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THE PERRON PRODUCT INTEGRAL AND GENERALIZED LINEAR
DIFFERENTIAL EQUATIONS
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Summary. The concept of the Perron product integral due to J. Jarnik and J. Kurzweil is
investigatéd. The class of Perron product integrable ,,point — interval” functions is extended
and it is shown that this extension is suitable for the representation of the fundamental matrix
of generalized linear differential equations.
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INTRODUCTION

In the recent paper [2] of J. Jarnik and J. Kurzweil a definition of the Perron
product integral is given, which is the ,,product form™ of an analogous concept of
the sum integral. In [2] the basic properties of the product integration are developed
and the product integral is connected with a relatively wide class of linear ordinary
differential equations of the iform

i =a(tyu

where a is an n x n-matrix valued function.

Here we use the definition from [2] for a slightly more general class of Perron
product integrable functions. In Section 1 we consider the properties of the product
integral in an analogous way as this was done in [2] and in Section 2 we give further
results which can be applied to generalized linear differential equations of the form

x(s) = x(a) + Jod[A("] x(r), se[a,b]

where A is an n x n-matrix valued function of bounded variation on [a, b]. The
concept of generalized linear differential equations is given e.g. in [3] and [4].
A product integral representation of the fundamental matrix of a generalized linear
differential equation is derived under some additional assumptions on the matrix
valued function A.
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1. THE PERRON PRODUCT INTEGRAL AND THE CONDITION ¢

Let ne N and let R" be the n-dimensional Euclidean space. We denote by L{R")
the set of all linear operators from R" to R" (the n x n-matrices) and assume that
is the corresponding operator norm in L(R").

Let [a, b] = R be a compact interval and let J be the set of all compact sub-
intervals in [a, b], i.e. intervals of the form [x, y], where a < x < y < b. Assume
that a function V: [a, b] x J - L/R") is given.

A finite set

4= {%a tl; xg,s t2’ LI TREE O —1, tks ak}
is called a partition of the interval [a, b] if

a=oy <0 <..<o==»b
and
tje[dj_l,aj], j=1,2,..-,k.

Given a function é: [a, b] = (0, + o), called a gauge on [a, b], the partition 4
of [a, b] is said to be d-fine, if

I = [aimy, 0] = (t; = 8(t), t: + 8(t)), i=1,2,....k.
For the function V: [a, b] x J — L{R") and a given partition 4 of [a, b] denote

P(V, A) = V(tks [“k—l, ak]) V(tk—l’ [“k-—z, ak—l]) V(th [“o, “1]) =
= V(tk, Ik) V(tk-'l’]k—l) cee V(tl, Il) .

L.1. Definition. A function V:[a,b] x J - L(R") is called Perron product
integrable if there exists Q € L(R") which is invertible such that for every ¢ > 0
there is a gauge d: [a, b] = (0, + o) on [a, b] such that

(L.1) |P(v,4) — Q| <=

for every d-fine partition 4 of [a, b].
Q € L{R") is called the Perron product integral of V over [a, b] and we use the
notation Q = [} V(t, dt).

1.2. Remark. This definition follows exactly the line of definition of the Perron
product integral given by J. Jarnik and J. Kurzweil in their paper [2]. In [2] the
notation (PP) 2 V(t,dt) is used for Q. It has to be mentioned that the set of &-fine
partitions 4 of [a, b] is nonempty for every given gauge 6 on [a, b] (see e.g. [4]).
Therefore the notion of Perron product integrability given in Definition 1.1 makes
sense.

Because the space L(R") with the operator norm || is a Banach space (i.e.
complete), it is easy to see that the following holds.
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1.3. Proposition. Let V: [a, b] x J —» L(R") be given. The following two condi-
tions are equivalent.

(i) There is a-Q € L(R") such that for every & > 0 there is a gauge §: [a, b] »
- (0, + o) such that |P(V, 4) — Q| < & for any 5-fine partition 4 of [a, b].

(ii) For every & > 0 there exists a gauge &:[a, b] — (0, +0) such that
|P(V, 4,) — P(V, 4,)|| < & for any é-fine partitions Ay, 4, of [a, b].

In the sequel we will assume that the function V: [a, b] x J - L(R") satisfies
the following condition.

Condition %.

(1.2) V(t,[1,1]) = I for every t € [a, b], where I € L{R") is the identity operator
in L(R");

(1.3)  for every te[a, b] and { > O there exists ¢ > 0 such that
V(6 T 5]) = V(0T 0D VG [ D] < €
forallx,ye[a,bl,t—o<x<t<y<t+o;

(1.4)  for every te[a, b) there is an invertible V. (t) € L(R") such that
,lir,n+ [Vt [t, y]) = V()] =0, i.e.

lim V(t, [, ¥]) = V.())

y—tr+

and for every t € (a, b] there is an invertible V_(t) € L(R") such that
lim |V(1, [x,1]) = V()| =0, ie.
x—t—

lim Vit [x,t]) = V_(1).

1.4. Remark. In [2] it is assumed that the function V: [a, b] x J — L(R") satisfies
the following condition

(1.5) for every te[a, b] and { > O there is ¢ > 0 such that
v, e y]) = 1] < ¢

forallx,yela,b],t—oc<x<t<y<t+o.
Since we have

V(0. [x, ¥]) = V(e [t D) V4 [ D) = V(0 [x0]) = V(1 [00)) +
F V(L Tn )~ 1+ (V[0 y]) = D [x D) = 1) =
= V(t,[x y]) = I + 1 — V(t,[t, ¥]) = V(t, [x. £]) +
1= (V0 [60) = DV [x 1))~ 1)
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we have also
(e, [x, v]) = vt [6 y]) V(e [x1])] =
< v, [x ) = 1) + |V [t vD) = 1)+ V(s [ ) — 1 +
+ |V, [ y]) = 1) V(e [x ) - 1] -
“This inequality implies that if V: [a, b] x J — L(R") satisfies (L.5) then
Vi, [x, 1) = v [ yD) vie [x )| < 30+ &

for all x,ye[a,b], t — 6 <x <t <y <t+oand this implies that (1.3) given
in condition % is fulfilled. Moreover (1.5) evidently yields lim V(1,[t,y]) =1,
y

—t+

te[a,b) and lim Vi1, [x,t]) =1, te(a, b] and therefore (1.4) as well as (1.2)
x—=t—

from condition € hold. This means that the condition (1.5) introduced by J. Jarnik
and J. Kurzweil in [2] implies the condition € given above.

1.5. Lemma. Assume that for the function V: [a, b] x J — L(R") the condition ¢
is satisfied. Then for every te[a,b] there exists a oy = o,(t) > 0 such that
Vit, [x, y]) € L(R") is invertible provided x,ye[a,b], t —oy <x=St<y<
<t+o,.

Proof. Let t € [a, b] be given. For a given { > 0 let a,(t) > 0 be such that for
x,yela,b],t — o, <x <t < y<t+ o, we have

(L6) [Vt [xy]) - V(. [ ).Vt [x ()] <<
and
(L7 V(e e ) = Vo] <&, Vi [6]) = V()] < ¢
provided x, ye[a,b], t —o;, <x St <y <t+o; (1.3)and (14) assure the
possibility of such a hoice of o, > 0.
Since V_(f) and V.(t) are invertible operators (we define V_(a) = I, V,(b) = I), *
the operator V,(¢) V_(t) is also invertible with (V,(f) V_(¢)) ™! = (V-(&))™* (V. (1))~
We have evidently
V(t, [x, y]) = Vi) V() = Vit [x, 9]) = Ve [ y]) Vi [x,£]) +
+ (Vi [ y] = V(@) (Ve [x, t]) — V(1) +
+ V(o). (V(t, [x, 1]) = V=(0) + (V(t, [1, y] = Va(8)) V(1) -
Hence
v, [x, ¥]) = V() Vo0 = V(e [x, ¥]) = Vit [, y]) V(e [x D)) +
+ [Vt [t y]) - Va@] - Vit [x 6] = V()] +
+ Ve - Vit D 1) = ve@ + [V [6y] = V)] - [V-()]
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and if x, ye[a,b], 1 — 6, <x <t <y <t+ o, then by (1.6) and (1.7) we have
V([ 0D = Vi@ V- = £+ & + (V)] + [V-()]) =
=t + a@f + V-] +9) -

Since { > 0 can be choosen arbitrarily small, the operator V(t, [x, y]) is invertible.
(Tt is e.g. sufficient when { > 0 is choosen in such a way that {(1 + |V.(1)] +
+ V- + 0 < J(V=(e))* (V4(1))"*|~". If eg. x=1t<y then the result
comes immediately from the second inequality in (1.7) for a sufficiently small (.
The case x <t = y is a consequence of the first relation in (1.7) and finally for
x =1 =y we have V(1,[x, y]) = I and V(t, [x, y]) is evidently invertible.

1.6. Lemma. Assume that V:[a,b] x J — L{R") satisfies the condition .
Then for every t € [a, b] there is a 6, = o,(t) > O such that

(18) v [x D = V-] + HV-)~*]
IV L )7 = 20 ()7

for all x €[a, b] such that t — ¢, < x <t and

(19)  vir, [eyDl = [V + (Ve @) '] -
|07 L D)™ = 2] (v~

Sor all y e[a,b] such thatt < y <t + a,.

