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AN AVERAGING PRINCIPLE FOR STOCHASTIC
EVOLUTION EQUATIONS
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Summary. In the preseat paper integral continuity theorems for solutions of stochastic partial
differeatial equations of evolution type with small parameter are established. These equations
are treated in the framework of the semigroup approach, the equations driven by a Wiener process
with nuclear incremeatal covariance operator, those driven by a cylindrical process and the
equations of DaPrato-Zabczyk’s type being investigated parallelly. As a preliminary result.
a fairly general existence theorem for the equations driven by the cylindrical Wiener process is
established.

AMS Classification: 60H15.

Kevwords: stochastic partial differential equations, infinite-dimensional Wiener process,
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From the early sixties some attention was paid to extending the methods of
averaging from the ordinary differential equations with a small parameter to the
stochastic ones. The first theorem establishing convergence in quadratic mean
appeared independently in the papers [5], [15]. An alternative approach concerned
with weak convergence of processes was developed by Khas’minskii [6], [7], for
recent results see e.g. [13].

The averaging of stochastic partial differential equations of hyperbolic type is
dealt with in the paper [10], however, no proofs are included and the results given
seem not to be general enough. In the present article, following methods from [15],
we establish the method of averaging for semilinear stochastic evolution equations,
which are treated in the framework of the semigroup approach to stochastic evolution
equations. (See [1], [8].)

Our methods can be applied both to equations driven by an infinite-dimensional
Wiener process with nuclear incremental covariance (see [1], [8] for basic definitions)
and to those driven by a cylindrical process (the theory of which can be found e.g.
in [3], [16]).

In the sequel we will adopt the following assumption:

(I) Let H, Y be separable real Hilbert spaces; let (Q, &, (#,), P) be a stochastic
basis; w(t) an (#,)-adapted Wiener process in Y with a nuclear incremental covari-
ance operator W; B(t) an (#,)-adapted cylindrical Wiener process in Y. Let p = 2.
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For any Banach space V, L?(Q, V) denotes the set of all Bochner measurable
V-valued functions with a finite norm ||f]|, = (E|f||§)"/". The space of all V-valued
continuous functions on the segment [0, T] will be denoted by %([0, T]; V). The
norm of the space L?(Q) will be denoted by |+[,. An (Y, H)-valued function F,
where #(Y, H) denotes the space of all bounded linear operators from Y to H,
will be called measurable if F(+) y is Bochner measurable for each y e Y. We will
make use of the following estimates.

Lemma 1. Let G;: [0, T] x Q » #(Y,H), i = 1,2, be (#,)-adapted and mea-
surable, G, with Hilbert-Schmidt values. Then there exists a constant C(p), de-
pedning only on p, such that

(i) ([8]; Prop. 1.9). If [T |G ,(1)]% dt < oo, then

j:c;l(t)dw(t) p§ C(P)('Dtr {G(r) WG, (r)*}],2 dr>“2 .

< clp) e wy e e [jalpar)

(ii) ([3]; Prop. 1.3). If [§ E[|G,(t)||5s dt < oo, then

J:Gz{t) dB(1) pé C(p) (le [G2(D)]lfs] 2 dt>1/2 ,

where ||+ ||us is the Hilbert-Schmidt norm of an operator, ||A||ks = tr(AA*).

Remark. In the quoted papers it is additionally supposed that p is an even integer,
but this is unnecessary. :

We recall a result on the existence and uniqueness of a mild solution of the
equation

1) dx(t) = (A x(t) + a(t, x(1))) dt + b(t, x(t)) dw(?),
x(0) =¢.
Theorem 1 ([8]; Th. 2.1). Let the assumption (1) be fulfilled, let A: D(4) > H
be an infinitesimal generator of a (C,)-semigroup S(t) on H, let a: [0, T] x H - H,

b:[0, T] x H— #(Y,H) be measurable functions and let there exist K > 0
such that for all te[0,T], x,ye H

@ Jat, %) — at, )] + [b(t. %) = b(t. )] < K[}x = »] .
® Ja(t, 0)] + o1, 0)] < K.

Let ¢ € LP(Q; H) be & ,-measurable. Then there exists a unique mild solution
of (1) in ¢([0, T]; L7(Q; H)).
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Remark. A mild solution of (1) is an H-valued (#,)-adapted measurable process x
with {7 [|x(¢)]? d < oo as., satisfying

“ t t
«(t) = S(0) o + f S(t — s) als, x(s)) ds + J S(t — s) bls, x(s)) dw(s)
0 0
a.s. for te [0, T]. By uniqueness we mean that any two solutions x,, x, are modi-
fications of each other, i.e. for every t € [0, T| we have x,(t) = x,(t) almost surely.
We can easily deduce an estimate

r;(\:g]”x(’)”p < (1 + ol

where the constant C* depends only on K, T, p, trW and sup {[[S(1)], 0 = ¢t <T}.

