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A GENERALIZATION OF THE LIONS-TEMAM COMPACT
IMBEDDING THEOREM

TomAS RouBiCek, Praha

(Received August 29, 1988)

Summary. The well-known theorem by J. L. Lions and R. Temam con‘cerning the compact
imbedding of the space {ve LP(0, T; By); dv/dte LU0, T; B,)} into LP(0, T; B) is generalized
to the case when B, is a reflexive Banach space imbedded compactly into a normed linear space B
that is continuously imbedded into a Hausdorff locally convex space By, and 1 < p< 47,
1= ¢g< +=~. Applications of such generalization to numerical analysis are outlined.
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In [1; Chap. I, Thm. 5.1] and [2; Chap. III, Thm. 2.1] J. L. Lions and R. Temam
posed the broadly applicable theorem concerning the compact imbedding of the space

(1) WP40, T; By, B,) = {u e I7(0, T; By) ; ?e (0, T; Bl)}
t

into the space I2(0, T; B), where By, = B < B, are three Banach spaces, B,, B, are
reflexive, the imbedding B, = Bis compact and B < B, is continuous, 1 < p < + o0,
1 < g < 400, and T > 0. This theorem is very powerful since B; can be chosen
arbitrarily large. The aim of this short note is to show that, in fact, it is sufficient
to take for B; even an arbitrary locally convex space with the only condition that its
topology is a Hausdorff one. Besides, g may be equal to 1 or + oo and B need not be
complete. At the end of this note some applications of such generalization will
be briefly outlined.

Let B, be a locally convex pace, {|*|.} .; being a collection of seminorms generating
its topology (I is an index set). Let the seminorm ||, be defined by

o /(jg [o()|2dr)*® if 1<q< +o and
v 13 = N
! Nesssup [v(f)], if g=+o0.

0Zt=<T
Put I{(0, T; B,) = {v: [0, T] - By; v is Bochner integrable, |v|,, < +o0 Veel].
By endowing I%(0, T; B,) with a collection of the seminorms {||,} s, We obviously
get a locally convex space. As usual, we will understand a linear operator to be
compact if it maps bounded subsets into precompact ones.

338



Theorem. Let B, be a normed linear space imbedded compactly into another
normed linear space B which is continuously imbedded into a Hausdorff locally
convex space By, and 1 < p < +o0. If v,v,€I’(0, T; B,), i €N, the sequence
{v;} ien converges weakly to v in I2(0, T; B,), and {dv;/dt},.y is bounded in L'(0, T;
B,), then {v;} ;cy converges to v strongly in I2(0, T; B).

Proof. First we will prove that Vn > 0 3J, € #(I) 3¢, € R Yu € B,:

@ lullf = nlulb + e X, lul?

where 97(1) is the set of all finite subsets of I. Supposing the contrary, we get n > 0
such that VJe #(I) VeeR 3uy. e Byt |uy||h 2 1 |use|o + ¢ Yies|use|?. Putting
Wy = u’.lc/ ]ulc"Bo’ we get:

() Iwiellz 2 1 + ¢ Xees [wacl? s

and also |wy.s < C, where C = sup,+o|ul|s/|u]s, represents the norm of the
imbedding operator B, — B. Hence Y. |w, |’ £ C’[c, and thus also |w,|, <
< Cc™ "7 whenever te J. Thus lim,. 4, jezqry |[Wic|. = O for every ¢el. Note that
Z(I) and R are directed by the relations = and <, respectively, and thus we can
speak actually about the net {w,,! JeFIy,ccr and about its possible limit.

This net forms a precompact subset of B because it is bounded in B, which is
compactly imbedded into B. Hence there is its subnet (denote it by same indices,
for simplicity) such tkat wj. — w strongly in B, where B denotes the completion
of B (if B is a Banach space, then, of ccurse, B = B). As thé imbedding B < B, is
continuous, each of the seminorms ]ll is uniformly continuous on B, and we may
extend it continuously on B, denoting the extensicn again by ||,, for simplicity.
Therefore we have |w,. — w|, > 0 for every tel. Clearly, we can writc |w|, <
= [w,cll + [w,c - w|¢. Passing to the limit, we get IW|[ = 0 for every tel. Thus
w = 0 because the topology of B; has been supposed to be Hausdorff. In other
words, w;, — 0 strongly in B, which contradicts (3), thus proving (2).