Proof. Let us prove (1.8), the proof of (1.9) is analogous. Let t € (a, b]; if t = a,
there is no x € [a, b] such that x < t. V_(r) € L(R") is invertible by (1.4). If B € L(R")
and |B — V_(1)] < 4|(V-(t))"*||~", then by the general result given in [1, VIL.6.1]
B~ ! e L(R") exists and

B = (V) B[00 - B -0

Therefore
5711 = =00 15, (1v-) = Bl -0y 1) =

e
0 - B0
Since in this case |V_(f) — B| . [[(V-(1))"'| <4, we have L — ||V_(r) — B|.
J(v-(1))"*| > % and consequently

(L1o) B <2 (v-(e)~*] -

By (1.4) there is a 05 (f) > O such that if xe [a, b], t — 05 < x < 1, then
(L) Vi [ ) = Vol < H-0) 71"
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Hence by (1.10) we have

|7, D, DM < 2 (v() 7]

and (1.11) implies also
(Vi [ ) = [V Dxo D = Vel + V-] < $(v-()~'] +
+ V-l

provided t — ¢; < x <, i.e. (1.8) holds for such x € [a, b].

For the case te€[a, b) we can find a ¢3(t) > 0 such that (1.9) holds for every
vela,b],t <y <t+ o3. Taking 6, = min (65, 67) we obtain the statement of
the lemma.

1.7. Theorem. Let V:[a, b] x J — L(R") be Perron product integrable over
[a, b] with [T V(t,dt) = Q and assume that for V the condition € is satisfied.

Then there exists a constant K > 0 such that for every se [a, b] the Perron
product integrals [} V(1, dt), T2 V(1, dt) exist, the equality

ITe (1, do) TT; V(e do) = T Vi, )
holds and
T Ve dn] < K. V(L dn) | s K.

Proof. Let { > 0 be arbitrary. Let 8,: [a, b] = (0, + o0) be a gauge on [a, b]
such that 8,(f) < min (o,(t), 0,5(t)). t € [a, b] where a,(1), o,() are given in Lemma
1.5 and 1.6 respectively and such that

(112)  [P(V. 4) = o < 4o~

holds for every 6,-fine partition 4 of [a, b] and

(1L13) V(Lo ]) = V(6 [0) VG e )] < €

for t,x,ye[a,b], t — 8o(t) < x <t <y <1+ 8(t). Then the following holds.

(1.14)  For every te|[a, b] there is a K,(t) > 0 such that
(i) if se(t — 8o(t), t]n [a, b] and A, is a Sy-fine partition of [a,s]
then

max {[P(V, 4,)]. [(P(V. 4.))" |} < K,(0)

and
(ii) if se[t,t + o(t)] n[a, b] and A, is a S,-fine partition of [ s, b]
then

max {|[P(V, 4). [(P(V. 42))"" |} < K.(0) -
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For proving (1.14) let us first mention that because we have do(t) < 7,(f), Lemma
1.5 implies that V(t, [x, y]) € L(R") is invertible for every t, x, y € [a, b] such that
t— () < x St =y <t+ (1)

In order to prove (i) from (1.14) let 4; be a d,-fine partition of [z, b]. Let

Al = {0(0, tl’ al, ohey tx,_l, tl’ (x,}
be the dy-fine partition of [a, s] and let

Ay = {0s 1 Hazs Qpazs oees Okm gy By %)
be a d,-fine partition of [¢, b]. Set

A = {ao, tl’ 0(1, ceey al_l, tb tx, = S, t’+1 = t, “l+l = t,

Bi2s Qg eees Op—15 by ka} .
(In the sequel we will use the notation 4 = 4, o (¢, [s, t]) o 45 for this construction
of a partition of the interval [a, b]; 4 is in fact the union of ordered finite sets in
which the ordering preserves the ordering of the components 4,, {s, t, t}, 43; by o the
union of ordered sets is denoted as it is denoted in [2] too.)
It is evident that 4 is a §,-fine partition of [a, b] and that V(t;, [o;_4, @;]) € L(R"),

i =1,2,..., k are invertible. Hence also P(V, 4;) = V(t;, [a;-1, 2,]) .

V(g [y 2g—4]) - V(s [#0, 21]) € L(RY) and  P(V, 4;) = V(t,, [et— 1> ]) -
V(s [®e-25 %)) -+ V(tis 2, [®1415 @14 2]) € L(R") are invertible and (1.12) holds.
By definition we evidently have

P(V, 4) = P(V, 43) V(t141, [, 0144]) P(V; 41) =
= P(V, 43) V(t, [s, t]) P(V, 4,)

|P(V. 40) = (v(t. [s, D) (P(V, 45)7" 2] =
= J07(e T, D) (P(V. 43))™" [P(V: 43) V(s[5 1) B(V; 4,) = €] =
< 00 L D) (PO 4] Bl

Consequently by Lemma 1.6 we obtain
(1L15) PV, 4)] = [PV, 40) = (V(t, [s, (D) (P(V. 43)) 71 ] +

+ e s, D) - P2 49) 7 - 2l =

< v Ls )7 - NP ) - Gl + el <

< 2J(v-() '] - (e 45) 7M. Gle7H + [[2]) = Ko(e) > 0.
On the other hand we have

I(P(v. 40))7t = @7*P(V, 43) V(1, [, ]| =

= 7@ ~ P(V. 43) V1, [s, ) (V. 40) (P(V; 4,))'| <

< o~ |P(v. 4) - o] . [(e(v. 4) '] =

< o~ - e[~ [(o(v, 4)] = H(P(; )~

and
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and consequently by Lemma 1.6 we get

IP(v, 4,)7* | < [(P(V, 41))™" = @7'P(V, 43) V(1. [s, 1])|| +
+ Q7] - [PV, a5)] - V(e [s, D) = 3PV, 4,)71] +
+ e~ 1pM; )] - (V-0 + (V=)'

i.e. we obtain the inequality

(L16) @V, )7 = 227! [PV, )| (V- + H(-()~']) =
=K%)>0.

Taking K_(f) = max (K,(1), K%(t)) > 0 we conclude by (1.15) and (1.16) that
max {[P(V, 4,)[, |(P(V; 4,))7*[} = K_(r)

holds. A completely analogous reasoning gives also that if se[t,1 + 3¢(1)) n [a, b]

and 4, is a d,-fine partition of [s, b] then
max {||P(V, 4,)|, [(P(V, 42))~*[} = K.(1)

where K ,(f) > 0. Putting K,(t) = max (K _(t), K.(1)) we obtain (1.14).

Now we will show that the following is satisfied.
(1.17)  For every t€[a, b] there is a K,(t) > 0 such that

max {[[P(V, 4,)], [(P(V, 41))™* | | P(V, 42)[, [ (P(V; 42))™*[} = K(2)
if se(t — 6o(t), t + 84(t)) N [a, b] and Ay, A, are arbitrary d,-fine par-
titions of [a, 5], [s, b] respectively.
Let us take e.g. se [, 1 + 8y(t)] and set 4 = 4, o 4,. Then P(V, 4) =
= P(V,4,) P(V, 4,) and P(V, 4,), P(V, 4,) € L(R") are invertible by Lemma 1.5.
Since (1.12) holds we have

; [P(v, 42) P(V, 4,) - 2] < 4]@™*|™

[PV, 41) = (P(V, 42))~* Q| = |(P(V, 4,))"* (P(V, 45) P(V; 4;) — Q)| <
< |[(P(V, 4)7Y - 3ot

Hence
(L18) [PV, 4] = [P(V. 4)) = (P(V, 42))7* @] + |[(P(V;, 42))7*] - | 2] =
< (v 421 Gle~ = + el
On the other hand we have
IV, 4,)7" = @7'P(V, 4,)] =
= [274(2 — P(V, 45) P(V, 4))) (P(V, 4,)) "] =
< [e7!]- 12 - (v, 45) P(V, 4))| . [(P(V; 41)7"] <
< H(P(v, 4,)7Y|
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and henceforth

[V, 4)7*] < [(P(V, 40)7" = @7'P(V; 4,)| +
+ |27 - BV, 45)]| = H|(P(V, 4.)7* | + [@7] - [P(V; 42)]

(L19) (v 4.))7!| = 27! - [P(V, 42)] -
By (ii) from (1.14) we get by (1.18) and (1.19) the estimate
max {|P(V, 4,)|, [(P(V; 4,))~*|} =
K0 [2]e7'| + 4fe7™" + 2]l = Ku») > 0.
Similarly we can show that
max {[P(V, 4)|. |(P(V, 42) [} < Kal0), Kalt) > 0.

and putting e.g. K,(f) = max (Ky(t), Kg(t)) > 0 we obtain (1.17).
The sets of the form (¢t — 8o(t), ¢ + 8,(t)), t € [a, b] form an open covering of the
compact interval [a, b]. Hence there is a finite set {t,, 1,, ..., ;} = [a, b] such that

[a,b] = ]Ql(tj = So(ty), ; + Bo(ty)) -

Define K = max {1, K,(t,), Ky(t,), ..., K5(t;)} where K,(t) is given by (1.17).
Then (1.17) implies that the following holds.

(1.20)  There exists a constant K 2 1 such that
(i) if se(a, b] and A, is a 5-fine partition of [a, s], then
max {|[P(V, 4,)], [(P(V, 4,))7'[} = K

and
(ii) if se[a, b) and 4, is a dy-fine partition of [s, b], then

max {|P(V, 4,)|, [(P(V, 42)) 7'} = K.
Now we prove the following statement

(1.21)  Let e€(0,%|Q™"|~") be given and let 6 be a gauge on [a, b] such that
8(1) < 8o(1), te[a, b] and

[P, 4) - 0] <

for every b-fine partition 4 of [a, b].
(i) If se[a, b) and 4,, A, are arbitrary 6-fine partitions of [s, b], then

|P(V, 45) — P(V, 4,)| < 2Ke.
(ii) If se(a, b] and 4, 4, are arbitrary é-fine partitions of [a, s], then
[P(V,4,) — BV, 47)] 5 2K
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(K is the constant given in (1.20)).

