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MOMENTS OF ORDER STATISTICS

ANTONIN LESANOVSKY, Praha, EDWARD OMEY, Brussels

(Received October 31, 1988)

Summary. Let X;,, < X,., < ...< X,,,= M, denote the order statistics of a sample of
size n. In this paper we investigate the asymptotic behaviour of E(M,) and E(X,_;.,) as n— .
We show that {E(M,)}y and all its differentials (4°E(M,)} N are regularly varying sequences if -
the underlying d.f. has a regularly varying tail.
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INTRODUCTION

Let X, = ... £ X,, =M, denote the order statistics of a random sample
X4, X3, ..., X, Of size n from a distribution with a distribution function (d.f.) F which
is concentrated on R,. In this paper we shall be concerned with the asymptotic
behaviour of E(M,) and E(X,_,.,) as n — oo. In Section 1 we show that E(M,)/n — 0
as n - oo if E(X,) < oo0.If not only E(X,) is finite but if X, belongs to the max-do-
main of attraction of a stable law, we show that E(M,) and E(X,_,.,) have a very
nice regularly varying behaviour. In Section 2 we discuss regularly varying and
O-regularly varying behaviour of E(X,,_,“,,), k=0,1,.... Among others we show
that 1 — F € RV_, implies that

lim E(M,)

n— o n

=TI(1 - 1/a)

for a (known) sequence {a,}. In Section 3 some rate of convergence results are
established.

1. MOMENT CONDITIONS

It is well-known that for i.i.d. non-negative random variables X, X,, ... we have
E(M,) < oo if and only if E(X,) < co0. In the next proposition we obtain some
more precise information concerning E(M,).

293




Proposition 1.1. Assume that Xy, --., X, are i.i.d. non-negative random variables
and that E(X,) < co. Define y, := E(M,)|n. Then

(i) lim g, = 0;

n—w

(ii) p, is non-increasing and lim (a/pta-,) = 1;

(iii) lim [E(M,) — E(M,_,)] = lim n(g, — p,—,) = 0.
n— o0 n—+o©
Proof. (i) We have 0 < P(M,, > x) = 1 — F(x) £ n(l — F(x)). Since E(X,) <
and lim (1 /n) P(M, > x) = 0, by Lebesgue’s theorem on dominated convergence

n— o

we obtain that

lim

n- o n n- o

E(_qumrp(M">i)dx=o.
0 n

(ii) and (iii) A general result in the theory of order statistics [3], p. 37 states that

(1.1) (n = r)E(X,.) + rE(Xys1:0) = nE(X, 00 1) -
Applying (1.1) for r = n — 1 we obtain that

E(Xo-1) = n E(M,-1) — (n — 1) E(M,) .
It follows that

E(Xn—l:n) < + U

n§ n—= + = "n .
b St = o T S —

Hence p, is non-increasing and g, < p,_; < p,(n[n — 1). Now the results (ii) and
(iii) easily follow. g
The following corollary follows immediately.

Corollary 1.2. Assume that Xl,(...,X,, are i.i.d. non-negative random variables
and that E(X%) < oo for some B = 1. Then

EM,) _ g

lim
1/8

n-o N

Proof. Let Y; = X4; from Proposition 1.1 (i) we obtain that lim (E(M%)/n) = 0.

Now apply Hélder’s inequality. g
As to real random variables, we have

Corollary 1.3. Assume X, ..., X, are i.i.d. random variables and assume g is
non-decreasing. If E|lg(X,)| < oo, then lim E(g(M,))/n) = 0.
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Proof. Since |E(g(M,))| < E( max |g(X;)|) the result follows from Proposition 1.1
1Zign

2. O-REGULARLY VARYING AND REGULARLY VARYING BEHAVIOUR

Recall that a measurable function f: R, — R, is O-regularly varying (we write
J € ORYV) if for all x > 0,

f(rx)

lim sup—— < o
t - oof(t)

Further, a measurable function f: R, — R, is regularly varying with an index
« € R (we write f € RV,) if for all x > 0,

. f\tx)= .
ll-fr:of(t) o

It is well-known [1] that fe ORV implies the existence of constants o, A, and ¢,
such that

f(_tx_) < Ax"
ON

We call « an upper index of f. For details we refer to [1], [2], [4], and [7].