Without Icss of generality we may take v = 0. Let & > 0. As the sequence {v;] ey
is bounded in IN0,T; By), we can take n = g/(2 . supey|0i]|Zr(0.7:8,))- Integrating
(2) over [0, T] we get

””i”'ir(o,r;m §§ + CZtEJ |U,-|Zl

with some ¢ € R and J € #(I) dependirg on &. The proof will be completed if we
show that

4) lim;, , |05, =0 forall tel.

Clearly, |v|5, = [3/ [vt)}|7 dt + [F,5 [vit)]?dt and we may investigate only the
first term, whilc the second can be treated analogously. For every s > 0 such that
s < T2 and every t € [0, T/2] we may write v,(t) = a{t) + b(t), where

aft) = 1J vt + 1ydt and b(t) = '[ (I - 1)9— vt + 1)dr.
sJo s dt

0
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Hence

0
14
d‘t) dt =
13

where ,,*” denotes the convolution, i.e. [f * g] (¢) = [f(7) g(t — 7)d7, and ¢ R —
— R is defined by

T/2 T/2 T/2
f loi(5? di = 271 f la(s? di + 27 f lb(oledi =1y + 1, .
0 0

We can cstimate

I, £ 2P"J.T/2<J’S (1 - 3)
0 0 S

14

d
—vit+ 1
dt( )

b

_ -t '
LP(0,T/2)

L

i) /t/s+l for —s<t=<0,
s\t=

0 clsewnere .

The following estimates are well known: |[f*g| g < [If“um, lgllcim, and
If * 9lleoy S | |Lrcry [9]| o). As g = f * g is a licear operator on L'(R), we can
obtain by interpolation (using the classical Riesz-Thorin convexity theorcin) the
estimate

I/ * glleom = 1/ leica 9] oy -
It yields the estimate
l d

=,
dt

As V|| rm < 577 we get I, < 2°7's|dv;[d1|f,, and we see that I, = O(s) for

s = 0 because, by the assumptions, {dv;/dt};.,y is bounded in L!(0, T; B,), hence

particularly in the seminorm H“. Thus the term I, can be made arbitrarily small

when taking s small enough. ’

Now, let us take s > O fixed and investigate the term I;. Since v; - 0 weakly
in I7(0, T, B,), we can see that a,(t) — 0 weakly in B, for every ¢, hence also strongly
in B because the imbedding B, = B is compact. Thercfore also |a(f)|? — 0 because
of the continwity of the imbedding B = B,. Obvioucly, the sequence {v;} .y is bounded
in I70, T; B,), hence also in L'(0, T; B), and we can estimate: .

d

dt

IIA

W

[3

1¥slzoce -

L1(0,T/2+5)

LP(0,T/2) l ¢

1 [ L
ol 5 [ ot + Dlodte < - oo
0

Using again the continuity of the imbedding B = B,, we see that also |a()|? is
bounded (independently of ¢ and i), and we can employ the Lebesgue theorem to
show the convergence of I, = 227! [§/ |a(t)|? dt to O for i — co. Altcgether we
have proved (4). [
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Let us consider theset W?90, T; B,, B,) from (1) endoved with the collection of the
(semi)norms v [|0]|oo.1;50) and v |dvfdt],,, c€l. Tt clearly makes W?9(0,T;
B,, B,) a lccally convex space. Then the above theorem immediately offers a gener-
alization of the Lions-Temam theorem.

Corollary. Let the assumptions of Theorem above be fulfilled and, in addition,
let B, be reflexive, 1 < p < +0, and 1 £ q £ +o. Then the imbedding
w40, T; By, B,) = I¥(0, T; B) is compact.