We prove only (i), the proof of (ii) is similar. Let s € [a, b). Denote by 4, an
arbitrary d-fine partition of [a,s]. Let us put 45 = 4,04, and 44 = 4,0 4,.
45 and 4, are evidently d-fine partitions of [a, b]. Hence

|P(V, 45) P(V, 4,) — P(V, 4) P(V. 4,)| <

< IPV.4) - 0 + |P(V.4) - 0] < 2
and
|P(V, 4,) = P(V, 4,)| =

= |[P(V, 4,) P(V, 4,) — PV, 4,) P(V, 4,)] (P(V, 4)))7"| =
< [PV, 42) PV, 4,) — PV, 4 P(V. 4) | [(P(V. 4,))'] < 2Ks

by (1.20). The second statement (ii) in (1.21) can be proved analogously.

By (1.21) and by Proposition 1.3 we have the following result.

(1.22)  If se(a,b) then there exist Q~, Q" € L(R") such that for every te€
€(0,4]Q (") there is a gauge 6,: [a, b] — (0, + o) on [a, b] such that
|P(V.4,) - Q7| <
for every é,-fine partition 4, of [a, s] and
|P(V,4:) — Q7| <«
for every &,-fine partition 4, of [s, b].

Assume that se(a, b). Let us choose a gauge &, on [a, b] such that 8,(f) <
< min (6(t), 8o(1), 8,(2), |t — s|) for ¢ # s and 8,(s) < &,(s). By this choice every
,-fine partition 4 = {a, 1, &y, ..., %y, &, 0} has the property that there exists
a je{l,2,..., k} such that t; = 5. For a &,-fine partition 4 of [a, b] and §,-fine
partitions 4, 4, of [a,s], [s, b] respectively we have by (1.20) the following
inequality
(123) [PV, 4) = @7 Q7||. |P(V, 4) — P(V, 45) P(V, 4,)| +

+ P04 BV, 4,) - ' Q| 5 [P(V, 4) — P(V, 4) P, 4)] +

+ |P(V, 42) P(V, 4,) — Q*P(V, 4,) + Q*(P(V, 4;) — 07)|
< |P(V, 4) ~ P(V, 4,) P(V, 4,)| + |P(V, 45) — 0*| . |[P(V. 4,)] +
+ Q" - PV, 4,)| . |P(V, 4,) - 7| +

+ [PV, 22)] . |P(V, 4,) - 07| =

< |P(V, 4) = P(V, 4,) P(V, 4,)| + &(2K + ¢).

=

For a given J,-fine partition

4= {ao, tl’ al’ ooy aj_l, t-’ =S, “j’ tj+1’ aj+1, ceny Op g, tk’ ak}
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we put
A = {ag, by oy ey Lo 0y}
A, =l 1y, 0; o te, o)
+ W s bj s Yjas ovo0 Yp—1o Tk Yk

and

w

4,

A={ =S li=s ) o dy
then 4,, 4, are evidently ,-fine partitions of [a, s]. [s, b] respectively and

P(V.4) = P(V. A.) V(s, [a;-1, 0;]) P(V. 4) .

P(V,4,) = V(s.[a;-1,s]) P(V. 4-),

P(V,4;) = P(V. A) V(s.[5. ]) -
Moreover

|[P(V. 4) = P(V. 42) P(V, 4,)| = [P(V, 4.) V(s, [2; -1, 04]) P(V. 4) —
= P(V.4.,) V(s. [s.0;]) V(s. [ -1, s P(V. 4)| =

= [|P(V, 44) [V(s. [oj- 1. ]) =

= Vs, [s.o]) V(s [o5- 1, sD] P(V. 42) | = K2

by (1.20) and (1.13) because we have o;_y, o; € [a, b] and s — d(s) < s — d,(s) <
<oy SsZa; <54 0,(s) <s+ 5o(s)
Using (1.23) we therefore obtain

[P(V.4) — 0707 | < K*( + &(2K + ).
Taking e.g. { = ¢/K?* and using the fact that

P(v.4) - 0] <
for every d,-fine partition 4 of [a; b] (see (1.21)) we obtain

lo— oo | o~ P+

+ |P(V,4) — Q"0 | <e+ e+ e2K + &) = &2 + 2K + ¢)
and consequently because ¢ > 0 can be choosen arbitrarily we get
(124) Q=0%Q .

Since Q € L(R") is invertible, we have by (1.24) Q'Q*Q~ = I and consequently
Q710" e L(R") is the inverseto @~ (Q~'Q" is the left inverse to @~ but we have
also Q7Q7'Q*Q™ = Q@ and consequently Q" Q7'Q* =1; ie. Q7'Q" is also
the right inverse to Q). Similarly it can be shown that Q* e L(R") is also invertible

with (@*)" ' =@ Q™"
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This yields by (1.22) that the Perron product integrals [ V(s,dr) = Q7,
[T2 V(1,df) = Q" exist and (1.24) is in fact the equality

(1.25)  [LBv(r,dr) =TI vie, dn) IT; v(t, dr)
from the statement.

The estimates |[[ 3 V(1. dt)]| < K, |( H V(t.dr))™!|| < K are simple consequences
of (1.20) and of (1.25).

1.8. Lemma. Assume that V:[a, b] x J —» L(R") satisfies the condition € and
the Perron product integral T]5 V(t,dt) = Q exists.
Let us define @: [a, b] — L{R") by the relations

(1.26)  @(a) =1, &(s)=][;V(t,di), se(a,b].

The function @ is well defined and its values are invertible elements of L(R"),
o(b) = Q

For a given ¢ > 0 let 6: [u, b] = (0, + ) be a gauge on [a, b] such that

(127)  [P(V, 4) = o) = [P(V; 4) - [ V(L d)| <

holds for every S-fine partition A of [a, b]. Assume that we have a < B, < &, <
SYEB=S6S1S . 2B S8 SV S b where

5, - 5(5;’) < ﬁj = éj Sv; = 5,‘ + 5(6;‘)* i=12..,m
Then
(1.28)  J(@Gm) ™" V(s [Bs Ym=1]) D(Ba) (2(7=1)) ™"

. V(E_,,,, [[jm— 1 ym—l]) q)(ﬁm—-l) (d)('))l))_ll .

V(& [Bir 1)) (B) — 1] = [(2(6)) 7] &

Proof. The function @: [a, b] - L(R") is well defined by Theorem 1.7 and the
same theorem yields also the invertibility of the values of this function. By Theorem
1.7 also the product integral [ ]2 V(t, df) exists over every interval [c, d] < [a, b].

Let us denote y, = a and f,,4+, = b.

Since the integral Hf,'j“ V(1, dt) exists for every j = 0, 1, ..., m we have by defini-
tion the following:

For every > 0 there is a gauge J;: [yj> Bj+1] = (0, + o0) such that 5,(t) < 6(t),
te[y;, Bj+1] and

(129)  |P(V, 4;) — [ V(L )] = |B(V, 4)) = (B;.1) (2() 7] <n

for every ¢ -fine partition 4; of [y}, f;+1],/ =0,1,2,...m
For &-fine partitions 4; of [y;, Bj+1],j = 0,1, ..., m let us set

4= AO ° (519 [BI’VI])°A1 °(£2’ [ﬂZ 'YZ])°A3°"' Am—1°(ém’ [ﬂm’ ’Ym])°Am .

4 evidently forms a d-fine partition of [a, b] and therefore (1.27) holds for this
partition. Hence
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(1.30)  [(@(b))™" P(V,4) — 1| = [(2(b)™" [P(V. 4) — #(b)]]| < [(2(b))~"] &.
Further we have evidently

P(V,4) = P(V, A) V(Ems [Bus T]) P(Vs A_1) ..

P(V’ Al) V(éla [ﬂl’ 71]) P(V’ AO)

and
(@(6)™" PV, 4) = (#(6)™" P(V, A1) Vi&us [Bas 7m]) -
o PV, Ay) V(Ey, [Bys 11]) P(V, 46) = (D(Bm+1))~" P(V, 4,,) D(vn) -
A(P(m)) ™" V(s [Brs 1)) P(Br) (P(Br)) ™" PV, A s) P(hm-1) -
AD(rm-1) 7" ... B(B2) (2(B2)™" P(V, 4y) @) (9(31)) ™" -

. V&1, [B1s v1]) (B,) (#(B1))™" P(V, 40) ¢(vo) -
Denoting
; (<I>(ﬂj‘+1))_' P(V,4)®(y;)) =A; +1, j=0,1,....,m

(@)~ V(& [Brv]) @B) =Z; +1, j=1,2,....m
we obtain
(@(b)™" P(V, 4) =
=(I+A)I+Z)I+Ap_y) + Zpeo)...(1 + A) (I + Z) (I + Ap)
and (1.30) can be rewritten in the form
(131) U+ A)T +Z)(I + Apey) ... (T + A) T+ Zy) (I + 4p) = I| <
< [(e®) "] =
By (1.29) we have
(1.32) |4 = [(@(B;+1) 7" P(V, 4;) #(y;) — 1| =
= |(2(B;+1)) " [PV, 4;) = (B;41) (@(3:)) ' T ()| < K?n

where K is the constant given by Theorem 1.7,j = 0,1, ..., m.
The estimate (1.32) easily gives the following:
for every 9 > 0 there is a # > 0 such that

[+ A (I + Z) (I + Apey) . (I + AL+ Z) (I + 4o) —
—(I+Z)I+2Z,y)...(1+ Zy)| < 9.