Finally, we say that a sequence {a,}y (IV is the set of all positive integers) of non-
negative real numbers is regularly varying if the function f defined by f(x) = a;
is a regularly varying function where as usual [x] is the integer part of x.

In order to estimate E(M,) we start with some auxiliary results.

forall x=1. t=t,.

Lemma 2.1. Let F be a distribution function concentrated on R, and let a,
be defined as a, := inf {x: 1 — F(x) < 1/n}. ’
(i) If 1 — F € ORV is such that for some p > 1, A > 0and t, > 0,

(2.1) 1 - Flx) < Ax™% forall x=1 and t=t,
1 — F(1)

holds, then there exists a number ny € N such that

(2.2) P{M, > a,x} < Ax™* for x=1, n=n,.

(i) If 1 — FeRV_, for some o > 1, then {a,}yeRV,, and for all x >0,
lim n(1 — F(a,x)) = x~* and

n-o

(2.3) lim P{M, < a,x} = e ™"

n— oo

hold. Moreover, (2.2) holds with f = a — & > 1.
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Proof. (i) Obviously

_ w(ax) < n(l — Flax 1 — F(a,x)
P{Mn>anx}_1—F(an)= (1 F(n))é'——‘—l_F(a")-

Since a, = oo(n — ), the first part of (2.2) follows from (2.1). The second part
of (2.2) is trivially true.
(ii) These results are well-known from the extreme value theory, see e.g. [5]. m

Now we estimate E(M,) using the classes RV and ORYV. As before we shall assume
that X, is a nonnegative r.v. and that {a,,}N is defined as in Lemma 2.1.

Theorem 2.2. Let F denotea d.f.on R,.
(i) If 1 — F e ORV is such that (2.1) holds, then

lim supM < ©.
n— o a,

(ii) If L — Fe RV_,, a > 1, then {E(M,)}y € RVy,, and

n—oc

24)  tim B _ p(1 — 1)

where I'(+) denotes the gama function.

Proof. (i) Since

(M) _ j " P(M, > a,x) dx,
ay 0

the result is a consequence of (2.2).
(ii) Using (2.2), (2.3) and Lebesgue’s theorem on dominated convergence we have

lim EM,) _ limJ' P{M,, > a,x} dx = f (1 —e™)dx = I(l - 1/a).
n>wo 4, n=o Jo 0

Hence (2.4) follows; since {a,}y € RV,,,, also {E(M,)}xe RVy/,. m

Corollary 2.3. Let F denote a d.f. on R, and let a, be defined as before.If 1 — F ¢
€ RV_, with a > B, then.

1imE(_Af5)=r(1—§).

n~ a4, o

Proof. Use Theorem 2.2 (ii) with Y; := X§. =
In our next result we show that for each k € N'U {0} the k-th differential 4% E(p1,)
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is regularly varying. To formulate the result we define
4° E(M,) = E(M,),
AV E(M,) = 4E(M,,,) — 4“E(M,).
Obviously, 4' E(M,) = [§ F'(x) (1 — F(x)) dx and by induction over k it follows
that
44 E(M,) = (=1)*1 [ F'(x) (1 — F(x))* dx
so that

(2.5)

Now we prove

(_1)k+l nkAk E(M”) _

J: F(ayx) [n(1 = F(a,x)]* dx .

n

Theorem 2.4. If 1 — Fe RV__, a« > 1, then for each ke N

) lim(—l)"+1 n*4* E(M,) _ 1 F(k B l) ;

n- o a, o

(i) {(=1)*** 4*E(M,)}n € RV py s

(ii) Tim "4 EMoed) — 4 EM)] 1
oo 4% E(M,) «

k.

Proof.
(i) Let f(z, n, k) = z"[n(1 — 2)]* (0 £ z £ 1). It is easily seen that 0 < f(z, n, k) <
§f(n/(n + k), n, k) < Kk* (0 £z= I); substituting z = F(anx) we have

(2.6) 0 < F'(a,x) (n(1 — F(a,x))* < k* forall x>0, keN.
Also, from (2.1) with B = & — ¢ > 1 we have
(2.7 0 £ F'(a,x) [n(1 — F(a,x)]* £ A*~* forall x=>1, n=n,.