Since an analogous existence theorem appropriate for our purposes for equations
driven by a cylindrical Wiener process has not appeared (to our knowledge) in an
article published to date, we prove it here. In the course of the proof we will need
the following generalized Gronwall’s inequality.

Lemma 2 ([1]; Corollary 8.11). Suppose
1) < h(t) + f (= ) 1(s) ds
0
with h e LY([0, T]), g € L'([0, T]) both positive, g €[1, o], fe L'([0, T]). Then
1) = 1) + 3 (6 1)
where G is the Volterra operator given by G h(t) = [ g(t — s) h(s) ds. The series

on the right hand side converges in LY[0, T]) and there exists a constant L, de-
pending only on the function g, such that

o© T
Y G"h(n)]1dt < Lj |h(t)|* dt .
on=1 0

In particular, if h = 0, then f = 0.

|

Theorem 2. Let (I) be fulfilled, let A: D(4) —» H be an infinitesimal generator
of a (C,)-semigroup S(t) on H such that [{ |S(t)|s dt < co. Let a:[0, T] x
x H— H, b:[0, T] x H— Z(Y, H) be measurable functions satisfying estimates
(2), (3). Let ¢ € L?(Q; H) be F y-measurable. Then there exists a unique mild solu-
tion of

dx(r) = (Ax(r) + a(t,x(¢)))dr + b(t,x(r))dB(1),
x(0) =¢.

This mild solution lies in the space €([0, T]; L?(Q; H)). There exists a constant C*,
depending only on K, T, p, sup {||S(t)]|, 0 < t < T} and on the function ||S(*)|us:
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(0, T] - R,, such that
Jsup [x(@)], = C*(1 + [o],)-

Proof. We set M = sup {|S(t)], 0 < ¢t < T}. Let ¥ be the closed subspace
in ([0, T]; L?(2; H)) consisting of the (#,)-adapted functions, let [-[, be the
norm in %([|f[l¢ = sup {|f(t)],, 0 < t £ T}), let C; be constants depending only
on K, T, M, p and on the functions |[S(+)|[us. We introduce an operator

fx(t) = S(1) ¢ +ftS(t — s)a(s, x(s))ds + J"S(t — s) b(s, x(s)) dB(s) ,
x € 6. For each t € [0, T] we have 8x(t) e L?(Q; H), since

”Rx(t)”p = ”S(t) (p”p + J:”S(t - s) a(s, x(s))”p ds +
# €0 [[1150 = 956 <Dl s ) =

= Mlo], + Ci(1 + [x]o) +

£ G+ [x]) ( J:”S(t TS ds)”2< .

Obviously Kx(+) is (#,)-adapted. To prove that §x(+) is continuous we compute
for h >0

t+h

Sx(r s h) — Sx(f) = [S(h) — 1] Kx() + f S(t+h —s).

t

< a(s, x(s)) ds + f S+ b= 5) b5, x())dB(s) = I, + I, + I .

t

Using the strong continuity of S(¢), the integrability of [|x(#)||?, and the Lebesgue
dominated convergence theorem, we see that lim ||I,]|, = 0; further ||L,[, <
h—=0+

< MK(1 + [+]) h and
Il 5 € KO+ o) [ st ar)”

and the term on the right hand side of the inequality tends to 0 as h — 0+. For the
continuity from the left, we have (h > 0)

Kx(t — h) — Kx(1) = [S(t — h) — S()] ¢ +

[T s - 9as)s 4
[ st - 9 55 0560 -
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- Ji S(t — s) a(s, x(s)) ds —

- J" S(t — s) b(s, x(s))dB(s) = I, + ... + Ig.

The terms I,, I, Iy can be estimated in the same way as the analogous terms above;
s, = M [§ [|[1 = S(h)] a(s, x(s))], ds and the dominated convergence theorem
can be used. In order to estimate I we choose an orthonormal basis {¢;};2, of H,
concluding

t—hl

Iid], < c@)( j

0

jiM@J@VSO—h—Q*U—

1/2
— S(h)1* ]?|,/2 d5> =

t—h

< ([ S eI 5= 0= 97 1= SO e as)

o J=
Now

t

5 I x(9)* S~ B = )+ [1 = ST 3 05 5

o J=

< Gt + [s]eP £ 10 - 507 e

and for any J e N the right hand side term tends to O by the strong continuity of
the dual semigroup (S(t)*). Furthermore,