Hence by (1.31) we have
I+ Z)(I + Zpey)...(I + Zy) = I| £ _
SI+A)T+Z)(I + Apey) o (T + A) I+ Z) (I + 4o) —
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-(I+Z)T+2Z,_)...(1 + Z,)| +
I+ AT+ Z)T + Apey) - (T + Z)(I + Ao) = I <9 +
+ [(@(b)"] ¢
where 3 > 0 is arbitrary and therefore
1+ Z) (I + Zp-i) ... (T + Zy) = 1] < [(2(b))7"] &
and by the definition of Z;, j = 1,..., m we obtain (1.28).

1.9. Corollary. Assume that V:[a, b] x J — L(R") is Perron product integrable
over [a, b] and that the condition € is satisfied.

Then to every n > 0, t € [a, b] there exists a 6 > 0 such that
(1.33) (O V(L [B.v]) @(B) ~ 1] <1
and
(1.38) V{1, [B,7]) — @(v) (®(B) '] < K?n
provided B,yela,b], t —d < B <t =<t + 0, where &:[a,b] - L'R") is given
by (1.26) and K is the constant from Theorem 1.7.

Proof. Taking & = n|(@(b))"'[|"* > 0 we obtain (1.33) immediately irom
Lemma 1.8 when 6: [a, b] — (0, + o) is the gauge on [a, b] corresponding to this
choice of &.

Since we have

[V, [8,7]) — @) ((B)) '] =
= || @(y) [e(»)* V{1, [8,7]) 2(B) — 1T1((B)) '] <
< Je@)] - [(eB)'] - [(e@) ™" V(. [8. 7] B) — 1],

we obtain (1.34) from (1.33) and from the inequalities |®(1)| < K,
which hold by Theorem 1.7 for every t € [a, b].

(@)~ =K

1.10. Lemma. Assume that A, AkeL(R"), k=1,2,... are invertible such that
(1.35) lim4,=4.
k= o0

Then
(1.36) lim(4,) ' =4"".
k-0

Proof. By (1.35) there is a ko € N such that for k > k, we have |4 — A4,] <
< [l[A7*|7* and therefore

I = 4= = (4 - 4) 47 S |4 - 4] Ja~] <1
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Hence 4,4~ " has an inverse given by

(AAT) =T (1 = ALY = Y (A - A) A7) = Aa

=1

Conscquently

Ms

AT = AT (A= AY A Y = A7 4 A Y (A — A) AN

1=0

A=A =AY (4 - A)AY
=1

and
B N e DN A T T
BT VA N V]
=M
for k > k,.

Since |4 — A4,| = 0 for k > o0 we obtain from this estimate that
47— A7 >0 for k- o, ie. (1.36)holds.

1.11. Lemma. If V:[a, b] x J — L(R") satisfies the condition € and is Perron
product integrable over [a, b] then

(1.37) ,,lll,]i o(B) = (V_(1))"" @(1) for te(a,b]
and

(1.38)  lim&(y) = V(1) (1) for tel[a,b).

yot+
Proof. From Corollary 1.9 it follows immediately that
(1.39)  lim ||[(@(r))~* V(t,[B, t]) ®(B) — I| =0 for te(a,b]
Bot-
and
(1.40)  lLim ||(@(y))~" V(1. [t,7]) @(1) = I| =0 for te[a,b).
yrt+
By (1.4) from the condition % we also have
(1.41) lim |V(1,[B,1]) — V_(1)] =0 for te(a,b]
B-t—
and
(1.42)  lim |V(1,[1,7]) — Vi(1)| =0 for te[a,b)
yot+
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where V_(1), V,() € L(R") are invertible. Since by Theorem 1.7 we have ||#(1)| < K
[(@(1)~!]| £ K, we get for 1 € (a. b], B < t the inequality

l(e(B)~" — (@)~ V()] =

= (@(B)" — @) V(L TR ]) + (@() Ve [, D) - (@) V()] =
= = (@) V(e [8.07) BT (#(8) "+ (@(0) " VL. [B. )~ (o()) ' V()]
< KTt = (@) V{1, [B. i) ()] + V(0. [6. D) - V-]

This inequality together with (1.39) and (1.41) implies
lim (#(8) 1 = (0(0)"" V-(0)
Bt

and by Lemma 1.10 we obtain immediately (1.37).
Similarly for t € [a, b), y > t we have

[90) = Vi) 2] = @) — Vit [1.9]) @(1) +

+ V{1, [1,9]) o) = Vi () 2(1)] <

< o) [ = (@() ™" vie [t v]) 2(0]] +

+ |V [69]) = V(] o)) <

< K[ = (@)~ V(e [1.2D) 2] + V(5 [19]) = Ve(0)])]

and (1.40) with (1.42) imply (1.38).

. .
112. Lemma. Let Y, Y;. ... Y, e LIRY), ¥ |¥| < 1,X = (I + Y) (I + Yi_y) ...
k i=1
I+ Y)—-1,Z=X -3 Y, Then
i=1

x| 523 7

and
k
|21 = (X 7l
k
Proof. Put 4; = |Yi|, i =1,2,....k, A=Y 4, < L.
We have i=t
k
L+ )0+ Aog) (I + 24) =1 +_le,- + ,Z_%Jn +
J= J2>1J1
+ z }'13)'12}']1 + ces + lk)'k—l cee ).,1 é elkeik_l ces ell = Cl
J3>Jj2>jy
Hence
k
YA+ Y Ay o+ Aoy Ay St =1 <22
i=1 Jj2>j1
and
Z }'jll.il + Z )"j;s)'j‘ljl + e + ;‘k;'k—'l .o ).1 é el - 1 - A é A.Z
J2>j1 J3>j2> 1
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because 4 < 1. We have evidently

k
X=YY+ 3 VY, +...+ %Y.V
i=1 Jj2> 1
and
Z=Y Y, Y+ )Y YVYY, +.. .+ N .. Y.
Jj2>i1 J3>j2>j
Hence
k
x| = X 1Vl + X 190 150 + -+ %] Yl - | Y] =
Jj=1 J2>i1

k k
=Y+ Y A e+ Ao Ay <20 =2% |Y
j=1 i2>ji j=1
and sirhilarly also

HZ” = 'Z.Aizl.il +. Z )'.is'l.iz)'jl +ot Adoy Ay < 2=

J2> s J3>Jj2>ji
k
= (X 1%l
j=1

1.13. Theorem. Assume that V:[a,b] x J — L(R") satisfies the condition €
and that for every c € [a, b) the Perron product integral []; V(t, dt) exists.
Let the limit

(1.43) lim Vb, [, b]) [1¢ V(t,dt) = Q

exists, where Q € L(R") is invertible.
Then V is Perron product integrable over [a, b] and

(1.44)  [IV(r,d) = Q.

Proof. Let e€(0, 1) be given. Since the limit (1.43) exists, there is a B € [a, b)
such that for every ¢ € [B, b) we have

(145)  |vib, [e, b)) [Is Vit dr) — Q] <.

Let us have a sequence a = ¢5 < ¢; < ..., limc¢, = b. Since V is Perron product
p—

integrable over every [a, c,], p = 1, 2... , there exists a gauge 6,: [0, ¢,] = (0, + =),
p = 1,2, ... such that for every §,-fine partition 4 of [a, cp] we have

(1.46 P(V. 4) — TIe V(1, dt)| < ¢ , p=1,2,....
(1.46) |P(v. 4) - T1& V(1. dn)| 0T Va2 °

For every te[a,b) there is exactly one p(f)e N such that te[c,y,c,). For
t € [a, b) let us choose §°(f) > 0 such that §%(f) < §,.,, and [t — 8°(t), t + 8°(t)] n
n[a.b) = [a, 0]
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If ce[a, b) and 47 = {ao, 11,0y, ...y Gy, oy, @y} is a 8°fine partition of
[a, c], then if p(t;) = p, we have

[o- 0 o] = (t; = 8%(t), t; + 0%(1))) < [a, ¢;]
and also
(147)  [oy-nag] = (1 = 0,1, 15 + 8,(t) -
For the partition 4~ we have
P(V,47) = V(te=1, [tx=2> %—1]) V(tiz 25 [0-3> %% —-2]) -
V(s [0, 21]) = Apdpey ... 4y

where A;, j = 1,2,...,m is the ordered product of all factors V(ty, [0y, «,]),
I 1<k —1withte[e, . c,] ie.