Now combine (2.5), (2.6) and (2.7) and Lebesgue’s theorem on dominated conver-
gence to obtain

_1\k+1 ok 4k =
lim (=D 14 E(M")=J‘ e "x%*dx

n—o a

n 0

which proves (i).
(ii) This assertion immediately follows from (i) and the regular variation of {a,}.
(iii) Using (i) with k replaced by k + 1 we have

i (08 ) = D 1y )

n- o0 a, o
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Using (i) once again, we obtain

1
(D) 4 By ) — A EOM) (c+1-2)

na 4% E(M,) - (k _ 1)

from which the result (iii) follows. 5

Remark. The previous result shows that the sequence {E(M,)}y is regularly
varying together with all its “derivatives” 4* E(M,). This illustrates that the operations
(X, X35 ..., X,) » M, > E(M,) have very smoothing character.

In our next result we estimate E(X,_;.,) for fixed k, as n — oo. We first express
E(X,-4.n) in terms of 4° E(M)).

Lemma 2.5. Let ne N, ke Nu {0}, k < n, and let X,, ..., X, be i.i.d. random
variables. Then

09 Eu) = 3 (1) (7) 4 e0,-
and

29 E(Xuirrmer) = EXuy) = (=D (k) AHEM, ).

Proof. The relation (2.8) is obviously true for k = 0 and n € N. Suppose it holds
for all k < K and all n = K. We prove that the relation holds for k = K + 1 and
alln > K. By (1.1) with r = n — K — 1 we have

n n—K-—1
E(X,_x_1.) = (X)) — P T L ey LY,
(oo = s B orae) = T ()
by (2.7) we obtain ,
1 & n
E(Xpeko1m) = —— ¥ (=1)! n—iAEM,_,_;) —
e s W LR EL U

—(n—K—=1)4"EM,_)} =

e (e e - naen) -

K +1
— (n = i) 4 E(M, i)} =

- i 12()(-1)*(?) (K + 1 — i) A" E(M,_}) +
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Klel( 1)’ [(’:)(K+1—i)+(ij 1)(n—i+ 1)].

CAVE(M,_)) + 4% E(M,) + (—1)K+! (K:’L 1) AKHUE(M, ) =

Y-y () 4 €oa-p.

This proves (2.8).
To prove (2.9) we use (2.8) twice to obtain

E(Xn+l kn+l) - E(Xn—k:n) =

= 2" 4 - S () aten).
Using 4'E(M,_;) = A1 E(M,,,,_;) — 4'** E(M,,_;) we obtain
E(Xn+l kn+l) - E(Xu kn) =

=2 ()4 e+ -0(, ") 4 EOL-) =
= (—1)* (’;) AFTE(M, ) .

Now we prove

Theorem 2.6. If 1 — F e RV_, with o« > 1, then for each ke Nu {0}

: F(k +1— 1)
210)  lim Samka) _ °‘
n- o a, k!
and
r(k 1o l)
(2.11) lim E(Xn+l-k:n+l) _ E(Xn-k:n) n = o .
n— o a, ok!

Proof. From Theorem 2.2, Theorem 2.4 and the regular variation of {a,}y we
obtain that

_1 if i=0,
- oy (%) e, .)_/Ml ) He
"o a, \{_ir(i_a:_! if i1,
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Using (2.8) we conclude that

lim%ﬂ:r(l_z)_‘i LD:kL!F(kH_z).

n-o a, o i=1 ilo o

To prove the second assertion, we use again Theorem 2.4 and (2.9). g

3. RATES OF CONVERGENCE

In Theorem 2.2 we proved that a regular variation of 1 — F implies that
E(M
_L__i). =TI <1 - 1) .
a, o
In this section, we consider the rate of convergence of
E
(i”) to I (l - 1) .
a, o

We shall start with the following lemma.

Lemma 3.1. Let o > 1 and let ne RV, where s = a. If X, has a distribution
function F such that P(X, 2 0) = 1 and

(3.1) CpFa = Sli[())r](x) |[F(x) — e™*™"| <
then
1/a
(3.2) limsup-"(L—)E M, -T 1—1 <.
nw n nt’e) . o

Proof. Introduce a function y: R, — R determined by
Y(x) = n(x'*) forall x=0,
and random variables Y; = X} for i € N. We find that

YyeRV,, where u=-21

R lw

and
N, =max{Y;..; Y,} = M;.