O CCEON R G ERIN e

s+ o 3,

s Cult+ [x?| 5 IS el ar

~h
lf"m-h-wqwmg

0

and this tends to 0 as J — + co. So we have shown that & maps ¥ into itself; further,
for x, y € € arbitrary we consider the difference

[Rx() - @), < j ;nsa — ) [a(s, %(6)) = a(s, y(5)]], ds +
+ C(p) ( [ | (e = 9 b 56) = 56, 5O il ds)"zé

t

< MK j ;nx<s> — YO, ds + Cp) K ( j IS( = 9)J2s %) -

0
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=l es) "< na ([ 1x0) - sz as) "+
) K ( [ 50 = I 1) = 6 d) ,

t
0
thus

@ 8x(t) — S¥()]2 < € j ;(1 St = 9)J2s) [%(6) = y(5)]2 ds -

Set f(+) = Cs(1 + [[S(+)||%s), then feL'([0, T]) and is positive; define iterated
kernels

1) ='rf(t—-s)f,,_1(s)ds, n>1,

Si(1) =1(1).

Now by induction we prove that
6 10 - S0k s [ 40— 9160 -0l ds.

For n = 1 this is true by (4). Supposing (5) is valid for n — 1 we have

[8mx(t) = SyO2 < [ £ = O 87 1x(s) = K193 ds <

IIA

(e =9 [ s = ) 1) = s 00 -

= [[(Jse = 9es = 9 ) 1) 0l r =

) (J Sle= = 9)f1mi0) dv) Ix() = Y@ dr =

- ";fm — 7 |x(r) = ¥ o7

Let us choose 8 > 0 such that [{ e™#f(s)ds = Q < 1. It follows that

{5 e7%f,(s) ds < Q" (this can be easily seen by induction or found in [1], Lemma
8.10). Thus we have

Ise) ~ @l < [0t = ) [x6) ~ sl 85 =

= f (e = 5) [x(s) - y)E ds

0
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t
< e’“j e PUIf(t — s)ds||x — y|,
0

that means |R"x — &"y[; < ¢’TQ"|x — y|2.
Fix an arbitrary x, € ¢, then the sequence {R"xo} ”_, is Cauchy in €. Let xe
€ 4([0, T]; L7(Q; H)) be its limit, then x is an (& ,)-adapted process satisfying

x(t) = S(t) ¢ + J"S(t — s)a(s, x(s)) ds + ftS(t — 5) b(s, x(s)) dB(s),

0
thus being the desired mild solution.
The uniqueness of the mild solution follows easily by Lemma 2. Finally, we can
easily obtain the inequality

(1 + [x(0)])? = Co ((1 + Jol)? + j St =) (1 + [x)],)? ds)

and Lemma 2 yields the estimate for sup ||x(¢)[,. Q.E.D.

Following Gikhman’s observation [4] we deduce the theorem on averaging from
an “integral continuity theorem”. First, we will treat the case of the Wiener process
the incremental covariance operator of which is nuclear. We denote by %(Q, B) the
set of all closed operators A: D(4) » H, cl(D(A)) = H, the resolvent R(4, &) of
which is defined for all ¢ > B and fulfils the estimate |R(4, &)/ < Q(¢ — B)™7 for
allje N and ¢ > B. Each operator in %(Q, B) is an infinitesimal generator of a (C,)-
semigroup. Let us adopt the following assumptions.

(IT) Let A, € 4(Q, ) for a € [0, 1]; let S,(r) be the semigroup generated by A,.
Suppose that there exists ze %, Rez > B, such that lim R(4,, z) x = R(4,, z) x

a—=+0+
for all xe H.
Note that according to Kato’s theorem ([9]; Th. IX. 2.16) the hypothesis (II)

implies lim S,(f) x = So(f) x for each x € H uniformly in ¢ from compact intervals.
a—=0+
(1) Let a,:R, x H—~ H, b,:R, x H—> #(Y,H), «€[0, 1], be measurable
functions satisfying the Lipschitz condition: there exists K > 0 such that for all
x,yeH,ae[0,1],teR,

(6) la.(t %) = au(t, V)] + [Balt, x) = balt, )] = K> = ],
(7 la(t, ) + [o(1, 0)] = K.