Aj = V(’rj+sjv [a'j“‘sj"l’ ot"j"'sj]) V(t’i+sl~l’ [a’-’+sf"z’ a"'+s1_l])
o V(t [, s 2,])

and t,,t, ... tyys, €[, o] Withl < r; < r; +s; < k — 1. By the property
(1.47) of the partition 4~ we also have

[oc,-_l,oti] c (I, - 6pj(ti)’ I,' + 6Pj(’i)) N i = I‘j, "j + l, ooy Tj + SI‘.
Using (1.46) and Lemma 1.8 we obtain

([ Ter+ss Vit A1) ™" V(1 Loty ts)- 00 Oy ]) -

o Ve Lo, o 0, D) TLar V(t, de) = 1

= [|(TTers*ss V(t, de))™" A; [Tis (1, dt) — 1| <

_ ol et _ e
= ([T Vi ag) ] 20

foreveryj = 1,2,..., m. Hence

(L48) X ([T V(e )™ A4, [T V(ndt) — ] < 3 ==
j=1 j=12mt!
Denoting Y; = ([[su+ss V(t,dt)) ™ A; [[ors V(t,dt) — I, j = 1,2, ..., m we have by

(1.48) Y |Y;] <& <1 and for
=1

X=(I+ Y)(I+ Yoy) (T4 Y,) ~ 1 =
= ([Te vt dt)) ™ Apdpey ... A TL2 V(8 d1) — I =
= ([T V(t,d0)™ Apdp_y ... Ay — I = (TS V(t, i) L P(V, 47) — I
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we obtain by Lemma 1.12 the estimate

(149) x| =]

([1e V(e )™ RV, 47) - 1] < 2.8, ] < 2.

which does not depend on c € [a, b).
Define now a gauge 6 on [a, b] as follows. For ¢ € [a, b) put

0 < &(t) < min (b — ¢, 6%1))
and
0<d(b)<b—B.

If 4 = {ag, t;,04,..., 0%y, i, %} is an arbitrary S-fine partition of [a, b] then
by the choice of the gauge 6 we have necessarily #, = o, = b and o, _; € (B, b). We
have also 4 = 47 o (b, [0, b]) where

A7 = {olg, By, Ay, eeny Ogmry brmyy Og—g)
and P(V, 4) = V(b, [o4—,, b]) P(V, 47). Hence we have
(1.50)  [P(V,4) = Q] = [V(b, [%-1, b)) P(V, 47) — Q] =
= |[Vib, [y, b]) [T~ V(t, de) (T3~ V(t, de))™* PV, 47) — Q| =
= |[V(b, [ou-1. b]) [Tox* V(t, de) [(T T+~ (1t d0)) ™" P(V, 47) — 1] +
+ V(b [5pos B TE V(0 ) — 0] =
< [Iv(b, [ou-s, ] TTa Vin dr) = 2 + [ 2]
T v d)™" P(v, 47) = 1) +
+ [ V(b, [oe—s, B]) [T V(1. d1) - @] -
Since B < o,_; < b we have by (1.45)
[V(b, [ete—1, b)) [Te* V(1. d1) — 0O <&
and by (1.49) we get '
= Vi, i) BV, 47) - 1] < 2.
Hence (1.50) yields

IP(V,4) — Q| < (e + ||Q]).2e + & = &2 + 1 + 2| Q])

for an arbitrary é-fine partition 4 of [a, b], i.e. the Perron product integral [, V(1, dr)
exists and its value is Q by definition.
In a completely similar way also the following result can be proved.

1.14. Theorem. Assume that V:[a,b] x J — L(R") satisfies the condition %.
Assume further that for every c€(a, b] the Perron product integral []5 V(t, d1)

exists. Let the limit
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cl_:‘r‘rl [T v(t,dr) V(a, [a,c]) = Q

exists, where Q € L{R") is invertible.
Then V is Perron product integrable over [a, b] and

[Lv(,d)=0Q.

Remark. It is not difficult to check, that if V: [a, b] x J - L(IR") satisfies con-
dition € and if Vis Perron product integrable over [a, b], then for every d € (a, b]
we have

lim [TE V{1, dr) = (V_(d))~* TT¢ (1, d1)

c—d—

and similarly for d € [a, b]
lim [[2 vie, de) =TI V(r, dr) (Vo (d))~" .
c—>d+
If de(a,b) then
TTE Vi1, di) = lim [T V(t, dt) V,(d) V_(d) lim ]S V(t, d1).
c=>d+

c—>d—

In [2] the following was proved.

1.15. Lemma. Assume that L= 1 is such a constant that for every Z e L(R"),
Z = (Zl.m)l.m=1,...,n the i"equa”t)‘

L' max|Z,,| £ |Z| £ Lmax |Z,,|
I,m I,m

holds. Let 0 < 8 < }L™%, Z,, Z,, ..., Z,€ L'R") and assume that for every p-tuple
{vsdareewdp) 41,2001}y Jy <Ja < ... < j, the inequality
15y Ju+z,)d+2z;,.)..I+2Z;)-1I|£9
holds. Then
059 Szl sm.

where M = 4n®I2.

The following result is a consequence of Lemma 1.15 and Lemma 1.8.

1.16. Theorem. Assume that V:[a, b] x J —» L/R") satisfies the condition €
and that the Perron product integral [, Vit,dt) = Q exists. Let &: [a, b] - L(R")
be given by (1.26).

Let e (0, sL™'||(®(b))""||~"), where L is the constant from Lemma 1.15 and let
5: [a, b] - (0, + ) be such a gauge on [a, b] that

[P(V.4) - o(b)] <&
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for every d-fine partition A of [a, b].

If
aéﬂ;§£l§71§ﬁ2éézé?2§ éﬂmzémé}’méb’
where
61_6(51)<ﬁ1§. éjéyj< €J+6(€J)’ j= 1’23---7 m,
then .

(1.53) J_gl”(‘p()’f))_l V(&5 (B vi]) 2(8) — 1] = M|(@(b)™"| ¢
where M is the constant from Lemma 1.15 and
(1.54) ',2 V(& By v;]) = TTx Ve, do)]| < K2M||(@(b)) ™" &,

where K is the constant given in Theorem 1.7.
The proof follows exactly the lines of the proof of an analogous statement given

in [2, Theorem 2.4].
Let us set

Zy= (@) V& BuvD)oB) =1, j=1,...m.
Since all the the assumptions of Lemma 1.8 are satisfied, we obtain by (1.28) the
inequalities

”(1 + ij) (1 + ij-l) (I + ZJ':) - I" = "((p(b))—l" &
for every p-tuple {jy,....Jj,} = {l,2,...,m}, j; <j, <...<j, and by the choice
of &€ > 0 we also have [[(¢(b))™"| & < (1/a) L™!. Hence Lemma 1.15 yields
(155) X 2] = M|(e(6)7*] =
=
and (1.53) is satisfied.
Since [ [ V(t,dt) = &(y;) (®(B;))~",j = 1, ..., m and therefore also
V& B vi]) = T v(e, dr) =
= ®(y;) [(2(r;)) ™" V(& [Bvi]) @(B)) — I (#(B;)™" =
= &(y;) Z,(®(B;)~"
forj=1,...,m, we obtaljn by Theorem 1.7 the estimate
V(& 1B vi]) — TT Ve dg| = K*|Z,], j=1,....m
which together with (1.55) implies (1.54).

1.17. Remark. Lemma 1.15 and also its proof given in [2] is strictly based on the
structure of matrices which represent the operators from L(R"). It is easy to observe
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that all the statements given before Lemma 1.15 do not use the structure of R" and
L/R") and that in all of them we can replace L(R") by L(X), where X is an arbitrary
Banach space and L(X) is the Banach space of all bounded linear operators on X

equipped with the corresponding operator norm.

In this connection it is natural to ask whether an analog of Lemma 1.15 holds
also for infinitedimensional Banach spaces. The following example shows that the

answer to this question is negative.

Example (J. Kurzweil). Let X = ¢, where ¢, is the Banach space of all bounded

real sequences x = («,);%, such that lim o, = 0 with the norm

n—o

Ix[| = sup {|e;f; jeN}, xeX.

For every i € N define the operator E;: X — X as follows:

Ex = y= (B)or, where x=()fy and =0, jeN,

j * 2i—1 ’ ﬁl;-x = %,

The operator E; shifts the element o,; of the sequence x to the 2i-1-th position and

sets all the other elements of the resulting sequence to zero.
It is evident E;, i = 1,2, ... are linear operators and that

(1.56) [lE,” = sup |[E;x|| = sup |B;] = sup |ozs| = 1
Ix|<1 Ix]|s1 Ixlls1

forevery i = 1,2,..., i.e. E;e L(X).
Further it is easy to see that

(1.57) EE; =0 forall i,jeN.
Assume that n > 0 is given and define

Z,=nE;, ieN,

Let jy,ja,....J, € N be an arbitrary p-tuple such that j; < j, < ... < j,. Then by

(1.57) we have

14 P
I+Z,)I+2Z;,)...(0+Z;))=1+32Z;, =1+n)E,
k=1 k=1
and
) 4
158y (I+ZzZ)I+2Z,.,)...(0I+Z;,)-1= nk;Ejk.

Since by the definition of E;, i € N we have for x = (o;))7%, € X

p P
(Y Ep)x =Y Epx =y =(B)f
k=1 k=1
where f; = 0 for j # 2;, -1, k=1,...,pand
Baju-1 =05, k=12,..,p
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we obtain

p p
| X Epll = sup | ¥ Ejx| = sup || = sup |e;,| = 1
k=1 k=1 j k

Ixll=t k=

and therefore by (1.58) we have
P
(1'59) ”(l + Zl'p) (1 + Zip-x) (l + Z.ix) - I” = r’llkglEik“ =n.

If we take an arbitrarily large M > 0 and if re N is such that r > 2(M + 1),
than we can take r operators of the form Z; = nE; (e.g. Zy, Z,, ..., Z,) and by (1.59)
we have

”(1 + Z.ip) (I + Z.ip-l) (I + Z.il) - 1” =n

for every p-tuple jy,...,j,€{1,2,...,r}, j; <j, <... <}j, and (1.56) yields
(160) 3 |Z,] = XalE;ll = rn > 2M + 1)n.
i= i=

Taking now e.g. n = 9/2 then the assumption (1.51) of Lemma 1.15 is satisfied but
we have by (1.60) the inequality

Y lz] > 20 + 1) > M3
ji=1

and this inequality shows that Lemma 1.15 cannot hold for infinite-dimensional
spaces, because M can be choosen arbitrarily large.