Further, since X;, X, ... areii.d. with a common distribution function F,the random
variables Y7, Y3, ... are i.i.d. as well and their common distribution function denoted
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by G has the form

F(x'*) for x=0,
o FE) for xz
(x) =<

~ 0 for x <0.
It is useful to re-formulate the present theorem in terms of , u, Y;, G and N, instead

ofn,s,X;, Fand M,:
Let « > 1 and let € RV, where u = L. If Y; has a distribution function G such

that P(Y; = 0) = 1 and

(3.1) Gnra = SUPY(¥) |G(x7) — ™7 =
— sup ¥(x) [G(x) — ¢/ < oo
then =
(3.2) hT—»Ssp <IZ_E//;> - F(l - i) < .

Notice that I'(1 — 1/«) is equal to the mean value of a random variable having the
distribution function

e " for x=0,

J,(x)=
\0 for x<O.

We have
1/a

) == = [ (o) -] s
nl/a o

< sup P(& <y ) ' J' G'(ny*) — [e™'™][dy £
y20 n

< sup P(& < x> —e M ¢
x20 n

+ J‘ 2 [ sup y(nz") |G(nz") — e "] dy .
1 '//(".Va) z20
Further, Rachev and Omey proved in [6] (Corollary 2.2) that
(3.3) lim sup =~ 'ﬁ( ) ( <x ) — e V¥
n

n=+o0 ng
Since € RV, with u > 1 there exist positive constants n, and b such that

< o0.

l//(nx) > bx!TmD2e - pxle D22 forall x =21 and n = n,

¥(n)
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(see [4]). Finally, we obtain

w()

1/a
lim sup =~ <I—VIL-) -Tr (1 - 1) <
n— o n I o
< lim sup —~* y(n ) ( < x ) e~ 115 4+
n-o n x;O n

+ SUP ¥(x) [G(x) — e~ | lim supJ V() )

n-w (ny )
< lim sup ——~* y(n )

< X -l/x
n—o n x;o n

1(° _
+ Qyra EJ y~ @2 4y < oo,
1

+

Thus, the proof of (3.2") which is equivalent to (3.2) is completed.
We are now able to give the desired result concerning the rate of convergence

of E(M,)[a, to I'(1 — 1fa).

Theorem 3.2. Let X, have a distribution function F such that P(X, = 0) = 1and
1 — FeRV_, wherea > 1. Let ¢ > 0 and let n € RV, where s = a. If

(3.4) sup n(x) |[F(ex) — e™* | <
and
1/a
(3.5) lim supt’—(f—) Lo 1’ < ©
nsw n |en'l®
then
1/a
(3.6) lim supr'—(n—) E (M"> -T (1 - 1) < 0.
- n a, o

Proof. Introduce auxiliary random variables Z; = (1/c) X; for ie N and K, =
= max {Z,;...; Z,} = M,Jc. We find that Z,, Z,, ... are i.i.d. random variables
with a common distribution function H(x) = F(cx). Our aim is to apply Lemma 3.1
with X;, F and M, substituted by Z;, H and K,. To this end we need to verify the
validity of (3.1). We have
sup () [H(x) — ™77 =

= sup #(x) |F(ex) — e "] < 0
x20

p.H,a

by (3.4). Thus, we know from Lemma 3.1 that

302



1/a
(3.7) lim sup n(n’")

(5)-r(-)

n— o n
1/a
=]imsupn(n )E< "”>—I‘(1—1) < 0.
n-ow n c.n'’® o

Finally, we obtain

w_r(1-)

o [EL) B[ fo( Ma )y
a, c.nl/ c.n'/® o
so that
1/a
n=o n a, o
1/a
< lim sup n(n In_| 4
na n a, c.n'®
1/a
+ limsup"(n ) E( M"”>— I’(l —l> < o0
n=w n c.n'’® o
by (2.4), (3.5) and (3.7).

