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ON COMPLETIONS OF LINEARLY ORDERED GROUPS
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Summary. Each lattice ordered group G can be associated with a class C(G) of lattice ordered
groups which are in a certain sense generated by G (for a thorough definition cf. below). In this
note we investigate the relations between C(G) and the completion of G, where G is a linearly
ordered group.
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1. INTRODUCTION

For a lattice ordered group G we denote by m(G) the completion of G (in the sense
of [4], Chap. V, § 10; in [4], the notation G, was used). This notion was studied in
[3] and [6] for the abelian case, and in [ 2] for the non-abelian case.

Clearly we have m(m(G)) = m(G). If m(G) = G, then G will be said to be m-
complete. In the case when G is archimedean, m(G) coincides with the Dedekind
completion of d(G) of G (cf,, e.g., [1], Chap. XIII, § 13).

An [-subgroup G, of G is said to be closed if, whenever {x;},;; S G,, x€ G and
the relation x = sup {x;}, is valid in G, then x € G,. In such a case the corresponding
dual condition also holds. v

If G is an [-subgroup of a lattice ordered group H such-that for each closed /-sub-
group H, of H with G = H, the relation H; = H is valid, then we say that H is
a c-completion of G, or that G c-generates H.

We denote by C(G) the class of all lattice ordered groups H such that

(i) H is m-complete;

(ii) G c-generates H.

In general, even in the case when G is archimedean, C(G) can contain infinitely
many (in fact, a proper class of) mutually non-isomorphic lattice ordered groups
(cf. [8], [9]). More thoroughly: there exists an archimedean lattice ordered group G
such that for each cardinal o there is H € C(G) with card H = «. Hence, in a certain
sense, C(G) can be “‘extremally large”.

A similar situation occurs in the theory of Boolean algebras [5] and of vector
lattices [7].
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It is obvious that m(G) e C(G) for each lattice ordered group G. We shall show that
if G is a linearly ordered group, then the class C(G) is ‘“‘extremally small”’; namely,
the following result will be proved:

(¥) Let G be a linearly ordered group. Then each element of C(G) is isomorphic
to m(G).

This generalizes a result from [9] (Proposition 3.4) concerning archimedean linearly
ordered groups.

2. PROOF OF (%)

Let G be a linearly ordered group. If G = {0}, then (x) obviously holds. In what
follows, G denotes a nonzero linearly ordered group and H a fixed element of C(G).

Let T, be the system of all elements h € H such that h =V, x; for some subset
{x:}ier of G. Next, let T, have the dual meaning and T = T, U T;.

The following assertion is obvious.

2.1. Lemma. Let {h};; < Ty, {h}iex € To, h, W € H, h=Vjyh; and I =
= Auexhy- Then he Ty and h' € T,. Further, G = Ty 0 T,.

2.2. Lemma. Let 0 + {h;};c; S Ty, he H, h = Nj; h;. Then heT.

Proof. If there exists je J such that h; = h, then he T; & T. Suppose that
h; > h for each jeJ.

Let j € J. There are elements g;; € G (i € I(j)) such that h; = Vierj) 9i5- If gi; S h
for each i eI(j), then h; < h, which is a contradiction. Hence there is f(;) € I(j)
such that h < g,;,; < h;. Therefore h = Ajes gy, and thus he T, < T.

2.3. Lemma. Let @ :*: {hj}jEJ < T‘, hGH, h = Aje.l hl' Then hE T‘.

Proof. Denote J, = {jeJ: h;e T\}, J, = {jeJ: hje Tp}. If J; = 0, then in
view of 2.1 we have he T,. If J, = {, then 2.2 yields that he T.

Suppose that J, + 0 & J,. For each je J, there is {g;;}icry S G such that
h; = Aiay 9:j- Then one of the following conditions is valid:

() Aserssiern 91 = hs

(ii) there exists c € H with b < ¢ such that g;; > ¢ for each j € J, and each i € I(j).

Assume that (i) holds. Then h e T,. Next, suppose that (ii) is valid. Then the set
Jy={jeJ;: h; <c} is nonempty and h = Ay, h;. Thus 2.2 yields that he T.