2. THE CONDITION ¢* AND GENERALIZED LINEAR
DIFFERENTIAL EQUATIONS

Let us introduce the following condition for functions V:[a, b] x J - L(R").

Condition €™ .

There exists a nondecreas}ng function g: [a, b] > R such that for every t € [a, b]
there is a ¢ = o(t) > 0 such that

@) LD 11 = 90) - 9(x)
forallx,ye[a,b],t—o<xZtSy<t+o.

2.1. Remark. It is easy to see that if V: [a, b] x J — L(R") satisfies the condition
%* with a continuous nondecreasing function g: [a, b] - R then V satisfies (1.5),
i.e. the condition given by Jarnik and Kurzweil in [2] is fulfilled.

The following type of a function ¥ motivates the introduction of the condition €*.
Let A: [a, b] - L(R") be given such that 4 € BV([a, b]; L(R")). Put

(2.2) Vi(t, [x, y]) =T + A(y) — A(x)

390



for x,ye[a,b], x <t < y.
If in addition M: [a, b] > L(R") is bounded, i.e. [M(t)| < Lfor t € [a, b], then
put

@3 VD] =1+ M) [AD) - AX)]

for x,ye[a,b], x<t<y.
We have

Vit [, D) = 1] = |A0) - 4K)] < vari 4 — varg 4

and therefore V; evidently satisfies the condition ¢* with g(s) = varj 4, s € [a, b].
Similarly

VY [ 0]) = T = M) (40) - AR = L]AG) - AX)] <
< L(var) A — var; A)

and VY satisfies the condition ¢* with g(s) = Lvar} A, se [a, b].
If V:[a, b] x J = L(R") is such that

(2.4) V(t, [x,y]) = V(t,[x, t]) + V(t, [t y]) — I
fora < x<t<y<b then
@25)  V(t[xy]) = Ve [y VR [xi) = (Vs [6y]) - D (VG [x, 1) - )
because evidently :
(V. [Ly]) - DV [x 6] - 1) =
=V, [6LyD) V(L [x ) — v, [x,1]) - V(L [Ly]) + 1.

It is easy to see that Vy, VY’ given in (2.2), (2.3) respectively, satisfy (2.4).
If V:[a,b] x J - L(R") satisfies the condition ¥* and (2.4) then by (2.1) and
(2.5) we have

V6 B ]) = VG Tt 50) VG 5 D) S
< V(e [6yD) = 1) - Ve, [ D) = I = (9(y) — 9(1)) (1) — 9(x)) -
If in this situation for any t € [a, b] either l_i,m g(») = g(t+) = g(t) or 11m_ g(x) =

= g(t—) = g(?) then it is not difficult to check that V satisfies (1.3) from the con-
dition €.

For V, given in (2.2) we have

Ve, [x, ¥]) = V(e [, ¥]) Vile [x. D)) =
= [(4(y) = A(9) (4(t) - A(x)] -

Since A4 € BV([a, b]; L(R")) the limits lim A(x) = A(t—) and lim A(y) = A(t+)
. X—t— y=t+
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exist. Denote A*A(f) = A(t+) — A(f) and A~A(f) = A(t) — A(t—). Hence V,
satisfies (1.3) from the condition € if and only if A*A(t) A"A(t) = 0, t e [a, b].
Similarly for V! given by (2.3) we get
[V [x y]) = Vi [ y]) Vi [, D)) =
= [M(5) (4(y) — A1) - (4() — A(x)) M()]
and again the condition A*A(t) A"A(t) = 0, te[a, b] is necessary and sufficient
for VY to satisfy (1.3) from the condition € because M is bounded.

It is easy to see that V;, V{! given above satisfy also (1.2) from condition .
Since lim Vy(t, [, y]) = I + A* A(t), t e [a, b) and llm Vi(t, [x, t]) =T + A A1),

14
te(a, by] we obtain that V; satisfies (1.4) from the condltlon % if and only if I +
+ A% A(1), te[a, b) and I + A™A(t), te(a, b] are invertible.

Similarly VY satisfies (1.4) if and only if I + M(t)A*A(t), te[a, b) and I +
+ M(t) A A(1), t € (a, b] are invertible.

2.2. Lemma. Assume that V:[a, b] x J — L(R") is Perron product integrable
over [a, b] and that the conditions € and €* are satisfied.
Then for the function ®: [a, b] » L(R") given by

(2.6) P(a) =1, o(s)=T[[V(tdr), se(a,b]
we have ® € BV([a, b]; L(R")), @' € BV([a, b]; L(R")).
Proof. Assume that x, y € [a, b], x < y. Then if t € [x, y], we have

50) - 0(x) = (0(3) (0(=)" = 1) (x) = ([ V(1) = 1) () =
= (TT2 V(6 ) — V{0, [ 5]) #(3) + (V0. [ 5]) — 1) 9().

By Theorem 1.7 and by the condition €* we therefore have

1) 1o0) - @] S KLITEV6d0) - V(. [ D] + o0) - 3]
provided t—go(f)j<x=<1=<y< t+ o(t) .

Assume further that ¢ > 0 is given and that 6: [a, b] — (0, + ) is such a gauge
on [a, b] that

|(v, 4) — o(b)] <&

holds for every &-fine partition 4 on [a, b] and that 6(t) < ¢(¢) for ¢ € [a, b], where
o(f) > 0 is given in condition €*.
Let now a =55 < §; < ... <S5, = b be given and let

) J— P 4P 14 4 p
47 = {af, 15, of, ..., 1} , of }

be an arbitrary d-fine partition of [s;,_l, sp), p = 1,..., m. Then by (2.7) we have
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[o(s) = #(ep-a)] < X o(a) = 0(e-)] <
< K3 (ITL, V(680 = V0 [ )]+ o(e) - 0(65-1) =

= KZ [T V(e dt) = V(e [ef- s 25D + K(9(s,) = g(sp-1))

for every p = 1, 2, ..., m and henceforth
(2.8) Z |#(s,) = @(s,-1)] =
< KZ Z "H,,,j V(1 dr) — ve(e, [of - ,,a”])" + K(g(b) — g(a)) .
p=1j=1

Using Theorem 1.16 we obtain the estimate

E ¥ I, Ve a) = v T )] s Kl(e) ™

because ev1dently A4 =A4"54%c...04™ is a d-fine partition of [a, b]. Therefore
by (2.8) we have

3, 19(5) = #(5,-0)] = KM|(@(E) " ¢ + K(o(e) ~ o(e)

for an arbitrary choice of points a = s, < 5y < ... < s, = b and consequently
also

(2.9) var, @ < K3M|(@(b)) ™| & + K(g(b) — g(a)) < o,
i.e. ® € BY([a, b]; L(R").
It can be observed easily that (2.9) yields the inequality
var, @ < K(g(b) — g(a))

because ¢ > 0 in (2.9) can be taken arbitrarily small.
Since (®(s))™* = ((b))~' T2 V(t, di), the boundedness of varb @~ ! can be shown
similarly.

2.3. Lemma. Suppose the assumptions of Lemma 2.2 are satisfied. Then for
every te [a, b] the Perron-Stieltjes integral

(2.10)  fad[@(n)] (#(r)~! = A1) € L(R")
exists. For A given by (2.10) we have A e BV([a, b]; L(R") and [I — A~A(1)] 77,
te(a,b], [I + A*A(1)]™", te[a, b) exist.

Proof. By Lemma 2.2 @ and & ™! are of bounded variation. Therefore the Perron-
Stieltjes integral in (2.10) exists (see e.g. [4] or [3]). 4 e BV([a, b]; L(R")) follows
from the fact that @ e BV([a, b]; L(R")).
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For every 6 > 0 we have

At) = At - 8) = fi-s d[o(r)] (2(r)~"

and therefore
A™A() = lim Ji_, d[0(n] (0™(7) = lim (#(9) — 0(1-)) (#(0)* =

= (2(t) = 2(1=)) (#(1)) ™" =1 — &(t=) (2()™"
(see again [4] for the calculation of this limit). By (1.37) in Lemma 1.11 we have
B(1—) = (V_(1))"* (1), i.e.

= a3 = o(1-) () = (V-(0)"* @) (@)™ = (V.(0)"*

for t € (a, b], where V_(1) is invertible by (1.4) from condition €.
In a completely analogous way we obtain also

I+ AYA() = V(1)
for t € [a, b), where V(1) is invertible by (1.4).

2.4. Theorem. Suppose the assumptions of Lemma 2.2 are satisfied. Then the
relation

(2.11)  &(s) = ®(a) + [d[A(1)] &(1), se[a,b]
holds, where ®: [a, b] > L(R") is given by (2.6) and A:[a, b] » L(R") is defined
by (2.10).

Proof. Using the substitution theorem for Perron-Stieltjes integrals (see e.g.
[3, 1.4.25]) we have by the definition of 4

Jad[A(1)] o(r) = 2 d[z d[@(r)] (2(r) '] #(1) =
= [ad[8(r) (2(r))™" &(r) = [2d[#(r)] = &(s) — &(a)

for every s € [a, b], i.e. (2.11) holds.
In [3] a theory of generalized linear differential equations of the form

(2.12)  dx =d[A]x + dg
was developed in the case when A: [a, b] » L(R"), A € BV([a, b]; L(R")), g: [a, b] —
- R", g e BV([a, b]; R").