We conclude the present section by demonstrating the contribution of Theorem 3.2
by the following example. '

Example. Let
F(x) = ’

2
Ny ¥+l o5y,
2x*

We find that 1 — Fe RV_,, i.e. « = 2 in this case, and by Theorem 2.2 (ii)

tim EMa) _ 1 (4) = n.

n— oo a,
The distribution function F is continuous on R and the solution of the equation

0 for x<1,

1— F(x) = =

results in

a,= 3(n + /(n® + 8n))..

i I _ i 1 1+ 1+§ =‘L2’
n—'con”z now 2 n 2

Thus,
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ie. we put ¢ = 4/2 in Theorem 3.2 — cf. (3.5). Further, cx = 1 if and only if
x 2 /2 and

|[Flex) — e "

. ) = (=) xm2
=1 -x"2-2x"%- (=0
kgo k!

oo
—4 AN m2kbd T 4
=3x"*+ x4y x <3x7* for x 2 /2
k=3
and

-

|Fex) — e™*

=e ¥ <e ' for xel0; J2]-

With respect to (3.4) and to the fact that « = 2, we can take e.g. 7(x) = x* where
S€E [2; 4].- However, the greater is the exponent s the stronger will be the achieved
result so that we choose n(x) = x*. We find that

sup n(x) |[F(ex) — e | < max {Z;4e™"?} < o0,
x20 .

i.e. the assumption (3.4) is fulfilled. Finally, easy calculation yields

1/a
lim sup ggn__)

n—w n

o ()

i.e. the assumption (3.5) of Theorem 3.2 is fulfilled as well. Thus, its assertion reads

E(—Ai"—)——\/n < o,

r

ay

c.n'®

=llmn =1<CD,

n-oo

lim sup n
n—oo

i.e. the rate of convergence of E(M,)/a, to its limit \/7 is at least the same as the rate
of convergence of 1/n to 0.

Remark. From Theorem 3.2 we find that the choice of the normalizing sequence
{a,}x is very important. We made the choice a, = inf {x; 1 — F(x) < 1/n}. On the
other hand, if we make the choice b, = inf {x; —log F(x) < 1/n} we obviously
obtain all results of Section 2 with a, replaced by b,. This follows from the obvious
asymptotic equality —log F(x) ~ 1 — F(x) for x - co and from the assumption
that 1 — F e RV_, with the index a > 0. Moreover, with the latter choice condition

(3.4) alone implies
(2)-r(-)
b, o

To see this, we show that (3.5) holds for the sequence {b,}y- From (3.4) we obtain

1/a
lim sup ﬂ—"—)

n—o n

< .

lim sup n(x) |log F(cx) + x™%| < o .

X 00
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With our choice of b, we have

. (b,,) 1 (b,,)““
limsupp|—||- —{—
n— Cc n C

Since b, ~ ¢.n'* for n > oo and since n(x) is regularly varying we find that

n(n) | br
*.n

< 0.

lim sup
n— oo n Cc

< ®©

and hence (3.5) with a, replaced by b, follows.
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Souhrn

MOMENTY PORADKOVYCH STATISTIK

ANTONIN LESANOVSKY, EDWARD OMEY

Oznalme X,. = ...= X,.,,= M, pofadkové statistiky z nadhodného vybéru Xi,..., X,
o rozsahu n a necht rozloZeni ndhodné veli€iny X, s distribuéni funkci F je soustfed&€no na R, .
Clanek pojednava o asymptotickém chovani hodnot E(M,) a E(X,_,.,) pro pevné k a n— co.

Specialni pozornost je vénovana pt¥ipadu, Ze | — F je regularnd se ménici funkce.
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Pe3srome

. MOMEHTBHBI ITOPAOKOBBIX CTATUCTHUK

ANTONIN LESANOVSKY, EDWARD OMEY

Ilycts X, ., = ...= X,., = M, — nopsaxkoabie CTATUCTHKH U3 Clly4aiHO# BbiGOpPKH X, ..., X,

pa3Mepa n HIYCTb PACTpefie/ieHHe ClyuaiiHOM Benu4uHbl X, ¢ dyHKuuei pacnpsiaenenus F cocpe-

noTouyeHo Ha R, . CTaTbs TPAKTYeT aCCMMNTOTHYECKOE MOBENEHME MATEMATHUYECKMX OXMIAAHMI
+

E(M,) v E(X,_,.,) m1a noctosuHoro k u n—> c0. CreuuanbHoe BHUMAaHME YIETAETCA ClIy4alo,

410 (1 — F) — peryisipHO MeHsIoUIasCs hyHKLUus.
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