(IV) Let ¢, € L?(Q; H) be & ,-measurable, « € [0, 1].
(V) Suppose that there exists 4, > 0 such that for all xe H and ¢y, t, € Ry
such that 0 < ¢, < t, < t; + 4, we have

(8) a{’iglj‘ S(t2 = s) [a(s, x) ao(s, x)]ds =0,

) im f (tr {[Bulss %) — bo(s, )] W[ba(s, x) — ba(s, )]*})2ds = 0.
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Theorem 3. Let the assumptions (I), (I1), (I1I), (IV), (V) be fulfilled. Suppose
that lim ||@, — @qf, = 0. Denote by x, the mild solutions of the equations
a=0+

(10) dx,(t) = (Ay x,(1) + a,(t, x,(1))) dt + b,(1, x,(1)) dw(¢),
x(0) = o,.

Then for every T > 0,
lim sup]”xa(t) - xo(1)[, = 0.

a—0+ te[0,T

Remark. If T is fixed a priori we may assume that (6), (7) are fulfilled only for
te[0,T]and (8),(9) for0<t; S t, S T t, — t; < 4.

Proof. Fix T> 0, n > 0. Set C; for constants depending only on K, T, p, tr W,
9o and on M = sup {|[S,(¢)||, € [0,1], te[0, T]}. (Obviously M < oo since
IS.(0] < @)

If x, is a mild solution of the problem

dx,(t) = (4, %(1) + a,(t, %,(1))) dt + b,(t, x,(1)) dw(t),
fa(o) = (pO H

then
%(1) — x,(t) = S,(t) [¢o — @.] +

+ j t St — 5) [a.(s, %,(5)) — au(s, x,(s))] ds +
+ Jt Sa(t = ) [ba(s, %5)) — ba(s, x.(s))] dw(s), te[0, T],

hence using (6) we have
t
1) ~ =01z 5 €4 (o~ onlz + [ 12 = 0l 5);
o
applying Gronwall’s inequality we obtain

lim sup ||x,(t) — x,(1)], =0,
a0+ te[0,T]
so we may (and will) assume that ¢, = ¢,, & > 0.
Theorem 1 implies that x, € ([0, T]; L?(22; H)). Using this uniform continuity we
can choose a partition {r;}}_, of the interval [0, T] such that for i = 1,..., N and
te[t;-y, ;] we have

(11) [xo(t) = xo(zi- )], < 7.

We may further assume that max {t; — t;-y, i = 1,...,N} < min(n, 4,). Set
T(t) = max {i’ T é t}) U'(t) = 1r(t)' We have
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x,(1) = xo(t) = (8,(1) — So(1)) o +

+ J‘;‘{Sa(t — 5) a,(s, x,(s)) — So(t — 5) ao(s, xo(s))} ds +

4
+ f (S.(1 = ) bu(s, x.(5)) = Soft = 5) b(s, xo(s))} dw(s) =
0
= Rl + R2 + R3 .
As we have remarked, the hypothesis (II) implies

lim sup]”[Sa(t) — So(t)] ¢o(w)| = 0 for almost

. a=0+ te[0,T

every w € Q, hence the Lebesgue dominated convergence theorem ensures the exis-
tence of a; > 0 such that

s{t:)pT”[Su(t) — So()] @ofl, £ n forall ae(0,a,].
te[0,T]
Further,

R, = t( {S(t = 5) a,(s, x,(s)) = So(t = 5) ao(s, xo(s))} ds +

+- j :(')Su(t — ) [aus, x.(s)) — aus, xo(s))] ds +

(1) Pty

+i§,1 Si(t = ) [au(s, xo(s)) — a,(s, xo(ti=1))] ds +

Ti-1
w(t) (i

+ ;; Syt — ) [au(s, xo(ti- 1)) — ao(s, xo(ti—1))] ds +
) NN IERERAER) BCSOmES
+ ;ﬁ: i So(t - S) [ao(S, xo(Ti—l)) - ao(s, XO(S))] ds=1, +... +I.

Now, using (7) and the estimate stated after Theorem 1, we obtain

1l = M [ (o 56D + Laolss xe(5)],) ds <

a(t)

< 2MK J '( (1 + [x()], + [x(5)],) ds < Ca(1 +

+ [@ol,) (t — o)) < Can;

t

L], a(t)@-”/v(j 5.t = $) [aus> x.(5)) —

0
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~ a,(5, xo(s))] n"ds) "<
s 1ok [[ o) = 9 )

According to (11) we can estimate
(1) T
ol 53, [ 1.0~ ) Lo xoe) = o xofei- Dy 05 5
EL o

N T
=< MK.Z,l [x0(s) = Xo(zi=y)[, ds < Can

Ti-1
by analogy |Is[, < Can.
Further,

”ISHP = ”[S (t 5) — Solt — s)] ao(s, xO(ri-l))”p ds =

re[0,T

= Z j I sup ”[S (r) = So(r)] ao(s, xO(Ti—l))” lp ds;

but for any s e [t;-4, 7;] and almost every w e Q

lim sup "[S (r) = So(r)] ao(s, xo(ri-1) (@))] =

=0+ re[0,T

and we use again the dominated convergence theorem of Lebesgue to obtain a; > 0
such that for a € (0, a,] we have |Is], < 5. Finally,

nun,,éMi’g j St — ) [ad(s, %o(ti-1)) — aos, %o(zi-1))] ds

b

hence, using the assumption (8) and the Lebesgue dominated convergence theorem,
we can find a3 > 0 such that ||I,]|, < » for a € (0, a5]. Now we need to estimate the
term Rj.