A function x: [, 8] - R", is said to be a solution of (2.12) on the interval [, 8] =
< [a, b] if for every 1,'t, € [a, B] the equality
(2.13)  x(2) = x(to) + [i, d[A(r)] x(r) + g(r) — g(t0)

is satisfied, where the integral in this relation is taken in the Perron-Stieltjes sense
(see also [4] for this matter). ,
The following results are known for equations of the form (2.12).
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2.5. Theorem. 1. If A € BV([a, b]; L(R")) then the initial value problem
(2.14)  dx =d[4]x +dg, x(tg) =%eR", t,€[a,b]

has a unique solution x: [a, b] » R" on [a, b] for any choice of g € BV([a, b]; R"),
to€[a,b]. XeR" if and only if I + A*A(t)e L(R") is invertible for every te
€[a,b), I — A" A(1) e L(R") is invertible for every te(a, b]. (See Theorem III.1.4

in [3].)

Assume that A € BV([a, b]; L(R")) satisfies
2.1 I+ A(t)|™" exists for every te|a,b),
5) A* A1) [ b
[I — A"A(1)]™" exists for every te(a,b].

IL. There exists a uniquely determined ¥: [a, b] » L(R") called the fundamental
matrix of (2.12) such that

(2.16)  P(1) =1+ [;d[A(r)] ¥(r), te[a,b].

¥(1) € L(R") is invertible for every te[a,b], there exists a constant M > 0
such that

217y Y@ (¥(s) | =M, s,tela,b].

(See 111.2.2 and 1I1.2.3 in [3].)
1. The unique solution x(1): [a, b] —» L(R") of (2.14) is given by the variation
of constants formula

x(1) = Y1) (P(te)) ™" X + g(t) — g(to) -
= Jio d[2(1) ¥ (9)] (9(s) — 9(t0) =
g(1) + (1) (P(1))™" (% — g(to)) -
¥(1) 1, [P~ (s)] 9(s), te[a,b].
(See 111.2.13 in [3])

Using the concept of the generalized linear differential equation (2.12) we can
reformulate the results of Theorem 2.4 and Lemma 2.3 as follows.

|

2.6. Theorem. If V: [a, b] x J — L(R") is Perron product integrable over [a, b]
and if it satisfies the conditions € and €%, then there exists a A € BV([a, b]; L(R"))
which satisfies (2.15) with A = A such that the function ®:[a, b] - L(R") given
in (2.6) is the fundamental matrix of the generalized linear differential equation
(2.12) with A = 4.

Theorem 2.6 naturally suggests the following problem.

Given A e BV([a, b]; L(R") such that (2.15) holds. Construct a function
V:[a, b] x J - L(R") which is Perron product integrable over [a, b], for which
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the conditions ¥ and €* are fulfilled such that for the function ®: [a, b] —» L(R")
given by (2.6) the equality

o(s) = I + [3d[A(r)] &(r), se[a,b]
holds. .
Since by I. from Theorem 2.5 the solution of (2.16) is unique, we are in fact asking
for a Perron product integral representation of the fundamental matrix ¥ of the
equation (2.12).
The problem has a positive answer in the case when A: [a, b] » L(R") is such
that
(2.18)  AeBV([a, b]; L(R"), A(t—) = A(t) for every te(a, b],
[I + A*A(1)]™" exists for every te[a,b).
For A satisfying (2.18) define

(219) Vit [x,y]) =1+ A(y) — A(x), x,yela,b].

x £
Using the facts listed in Remark 2.1 it is easy to see that V;:[a, b] x J - L(R")
satisfies the conditions € and €*.

t<y.

2.7. Lemma. Assume that A satisfies (2.18). If ¥:[a, b] - L(R") is the funda-
mental matrix of (2.12) (see II. in Theorem 2.5), then for every 9 > 0 there is
a gauge 6 on [a, b] such that

k
(2.20) 21“ Vilty, [ 1, 0,]) = () (P(o-0) 1] < 8
i=
for every é-fine partition A = {ag, ty, &y, ..., %y, b 04} of [a, b].

Proof. Let ¢ > 0 be given. Since A is continuous from the left, for every t € [a, b]
there is a 8,(f) > 0 such that

(221) varjAd<e

for xe[a,b], t — 6,(t) < x = 1.

Since the integral [3d[A(r)] ¥(r) = I — ¥(b) exists, by the Saks-Henstock lemma
(see e.g. [4]) there is a gauge 6 on [a, b], 6(t) < &,(¢), 1 € [a, b] such that for every
d-fine partition 4 of [a, b] we have

k
(222) ¥ |(Alx) — Alx-1)) ¥(1;) = J25.. A[AOT YO <.
ji= .
For any é-fine partition 4 (2.21) implies
(223) varg A<e, j=1,2,..,k.

Moreover we have
(2.24) ‘P(aj) ('I’(ocj_l))" =1+ _[:jﬂ d[A(r)] ¥(r) (P(e;-y))™t, j=1,2,..,k
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and forevery j = 1,2, ..., k we have
(225) Wity Jay-vo o) — (o) (P(oy-0)) ! =
=TI+ A(w;) — A(e;—y) = I = J32_, d[A(r)] ¥(r) (Poy-1) " =
= (A(j) — Al ) (I = P(1;) (P(2-1) ") +
+ [(A(oy) = A1) Y(1;) = i, d[A(r)] () (Pa-0)) "
Using (2.23) and (2.17) we have
12(e) (Plogo )™ = 1] = [|fa-, d[A()] 2(r) (Play-0) 7' <
< vary  AM <M.

Hence using (2.22) and (2.17) we get by (2.25)
2t -2 ) = (o) (P '] < 5 AG) = Aoy )] oM +
+ 3 (4l0) — AGs,-1) ) -
= L AT PO (- )) | =
< eMvarh A + eM = ¢M(1 + varh A) .

Takinge = 9/[(M + 1)(1 + var} A)] foran arbitrary 3 > 0 we obtain immediately
(2.20). ‘
Theorem 2.7 in [2] states the following

2.8. Theorem. Assume that W: [a, b] — L(R") is such that

WO} = M

where M > 0 is a constant. Let V: [a, b] x J — L(R") be such that for every § > 0
there exists a gauge & on [a, b] such that

1Y) = ) O4(o-) '] < 8

provided A is a d-fine partition of [a, b].
Then the Perron product integral [ [} V(t, dt) exists and is equal to W(b) (W(a))™ .
Using this result and Lemma 2.7 we obtain the following.

max {|W(1)

’

2.9. Theorem. Assume that A satisfies (2.18). Then the function Vi:[a, b] x
x J - L(R") given by (2.19) is Perron product integrable over [a, b] and for
every s € [a, b] we have

w(s) = [T Vi(, dr)

where ¥: [a, b] > L(R") is the fundamental matrix of (2.12).
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Let us now replace (2.18) by the following assumption
(2.26) AeBV([a,b]; L(R"), A is continuous at every point te[a,b].
For A: [a, b] - L(R") satisfying (2.26) let us define

227)  V(t,[x ¥]) = exp (A(y) — A(x)) =§0 (A(y) ;! A(X)*

2.10. Lemma. If A:[a, b] - L(R") satisfies (2.26) then to every n >0 there
exists a gauge 6 on [a, b] such that

(2.28) él“ Vit [aj-1, ¢7]) = Valty, [oj- o5])] <

for every d-fine partition A = {ag, ty, qy, ..., Oy, b, 2}} of [a, b), where V,, V;
is given by (2.19), (2.27) respectively.

Proof. Since A is assumed to be continuous in [a, b], for every ee(0, 1) and
1€ [a, b] there is a §(f) > 0 such that

(229)  [A(y) — Ax)| <&

for every x,ye[a,b], t — §(t) < x <t < y <t + §(t). For such x, y € [a, b] we
have

Vot [x, v]) = Vi(t, [x, ¥]) = exp (A(y) — A(x)) — I = (A(y) — A(x)) =
_ Z (4(y) = A(x))*

k=2 k!
and also

e T 3]) = v o)) < 3 1A= AL
Denoting ||4(y) — A(x)| = A we have A < & < | and this yields
30) Mo D) ~ v LT oD < 3, 2 =

et — 1 =2 <2 = |A(y) - AX)|? = ¢|A(y) — AX)|

by (2.29) for x,yefa,b], t = 8(t) <x St <y <t+ ().
Given n > 0; let us choose

ee(0,mind1, — T
var’ 4 + 1

and let 6(t) > 0, 1 € [a, b] be such that (2.29) holds for this choice of £ > 0. In this
case (2.30) has the form

(231) Vit [ 3] = Valo, [ D)) = i [40) = A
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forx,yela,b];t —8() <x <t <y <t+ )
Let now 4 = {ag, 13, &, ..., %y, t, %} be an arbitrary 5-fine partition of [a, b].
Then we have by (2.31)

(s, [“i-l’ o)) = Vaty, [wj-1, 0 ])]| =
s | + var "A “ (“1) A(“j—x)"

and consequently
k
Z ”V(’j’ [2i-1, 0]) = Valty. [0, 0 ])] =
1=

nvar® A
< A f — .
T 1 + var® A,g ” (%)) = )“ T 1 +vart 4 1

IIA

In [2] the following definition is given.

The functions V;, V,: [a, b] x J — L(R") are called equivalent if for every n > 0
there is a gauge 0 on [a, b] such that (2.28) holds for every &-fine partition 4
of [a, b].

In the sense of this definition the functions Vi, V, from (2.19) and (2.27) are
equivalent by the Lemma 2.9.

