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Summary. Each lattice ordered group G can be associated with a class C(G) of lattice ordered 
groups which are in a certain sense generated by G (for a thorough definition cf. below). In this 
note we investigate the relations between C(G) and the completion of G, where G is a linearly 
ordered group. 
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1. INTRODUCTION 

For a lattice ordered group G we denote by m(G) the completion of G (in the sense 
of [4], Chap. V, § 10; in [4], the notation GD was used). This notion was studied in 
[3] and [6] for the abelian case, and in [2] for the non-abelian case. 

Clearly we have m(m(G)) = m(G). If m(G) = G, then G will be said to be m-
complete. In the case when G is archimedean, m(G) coincides with the Dedekind 
completion of d(G) of G (cf., e.g., [1], Chap. XIII, § 13). 

An /-subgroup Gt of G is said to be closed if, whenever (xj/ e/ -= Gl9 xe G and 
the relation x = sup {xt}ieI is valid in G, then x e G x. In such a case the corresponding 
dual condition also holds. 

If G is an /-subgroup of a lattice ordered group H such that for each closed /-sub­
group H1 of H with G _= Hx the relation H± = H is valid, then we say that H is 
a c-completion of G, or that G c-generates H. 

We denote by C(G) the class of all lattice ordered groups H such that 
(i) H is m-complete; 

(ii) G c-generates H. 
In general, even in the case when G is archimedean, C(G) can contain infinitely 

many (in fact, a proper class of) mutually non-isomorphic lattice ordered groups 
(cf. [8], [9]). More thoroughly: there exists an archimedean lattice ordered group G 
such that for each cardinal a there is H e C(G) with card H = a. Hence, in a certain 
sense, C(G) can be "extremally large". 

A similar situation occurs in the theory of Boolean algebras [5] and of vector 
lattices [7]. 
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It is obvious that m(G) e C(G) for each lattice ordered group G. We shall show that 
if G is a linearly ordered group, then the class C(G) is "extremally small"; namely, 
the following result will be proved: 

(*) Let G be a linearly ordered group. Then each element of C(G) is isomorphic 
to m(G). 

This generalizes a result from [9] (Proposition 3.4) concerning archimedean linearly 
ordered groups. 

2. PROOF OF (*) 

Let G be a linearly ordered group. If G = {0}, then (*) obviously holds. In what 
follows, G denotes a nonzero linearly ordered group and H a fixed element of C(G). 

Let 7\ be the system of all elements ft e H such that ft = \/iel xt for some subset 
{xi}iei °f G. Next, let T2 have the dual meaning and T = Tt u T2. 

The following assertion is obvious. 

2.1. Lemma. Let {hj}jeJ c Tu {hk}keK c r2 , h,h'eH, h = VjeA and ft' = 
= AjteA. Tften ft G Tj and ft' e T2. Further, G s 7\ n T2. 

2.2. Lemma. Lel 0 4= {ft/},ej -= Tl5 ft e H, ft = AyeJ ",• ? ^ w A e r -

Proof. If there exists jeJ such that ft,- = ft, then heTx G T Suppose that 
hj > ft for each j e J. 

Letj e J. There are elements gu e G (iel(j)) such that fty = Vfe/co 9ij>lf9ij = " 
for each iel(j), then fty = ft, which is a contradiction. Hence there is f(j)el(j) 
such that ft < g/c/)j = ft;. Therefore ft = AJeJ QfU)J a n d t h u s heT2 ^ T 

2.3. Lemma. Le* 0 4= {ft^}^ £ T, ft e H, ft = A i e j ft,-. Tften ft 6 T. 

Proof. Denote Jx = {j e J: h3 e T j , J2 = {j e J: hj e T2}. If Jx = 0, then in 
view of 2 1 we have ft e T2. If J2 = 0, then 2.2 yields that ft e T. 

Suppose that Jx + 0 * J2. For each jeJ2 there is {gi/}i6/0) ^ G s u c n t n a t 

fty = Aieiu) Ow T n e n o n e ° f t n e following conditions is valid: 

(0 Ajej2jeiu) 9ij = ft» 
(ii) there exists c e H with ft < c such that gu > c for eachj e J2 and each i e l(j). 
Assume that (i) holds. Then he T2. Next, suppose that (ii) is valid. Then the set 

J3 = {j e Jx: hj < c] is nonempty and ft = AJ<=J3 hj. Thus 2.2 yields that ft e T 
Analogously we can verify that the assertion dual to 2.3 also holds. Hence we have 

2.4. Corollary. T is a closed sublattice of H. 

2.5. Lemma. Tis a subgroup of H. 
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Proof. If k e {I, 2} and x, y e Tk, then clearly x + y e Tk. Let x e Tt and >' e T2. 
Hence there are {x,}ie/ = G and {y/}yGj r= G such that x = V«6/ *,- and j> = Ajej yy 
Then 

X + y = (Vie/ X,) + (A;eJ y/) = AjeJ ((Vtef *l) + >',) = 

= AyejVtef(^i + y;)-

Thus in view of 2.2 we infer that x + y belongs to T. Next, if x e Tl9 then — x e T2; 
analogously from x e T2 we obtain that — x e Tx. 