Analogously we can verify that the assertion dual to 2.3 also holds. Hence we have

2.4. Corollary. T is a closed sublattice of H.

2.5. Lemma. T is a subgroup of H.
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Proof. If ke {1,2} and x, y € T, then clearly x + ye T;. Let xe T, and y € T>.
Hence there are {x.-}iet € G and {yj}jgj S G such that x = Vi x;and y = Ajey Vje
Then ’

x+y=Viax)+ (Ases Vi) = Nies (Vier xi) + y) =
= Ajes Viet (X + 3;) .
Thus in view of 2.2 we infer that x + y belongs to T. Next, if x € T}, then —x € T3;
analogously from x € T, we obtain that —x e T;.

2.6. Lemma. T = H.
Proof. This follows from H € C(G) and from Lemmas 2.1, 2.4 and 2.5.
2.7. Le;nma. T, = T,.

Proof. It suffices to verify that T} < T,. By way of contradiction, assume that
there is h € Ty such that h does not belong to T,. Hence 4 ¢ G and there is an element
¢ € H with h < ¢ such that no element g’ of G satisfies the relation h < g’ < c.

Suppose that h'e H and h < h’ < c¢. Then neither '€ T; nor h’' € T, can be
valid, which contradicts 2.6. Therefore the interval [h, c] of H is a prime interval.
By applying the translation y(t) = ¢ + (—c + h) (where ¢ runs over H) we obtain
that [y(h), ¥(c)] is a prime interval in H as well; clearly y(c) = h. This shows
that h does not belong to T;, which is a contradiction.

2.8. Lemma. Let he H. Then there are X, Y = G such that supX = h = infY
holds in H.

Proof. This is a consequence of 2.6 and 2.8.

Now let us investigate the relations between the lattice ordered groups m(G) and H.

Let tem(G). Put X, = {geG: g <t} and Y; = {ge G: g = 1}. Then in view
of 1.3 in [2], the relations

(@ Ay —x:xeXy, yeYy) =0,

(®) A(=x + y:xeX,, yeY;)) =0
are valid in G.

Let hoe H, hy < y — x for each x € X; and each y € Y;. If hy > 0, then in view

of 2.8 there is x, € G with 0 < x4 < hy. Hence x, < y — x for each xe X, and
each y € Y;, which contradicts (a). Thus the condition

(a) A(y —x1xeX,, yeY)) =0

is valid in H.
Similarly, the condition

(by) A(—x + y:xeX,, yeY,) = 0
holds in H.
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Next, by virtue of the conditions (a,), (b;) and in view of the fact that H is m-
complete there is 1, € H such that the relations

sup X, = h, =inf Y,

hold in H. Put ¢(t) = h,.
It is easy to verify that for ¢, t, € H the equivalence

t < ty e 0(ty) < o(t2)
is valid.
Let h e H. Next, let X and Y be as in 2.8. Again, because m(H) = H and in view
of 1.3 in [2] the conditions (a,) and (b,) hold for X and Y in H. This yields that the
conditions (a) and (b) are valid in G for X and Y. Thus there is ¢, € m(G) such that

supX =t, =infY

is valid in m(G). Then we clearly have ¢(t,) = h. Hence ¢ is a surjection.
Let t,,15 € m(G). There are X,, X5 S G such that the relations

t, =supX, and t; =supX;
hold in m(G). This yields that

o(t;) = supX, and ¢(t;) = sup X,
are valid in H. Next, we obtain that the relation

t, + 13 = sup {x, + x3: x, € X, and x; € X,}
holds in m(G) and that

o(t)) + o(t3) = sup {x, + x3: x, € X, and x; € X,}
is valid in H. Thus

o(t2 + t3) = o(t;) + ¢(t3) .

Clearly ¢(g) = g for each g € G.
Summarizing, we have the following result (which implies that () holds):

2.9. Theorem. Let G be a linearly ordered group and let H € C(G). Then there
is an isomorphism ¢ of m(G) onto H such that ¢(g) = g for each g € G.
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Sthrn

O ZUPLNENIACH LIEARNE USPORIADANYCH GRUP

JAN JAakuBfk

KaZdej zvdzove usporiadanej grupe G prislicha trieda C(G) zvdzove usporiadanych grip,
ktoré st v istom zmysle vytvorené grupou G. V tejto poznamke sa vySetruji vztahy medzi C(G)
a zuplnenim G v ptipade, Ze G je linedrne usporiadana grupa.
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