The following analog of Theorem 2.9 in [2] is true

2.11. Theorem Let the function V:[a, b] x J — L(R") is Perron product in-
tegrable over [a, b] and let the condition € be satisfied. If V,: [a, b] x J - L(R")
is equivalent to V, then the Perron product integral [T, V(t, dt) exists and

[T Va(t, dt) = T8 v(t, dr).

Proof. By (1 .54) from Theorem 1.16 and by the equivalence of ¥, and V we obtain
that for every n > 0 there is a gauge 6 on [a, b] such that for every é-fine partition 4
of [a, b] we have

3170 [o-10 ) — T, V(000 =
=jk;“ V(s [ 1 o)) — @) (P(a-0)) 7! < m

and
k
_Z‘ Va5, 2= 10 2,]) = V(5 [j-0s D) < 7,
=

where ®(s) = []5 V(1,d1), se[a, b].
Therefore

,-; IValty, [ 10 2;]) = D(e) ((2- 1) "] < 2n
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and Theorem 2.8 yields the existence of [[) Vy(t, df) as well as the equality

[ L2 Vot di) = o(b) (#(a)™" = [T2 V(1, dv).

2.12. Theorem. If A:[a, b] - L(R") satisfies (2.26) then the functions Vy, Vy:
:[a, b] x J —» L(R") given by (2.19), (2.27) respectively are both Perron product
integrable and

[ Vi, dr) = TTa va(t, dt)
for every se[a,b].
Proof. The result follows immediately from the fact that V, is Perron product
integrable over [a, b] by Theorem 2.9, because if (2.26) is satisfied, then (2.18) holds

too. V; and V, are equivalent by Lemma 2.10 and therefore by Theorem 2.11 also V),
is Perron product integrable and both integrals have the same value.

2.13. Remark. Theorem 2.12 gives another representation of the fundamental
matrix of the equation (2.12), i.e. we have also

P(s) =[5 Va(t,dt), se[a, b]

for the fundamental matrix ¥ of (2.12), when A satisfies (2.26) (c.f. Theorem 2.9).

Let us now consider the general case of A: [a, b] —» L(R"), i.e. the case described
in Theorem 2.5, which assures the existence of a unique fundamental matrix of the
system (2.12)

Assume that A: [a, b] —» L(R") satisfies

(2.32) AeBV(a, b]; L'RY),
[J + A*A(t)]™" exists for every te[a,b),
[1 — A"A(1)]™" exists for every te(a,b].
For x,y,t€[a, b], x <t < y define
(233) W [x,»]) =1+ A) — AW][I + A(x) — a(N]*.

If A satisfies (2.32) then we have [|A~A(t)| < 4 except a finite set of points ty, t5,...
..., t;€(a, b]. We have then for t # t,, ..., 1

[1—aA@n]™" = 3 (a7 A@)*

k=0
and also

I - A1 < 3 JA" A < 2.

400



Taking K = max {2; |[[T — A~A(1,)]7*], ..., |[I — A~A4(t)] "} we have
[[7 — A=A()]"'| £ K forevery te(a,b]

and similarly it can be shown also that
(1 + A*A()]~"| < K* forevery te[a, b)b

where K* is a constant.
Since the onesided limits of A4 exist in [a, b] we can easily state that there is a con-
stant L > 0 such that for every t € [a, b] there is a §,(t) > O such that

U+ Ax) — A@0)]7" [+ A(y) — A(N)]" exist
and

(234) U1+ A(x) - A0 = L, U+ AQ) - A7 = L

provided x,ye[a,b], t — §,(t) < x St <y <t + §,(1).
For W: [a, b] x J — L(R") the following hold:

w(t, [t t]) =1, tela,b],
Wit [ 1) = [+ AG) = AT, WG [15]) = 1 + AG) — AQ)
and consequently
Wit [ 1) = W, [t 0] Wi [x ),
provided x, ye[a,b], t — 8,(f) < x <t < y < t + 8,(1); finally we have
lir'n+ w(t [t y]) = lirt]l] + A(y) — A() =1+ A*A(t), te[a,b)

and

lim W(t, [x,1]) = lim_[l + A(x) — A()])"' =1 - A" A1), te(a, b]

xt—

by Lemma 1.10. Hence we have verified that W givenin (2.33)satisfies the condition %-
Moreover we have by (2.34)

1w, [, y]) = 1] = |l + AQ) = AW][1 + A(x) = A@O] " — 1] =
= [[1 + A(y) — A(t) = (I + A(x) = AW)][1 + A(x) = A()] 7] <
< |A(y) — A(x)|| L < L(var} A — var} A)
provided x,ye[a,b], t — 6,(t) <x =t =<y <t+ &,(r) and therefore we can
see that W from (2.33) satisfies also the condition ¢* with the nondecreasing function
g: [a, b] - R defined by g(s) = Lvarj 4, s€ [a, b].
Let now ¥: [a, b — L(R") be the fundamental matrix of (2.12), see Theorem 2.5.

‘Since the Pérron-Stieltjes integral {5 d[A(r)] ¥(r) exists, the Saks-Henstock lemma
for sum integrals (see e.g. [4]) yields the following:
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(2.35)  For every ¢ > 0 there is a gauge d, on [a, b], 6,(t) £ &,(1), t € [a, b] such

that if

a S SLHENERSLERS S SéaSm S b,
C,—52(fj)<ﬁj§éjé?j<fj+52(fj)a j=1..,m

then

Z ”( 71) J)) YI(g - j d[A(r)] 'I’(r)" <ée.

2.14. Lemma. Assume that A:[a, b] » L(R") satisfies (2.32). Let ¥:[a, b] -
— L(R") be the fundamental matrix of (2.12) (see II. in Theorem 2.5).
Then for every 3 > 0 there is a gauge 6 on [a, b] such that

k
(2.36) ,Zl Wy, [o- 1, 0]) — ¥(oy) (¥(ay-1)) 7] < 8
=
for every d-fine partition 4 = {ay, t. 0y, ..., %1, i, o) of [a, b].

Proof. Let ¢ > 0 be arbitrary and let 5 be a gauge on [a, b] such that §(r) < 6,(¢).
t € [a, b], where &, is given in (2.35). If 4 is a d-fine partition of [a, b], then
W(t;, [ 1, ¢;]) is well defined (see (2.34)) for j = 1,2, ..., k and we have by defini-
tion and by (2.34), (2.17)

Wt [o- 15 i) = (o) (Pay-0)) ™' =

= |1 + Aley) — A(t)] - [1 + Aley—y) — A( )] =

= () (P(ey-0)) 7| =

= [ + A(x) = A1) = (o) (P(1) 1T [T + Ale;-0) — A +
+ W(oy) (() (1 + Alej- o) — AT = 2(1) (P(oy-4)7T) =
< LI+ A) = A1) — ¥(ey) ()7 +

+ M|[I + Aley—y) — A@)] ] - L% (oy-0) (2() 7 -

= [+ A(oy-y) = AT (1) (P(oy- )7 =

< L|[¥(1) + (Aley) — A1) #(1;) — 2(a)] (¥(1) 7] +

+ ML|[¥(o;-1) = ¥(t;) — (A(oy-1) — A(t) ¥(1;)] (¥(1,)) ™" ¥(1)) -
A(P(o-1)) 7 = LM|(Aley) = Ae) () = T3 d[A()] P(0)] +

+ LM?|(A(t)) — A(x;-4)) ®(t;) — 2, dLA()] ¥(r)]

forevery j=1,2,...,k.
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Using (2.35) and the fact, that 4 is a §-fine partition, we obtain from the estimate
given above the following

2 W0 [0 m]) = ) (P-) '] =
= LM élll(A(af) — A1) (1) — [ d[A()] ¥ ()] +

+ Lszél I(A(t)) — A(o;-,)) ¥(t)) -

— [ d[A(r)] P(r)| < eLM(M + 1).

Xj—1

Taking now 0 <& < 3/(LM(M + 1) + 1) for an arbitrary 3 > 0 we obtain
(2.36) ior d-fine partitions 4 which correspond to this choice of ¢ > 0 by (2.35).

By the result given in Lemma 2.14 and by Theorem 2.8 we immediately obtain
the following theorem.

2.15. Theorem. Assume that A: [a, b] - L/R") satisfies (2.32). Then the function
W:[a, b] x J - L(R") given by (2.33) is Perron-product integrable over [a, b]
and for every s€[a, b] we have

(2.37)  ¥(s) = [T w(t, dr)

where ¥: [a, b » L/R") is the uniquely determined fundamental matrix of (2.12),
which satisfies the equation

Y(s) =1+ [5d[A(r)] ¥(r), se[a,b].

Remark. Taking into acccunt the results in Theorem 2.6 and in Theorem 2.15
we can sce that there is a one-to-cne correspondence between the ,,indefinite” Perron
product integral []; V(¢, dr) of a function V: [a, b] x J — L(R") which fullfils the
conditions € and ¢* and the fundamental matrices of generalized linear differen-
tial equations (2.12) with 4: [a, b] - L/R") satisfying (2.32).
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Souhrn

PERRONUV SOUCINOVY INTEGRAL A ZOBECNENE LINEARNI
DIFERENCIALNI ROVNICE

STEFAN SCHWABIK, Praha

VySetfuje se pojem Perronova soufinového integralu, ktery zavedli J. Jarnik a J. Kurzweil.
Je rozSitena trida perronovsky soudinové integrovatelnych funkci definovanych pro body a inter-
valy a ukazuje se, Ze tato tfida je vhodna pro reprezentaci fundamentalni matice zobecnénych
linearnich diferencialnich rovnic.
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