Ry = [ {Su(t = ) bu(s, %(5)) = So(t = $) bo(s, xo(5))} dw(s) +

a(t)

a (1)
; J TS 9 o x) = Lo 5o 06 +
+ '[ "84t = 5) bu(s. %o(s)) = Sot — 5) bols, xo(s))} dw(s) =

=K1+K2+K3.

Employing Lemma 1 we can easily deduce
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[K4], = C(p) (ew)''2 (¢ — o(r))27 1.

([ It = )8t ) = ot = ) s xooD d) <

(1)
= Cs(t - a(t))”z < Ca'l?y

1l = e[ e - o)
Set now Z(s) = S,(t — s) b,(s, xo(s)) — So(t — ) bo(s, xo(s)); using the estimate (7)

we can easily prove sup {|Z(s)|,, 0 £ s £t < T} £ C,, where the constant C,
does not depend on «. We have, by Lemma 1,

1], = ) | Ve 20wl s) s

0

IIA

0 ( ¥ j "t (St = 5) [bulss %ol) -

i=1 Tie1

= ba(s, xo(ti-1))] WZ(s)*}],2 ds +

+:i: Mf [tr {S,(t — 5) [ba(s, xo(Ti=1)) —
= bo(s, xo(ti-1))] WZ(s)*}|/2 ds +
(1) ™

3 [ (040 = 5) = Sult = )T bl xo(ti-1)) WZ(E) Yy 05 +

Jri-y
W)

£ e (5= ) ool () -

) 172
= b5 W2 ds) =
=C(p)(Jy + ... + J)12.

We now proceed to estimate the terms Jy, ..., J,.

g aewy, [ 1180 - 5) b5, x66) -

- Ti-1

= b, Xo(Ti- )] [ZG)] 112 ds <
o3 [ 1.0t = 5) [0, 5o6) = bl 3lei- Ny 126, 0 =

Ti=1

(1)
< ttWMKC, Y, [xo(s) = xo(zi= 1), ds < Cen,
i=1

Ti-1

IIA
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analogously J, < Cgn. Let {e,}7-, be an orthonormal basis of Y consisting of

eigenvectors of the covariance operator W, i.e. W =) Ade; @ e;. Then relying on the

i=1
formula tr(UVS*) = tr(S*UV) valid for any S, U € #(Y, H) and Ve #(Y), V nuclear,
we obtain

5=y J ]Z(Z(s)* [S.(t = ) = So(t — )]

i=1 Tio1 Jj=

< bo(s, xo(Ti-1)) Wej, €;3],2ds <

<zj‘2Kmmwo—ﬂ—&o—m

i l'l—

- bo(s, Xo(ti- 1)) Wej, €312 ds <

<§j‘§nMao—@—&o—m.

i-1 /=1

< bo(s, xo(tiz1)) €5, | Z(s) 5], ds <
SGY '[ Zl IES.t = s) = Sot = )1 bo(s, xo(ti-1)) & ds -

i=1J¢yJ=

For arbitrary i = 1,...,N

r zwmo = Syt = 9)] bols, xo(ti- 1)) e, ds =

T J=

re {o,T

gj;/l f | 50 JIS.() = So(r] bofss (i) e I, ¢

and for arbitrary J € N the term on the right hand side of the inequality tends to O
as o - 0+. Further,

Z 4 Jl ||[Sa(‘ —5) = So(t = )] bo(s, xo(7;-1)) € des =G Z Ajs

i=T+1 j=I+1
and this is arbitrarily small for J sufficiently large. But this means that there exists
as > 0 such that « € (0, o ] implies J; < 7.