Proof. As I?(0, T; B) is a metric space with the completion L?(0, T; B) (recall
that B denotes the Banach space corresponding to B), we are only to show that every
sequence {v;};.y, bounded in W?%0, T; B,, B,), contains a subsequence converging
(strongly) in IZ(0, T; B). Since B, is reflexive and 1 < p < + o0, I7(0, T; By) is
reflexive as well, and thus there is a subsequence {u,ﬁkeN converging weakly to some
ve [0, T; By). As the sequence {dv; [dt} .y is bounded in I4(0, T; B,), it is bounded
in L‘(O, T; B,) as well. Thus we can use our theorem, which gives the strong conver-
gence of {v; }sev even in I7(0, T; B), hence in I7(0, T; B), too. [ |

To outline some applications in numerical analysis we consider, as a simple model
example, the nonlinear parabolic equation describing e.g. a Stefan problem in the
so-called enthalpy formulation (the nctation will be standard):

— =AB(z) on Q2 x(0,T)

ot

with an initial condition z(+,0) = z, and the Dirichlet boundary condition
B(z(x, *)) = 0 for x € 0Q, where 02 is the boundary of the Lipschitz domain Q
and B: R — R is a nondecreasing continuous function. An approximate solution
z,€ I}(0, T; V,) obtained after a spatial discretization of a finite-element type (h > 0
denotes a mesh parameter) fulfils the identity:

() <§t 24 v> = (VB(z,), Vo)

for all ve V, and a.a. t [0, T], where V, is a finite-dimensional subspace of the
Sobolev space Hg(f), and <+, *) is the standard scalar product in I*(Q). Typically,
Vi, © Vi, for hy 2 hy > 0 and Uy, Vj is dense in Hg(Q). Sometimes, e.g. if p~*
is not Lipschitz, we cannot estimate the time derivative of f(z,) and we are forced
to estimate the time derivative of z,. However, we cannot estimate it directly in the
norm of I*(0, T; H™'(£2)) because we cannot test (5) by general functions v € Hg(2).
Nevertheless, putting v = v(t) € V,, with ||v]| 120, 7,110y < 1 into (5) and integrating
it over the time interval [0, T], we can estimate (under some additional assumptions)
|5 <0z4f0t, v)> dt| < C with C independent of h. This yields the estimate of dz,/dt

for every h < hy in the seminorm |+|,, with p = 2, ¢ = hy, and |u],, =
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= sup {<u, v); v e Vi, |0l morcay < 1}- As Upso Vi is dense in HY(R), the collection
of the seminorms {|+|,} >0 generates a Hausdorff topology on B, = H™*(2), hence
our theorem can be readily employed with B, = I*(Q), B= H™'(Q),and p = g = 2.
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Souhrn

ZOBECNENI{ LIONS-TEMAMOVY VETY O KOMPAKTNIM VNORENI

ToMAS ROUBICEK

Znama véta J. L. Lionse a R. Temama o kompaktnim vnofeni prostoru {ve LP(0, T; By);
dv/dte LY, T; 31)} do LP(0, T; B) je zobecn¥na pro ptipad, kdy B, je reflexivni Banachuav
prostor, vnoreny kompaktn¥ do normovaného lineidrniho prostoru B, jenZ je spojit€ vnofen
do Hausdorffova lokaln& konvexniho prostoru By, a1 < p< +%,1=< ¢=< 4. Je naznafeno
uZiti takového zobecn&ni v numerické analyze. -

Pe3ome

OBOBIIEHUE TEOPEMBI JINOHCA-TEMAMA O KOMITIAKTHOM BJIOXKEHUH

ToMAS RousiCEK

U3Becrras teopsma XK. JI. JImonca u P. Temana O KOMIIAKTHOM BIIOXXCHHH IPOCTPAHCTBA
{v € LP(0, T; B,); dv/dte L0, T; 31)} B LP(0, T; B) 06061IaeTCst st ciy4ast, koraa By peduexcus-
HOe GaHaXOBO IMIPOCTPAHCTBO, BIIOKESHOS KOMIIAKTHO B HOPMHUPOBAHHOE JIMHEHHOE IPOCTPAHCTBO B,
KOTOPO2 BIIOXEHO HENMPZPHIBHO B OJEIMMOE JIOKAJAbHO BBHIIYKIOE IPOCTPAHCTBO By, u 1< p<
< +420,1= g=< + 0. Vka3siaeTcsa NPUMEHSHAE TAKOBO 0000IMEHNMSA B BLIYMCIUTEIHHOM aHAIA3E,
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