we obtain 
(2.36) for 5-fine partitions A which correspond to this choice of a > 0 by (2.35). 

By the result given in Lemma 2.14 and by Theorem 2.8 we immediately obtain 
the following theorem. 

2.15. Theorem. Assume that A: [a, b] -* L(LRn) satisfies (2.32). Then the function 
W: [a, b] x J -> L(Un) given by (2.33) is Perron-product integrable over [a, b] 
and for every s e [a, b] we have 

(2.37) V(s) = YllW(t,dt) 

where _P: [a, b -• L(Un) is the uniquely determined fundamental matrix of (2.12), 
which satisfies the equation 

y ( S ) = _ + E d [ . 4 ( r ) ] ! P ( r ) , . _ [ _ , _ ] . 

Remark. Taking into account the results in Theorem 2.6 and in Theorem 2.15 
we can see that there is a one-to-cne correspondence between the ,indefinite" Perron 
product integral f[l V(t, dt) of a function V: [a, b] x J -> L{Un) which fullfils the 
conditions # and ^ + and the fundamental matrices of generalized linear differen­
tial equations (2A2) with A: [a, b] -> L(R") satisfying (2.32). 
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Souhrn 

PERRONÚV SOUČINOVÝ INTEGRÁL A ZOBECN NÉ LINEÁRNÍ 
DIFERENCIÁLNÍ ROVNICE 

ŠTEFAN SCHWABIK, Praha 

Vyšetřuje se pojem Perronova součinového integrálu, který zavedli J. Jarník a J. Kurzweil. 
Je гozšířena třída perronovsky součinov integrovatelných funkcí definovaných pro body a inter-
valy a ukazuje se, že tato třída je vhodná pro reprezentaci fundamentální matice zobecn ných 
lineárních diferenciálních гovnic. 

Authoŕs address: Matematický ústav ČSAV, Žitná 25, 115 67 Praha 1. 
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