Set Qi(s) = S,(t — 5) [bals, Xo(Ti=1)) — bo(s, Xo(ti-1))]; the estimate sup {|| Q,(s)[,
i=1,...,N;se[r;_y, 7]} £ Cyo can be easily checked. Now

()

J, = Z J‘” |tr {Qu(s) W[S,(t = 5) by(s, xo(s)) —

— u(t = 5) o5, Xo(s)] oz ds <

(1)

'<z " e {04(s) WSt = 9) [buls, xofs)) —

Ti-1

= by(s, xo(1-1))]1*}]py2 ds +

251



(1) fr;
+ .;4 ltr {Qi(s) W Qi(s)*}],/2 ds +

(1) Pt
+ 3 |l () WISt — 5) = Solt — 9)].
- bo(s, xo(‘fi— 1))]*”17/2 ds +

(1) Pt

+,.Z |tr {Qi(s) W[So(t — 5) [bo(s, xo(ti-1)) —

JTi-1

— bo(s, xo()]1*}pzds = Js + ... + Jg .

As before we can obtain J5 + Jg < C;,n and there exists a5 > 0 such that J; < 7
whenever « € (0, as].
Further, setting U,(s) = b,(s, Xo(;-1)) — bo(s, Xo(;~1)), we have

(t) pr;
Je = M*Y |tr {U(s) WU (s)*}],/2 ds £
=1

Ti-1

= Mzii(ri — )PP (E .[:_,(tr (U(s) WU (s)*})P? ds>2/”§
< MZT(p-Z)/p'i::1 (E J" (tr (UL(s) WU ()4} ds)m

By the assumption (9) for all i = 1, ..., N and almost all w € Q

Jim f " (e {U(s) (0) WUs) ()*})"2 ds = 0,
hence applying the dominated convergence theorem we obtain og > 0 such that
Jg < n for every a € (0, o).

Combining all the deduced estimates, we have for « small enough

IRl 5 o (7 + ([[ 1) = i 85) 7).

The proof is complete, for we have found a constant C,; depending only on T, M, K,
trW, p, | @o], such that for an arbitrary 5 > 0 there exists @, > 0 such that for
a e (0, %)

50 = %0,  Cus (s + ( [ JECEREC d))

It remains only to use Gronwall’s lemma. Q.E.D.

With Theorem 3 available we can establish the averaging theorem without any
difficulties. We will need the following assumptions.

(ITa) Let A: D(A) - H be an infinitesimal generator of a (C,)-semigroup S(t)
in Z(H).
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(Ia) Let a:R, x H—> H, b:R, x H— £(Y,H) be measurable functions
satisfying the estimates (2), (3) whenever t > 0, x, y € H.

(Va) Suppose that there exist Lipschitz functions a: H —» H, b: H - Z(Y, H)
such that for some 4y > 0 and all xe H and t,t,eR, suchthat 0 < ¢, £t, £
<t, + 4, we have

(12) lim j :s(z2 — ) [a (;:- , x) - a(x)] dr=0,

(13) lim % j :(tr {[6(r, ) — B()] W[b(r, x) — B(x)]*})"2 dr = 0.

T

Set w,(f) = ¢~ /2 w(et), w,(r) is also a Wiener process with the incremental
covariance operator W.

Theorem 4. Suppose that the assumptions (I), (IIa), (Illa), (IV), (Va) are fulfilled.
Let x,(t), e > 0, be the mild solutions of the equations

dx,(t) = e(A4 x,(t) + a(t, x,(1))) dt + &'/2b(t, x,(£)) dw,(?) ,
x(0) = o,.
Let y(t) denote a mild solution of
dy(t) = (4y() + a(y(9)) dt + b(y(1)) dw(o) ,
¥(0) = ¢o.
I{_l.i:l le. = @oll, = O then for any T > 0

t
()
3
Proof. The operator 4 is the infinitesimal generator of the semigroup {S(et),
t 2 0}, hence

x(t) = S(et) @, + € j;S(e(t — 5)) a(s, x(s)) ds +

lim sup
e=+0+ te[0,T]

=0.
P

+ &!/? J.;S(s(t — 5)) b(s, x,(s)) dw,(s) .

Setting £,(f) = x,(t/e) we obtain

(i) = S(t) 0., + -[ "S(t - 5)a (Z ;e,(s)> ds +

0

+ j "S(t - 5) bc : xe(s)) dw(s) »

0
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i.e. £,(¢) is a mild solution of

d2(1) = (Axc(t) +a (: , ﬁs(t)>> dt + b(: , Qs(t)> dw(t),

i5(0) = @,

It follows that we can estimate ||£,(t) — y(1)|, using Theorem 3, if we set a,(t, x) =
= a(tle, x); by(t, x) = b(tfe, x), ¢ >0, and ao(t, x) = a(x), bo(t,x) = b(x). It
remains to show that under the hypothesis (13) the assumption (9) is fulfilled, but

LA )y

(1) j " (Db, %) — B

ty =t e

. W[b(v, x) — b(x)]*})"* dv,
further, (13) implies

lim ifﬂTJrT(tr {[b(s, x) — b(x)] W[h(s, x) — b(x)]*})”*ds = 0
B

T o0 T

for each f = 0 and the result follows. Q.E.D.