2.6. Lemma. T = H. 

Proof. This follows from He C(G) and from Lemmas 2.1, 2.4 and 2.5. 

2.7. Lemma. Tx = T2. 

Proof. It suffices to verify that Tx ^ T2. By way of contradiction, assume that 
there is h e Tx such that h does not belong to T2. Hence h <£ G and there is an element 
ce H with h < c such that no element g' of G satisfies the relation h < g' < c. 

Suppose that hf e H and h < h' < c. Then neither ft' e Tx nor ft' e T2 can be 
valid, which contradicts 2.6. Therefore the interval [ft, c] of H is a prime interval. 
By applying the translation \j/(t) = t + ( — c + ft) (where / runs over H) we obtain 
that [i//(ft), ^( c)] is a prime interval in H as well; clearly i/̂ (c) = ft. This shows 
that ft does not belong to Tl9 which is a contradiction. 

2.8. Lemma. Let heH. Then there are X,Y ^ G such that supK = ft = inf Y 
holds in H. 

Proof. This is a consequence of 2.6 and 2.8. 
Now let us investigate the relations between the lattice ordered groups m(G) and H. 
Let tem(G). Put Xx = {g e G: g ^ t} and Yx = {g e G: g = t}. Then in view 

of 1.3 in [2], the relations 

(a) A(y - x:xeXl9 ye Yx) = 0, 

(b) A(-x + y:xeXl9 yeYx) = 0 

are valid in G. 
Let h0e H, h0 ^ y — x for each xeXx and each y e Yt. If ft0 > 0, then in view 

of 2.8 there is x0 e G with 0 < x0 ^ h0. Hence x0 ^ y — x for each x eXx and 
each yeYl9 which contradicts (a). Thus the condition 

(ai) A(y - x: x e Xl9 y e Yx) = 0 

is valid in H. 
Similarly, the condition 

(bi) A(-x + y:xeXl9 yeYi) = 0 

holds in H. 
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Next, by virtue of the conditions ( a j , (bx) and in view of the fact that H is m-

complete there is ht e H such that the relations 

supXj = ht = inf Yt 

hold in H. Put <p(t) = hx. 

It is easy to verify that for ti9 t2e H the equivalence 

t1 = t 2 o cp(tt) g cp(t2) 

is valid. 

Let h e H. Next, let X and Ybe as in 2.8. Again, because m(H) = H and in view 

of 1.3 in [2] the conditions (a x) and (bt) hold for X and Yin H. This yields that the 

conditions (a) and (b) are valid in G for X and Y. Thus there is tt e m(G) such that 

supX = tt = inf Y 

is valid in m(G). Then we clearly have <p(t^) = h. Hence <p is a surjection. 

Let t2> t3 e m(G). There are X2,X3 .= G such that the relations 

t2 = supX2 and t3 = supX3 

hold in m(G). This yields that 

<p(t2) = supX2

 a n ( * <p(t3) = supX3 

are valid in H. Next, we obtain that the relation 

t2 + t3 = sup [x2 + x3: x2 eX2 and x 3 e X3) 

holds in m(G) and that 

<p(t2) + cp(t3) = sup {x2 + x 3 : x2 eX2 and x3 eX3} 

is valid in H. Thus 

(p(t2 + t3) = ^(r 2) + cp(t3). 

Clearly <p(a) = g for each a e G. 
Summarizing, we have the following result (which implies that (*) holds): 

2.9. Theorem. Let G be a linearly ordered group and let He C(G). Then there 

is an isomorphism <p of m(G) onto H such that <p(g) = g for each g e G. 
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Súhrn 

O ZÚPLNENIACH LIEÁRNE USPORIADANÝCH GRUP 

JÁN JAKUBÍK 

Každej zvázove usporiadanej grupě G prislúcha trieda C(G) zvázove usporiadaných grup, 
ktoré sú v istom zmysle vytvořené grupou G. V tejto poznámke sa vysetrujú vzťahy medzi C(G) 
a zúplněním G v případe, že G je lineárně usporiadaná grupa. 
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