Remark. If dim H < o and w(t) is a standard Wiener process in H then the
assumption (13) is equivalent to the assumption

T

(14) lim if [b(t, x) — b(x)|*dt =0, xeH,
T-o T 0

which was adopted in [5], [15]. For H infinite-dimensional, however, (14) is stronger

then (13), as the following trivial example shows: H = /2, b(t,x) = B, for te

€ [n -1, n) and arbitrary x € H, where

Byt 507, (9192 o) (0, 00050, Yusgs Vugaso-o) -
Let w(t) be a Wiener process in /2 with a nuclear covariance operator W = Y. 4,e, ®
n=1
® e,, where {e,} 7, is the standard orthonormal basis of £2. Setting b = 0 we have
for Ne N ‘

1N . __1 N i o _
- J te (b ) Wh(1,x)*) dt = 3 tr (BWE)

0

1N )
=S Xk DA+ Y A,

N« k=N+1

the first term converging to 0 according to Kronecker’s lemma, the second as a re-
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mainder of a convergent series. On the other hand,

ﬂ:”B(z,x)uz dr=1.

It is worth noticing that in the papers [5], [15] the authors have shown that it does
not suffice to assume only

fim 1 f b1, x) di = B(x).

T- o

v

Analogously to the averaging theorems for both the ordinary differential equations
and the stochastic ones in a finite-dimensional space one would like to replace the
assumption (12) by a more natural hypothesis

T

(15) fim lf a(t, x)di = a(x), xeH.
T- oo T 0

(See [15].) If dim H < oo then (12) and (15) are equivalent as can be easily shown

by integrating by parts. The following lemma states that for a wide class of equations

(roughly speaking, for parabolic ones) this equlvalence holds also in the infinite-

dimensional case.

Lemma 3. Let H be a separable Hilbert space over R. Let a: R, x H — H be
a function such that for any x e H

(i) a(., x) e L,([0, o0); H);

loc

sup {||a(s, x)|, se(0,0)} =K, < 0,

T .
(16) (ii) lim 1 a(s, x) ds = a(x) exists.
T—booT 0
If S(t) is a holomorphic semigroup in Z(H), then for any xe H and t, t, € R,
such that 0 < t; < t, < oo we have

lim J':s(tz — ) [a (Z x) - 5(x)] ds=0.

Proof. We may assume a = 0 without loss of generality. Let us choose x € H,
0=ty =t, £ T< oo arbitrary. By the holomorphicity of the semigroup S(t) we
have S(+) e ¢*((0, T]; #(H)), moreover there exists a constant Q such that
I(d/ds) S(s)| = @s™", se(0, T]. (For the definition and basic properties of holo-
morphic semigroups see e.g. [9], § IX.1.6.) Set

t
A(t,x)zja(s,x)ds; M = sup (S|, 0t = T).

0
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Under the hypothesis (16)

t/e
(17) lim €4 (E , x) = lim sJ. a(s,x)ds = 0

g0+ & e—0+ 0

for each t > 0. Let § > 0. Setting ¢ = ¢, — ¢, we have

[t 90 (2o = [0 = 956004 -1 90

+ j $*S(s)a(e™(t, — s), x)ds = J, + J,.
0

Now ||[J,] £ MK, [§(1 — s°)ds = MK.c(1 — (6 + 1)™* ¢’), and so J, tends to 0
as § — 04. The proof will be complete if we show that lim J, = O for arbitrary

£>0+
> 0.In order to see this we first realize that the function s —» s°S(s) A(e~'(t, — ), x)

is absolutely continuous on [g, c] for every g > 0 (this fact can be easily checked
by using the definition of the absolute continuity). Consequently

(18) [s° S(s) A(e™'(t, — 5), %)); = ch—s (s° S(s) A(e~*(¢, — 5), x)) ds.

vg
Furthermore, for almost all s € (0, c]

ldis (° S(s) A(e™ (25 — 5), %))

< [ sG]

-+

éa(e'l(tz — ), %)

+ ||6s°~" S(s) + §° dg S(s)|| A~ (12 = 9), %) = 1 MK, +
s €

+ chx((SM + Q)s* 1.
€

The term on the right hand side of this inequality is integrable, and thus (18) holds
for g = 0 as well. So we may compute J, integrating by parts, obtaining

J, = = S(c) [eA(e™ 1y, x)] + .r d

— (s° S(s)) [eA(e~*(t, — 5), x)] ds.
o ds

Using now (17) together with the fact that the function under the integral sign is
bounded by const. s’ (the constant independent of &!) we have the desired equality
limJ, = 0. Q.E.D.
e~+0+

Remark. If we treat the equation (10) with the operator 4, independent of « and
generating a holomorphic semigroup we can obviously weaken the assumption (8)
in the way just mentioned, i.e. we may assume only

13
lim jz[a,(t,x)—ao(t,x)]dt=0, xeH, 05t;£t, <t + 4.
ty

a—=+0+
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If A, depends on 2 we must realize that the constant Q, in the estimate ||d/dt S,(1)| <
< Q,t7', te(0, 1], depends on the domain of analyticity of S,(+). In order to for-
mulate an appropriate analogue of Lemma 3 we must assume in addition that there
exists y > 0 independent of o and such that all S,(+) have a holomorphic extension
in{¢eC,Reé >0, |arg gl <y < mf2}.

Up to now we have dealt with the Wiener process with a nuclear covariance
operator. However, as we have already mentioned in the introduction, the situation
for the cylindrical Wiener process does not differ substantially. Let us adopt the
following assumptions.

(Ilc) Let A: D(A) » H be a generator of a (C,)-semigroup S(¢) on H such that
15 IS(t)]|fis dt < 0.

(Vc) Let there exist 4, > 0 such that for all xe H and t,, t, € [0, T] such that
t, — t; £ A, we have

lim 'rZS(tZ —s5) [a,(s, x) — ao(s, x)] ds = 0,

a—0+ t

lim J‘u“ba(s, x) — bo(s, x)[[Pds = 0.

a—=0+ t

Theorem 5. Suppose that the assumptions (1), (Ikc), (IIT), (IV), (Vc) are fulfilled.
Denote by x,(t) the mild solutions of the equations

dx,(f) = (4 x,(t) + a,(t, x,(1))) dt + b,(1, x,(t)) dB(r),
%,(0) = @,.
If lim ||@, — @of, = O then

a—>0+

lim sup ||x,(f) — x,(t)], = 0.
a-0+ te[0,T]

Proof. We can repeat the proof of Theorem 3 almost step by step, so we point
out only the differences. We adopt the same notation as in that proof; now the
constants C; may also depend on [[S(*)|us.

Again we may assume that ¢, = ¢¢, « > 0, relying on Lemma 2 instead of
Gronwall’s inequality. We choose a partition {r;}}-, fine enough to ensure
I6 |S(0)|%s dt < n?, where h = max {r; — t,_(, i = 1,..., N}.

The bounds for the terms R,, R, remain valid, I, being the only term to be
estimated in a different manner:

Vel = J ;”S(t = ) [afs, %(6)) = a.fs, xo(s))]], ds <
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We obtain a constant a; > 0 such that for o € (0, o]

umm+wm§a5@+q1a@-%wm§”y

Further, we split R; = K; + K, + K3 as before and estimate

Kil, = t S(t — s)| b,(s, x,(s)) —
K] c<p)< Lml um(t ) [ba(s> %,(5))

oS, xo(s))]slor2 ds) <
=< C16(1 + ”(poup)(J‘t—c(t)

e, = € [ 1150~ 90650~ 65 il )

1/2
1SG)]2s ds) < Com;

0

s ko) ([ 150 = 9l 1) = 9 30s)
For the term K; we have

1K1, < C(r) (z j 118G = 5) [ %0(s)) —

Ti-1

= buls 2Dl 5) 1 £ ¥3.0),
- ( by f " IS( = ) D5 %0(5)) = Bl oltie )]sl ds +

i=

-1

#3180 = 96 () = Bl e Ml +

T

+i:_£1) ) I “S(t — ) [bo(s, xo(ti=1)) — bo (s,)'co(s))]“f;slp/z ds)”z =

=./3C(p)(J, + J, + J3)"2.

It can be easily shown that J; + J; < Cygn’. Moreover, if {¢;}i=, is an orthonormal
basis of H, then

3 [ 150005 walei-) B (s xale- DT

Jz = Z
i=1Jq_,i=1
S(t = 5) *e;]|*[2 ds =
N T 0
T [0 5 ks le) = ol s

. S(t - s)* ej”2|p/2 dS .

258




Now for an arbitrary J € N

j” Ill [[Bo(s, xo(zi-1)) = bo(s, Xo(Ti-1))]* S(t — s)* ejuzlp/Z ds =

ti-g /=

I\

IM? J 1, xo(mi-1)) = bols, xo(ri- )| ds =

Ti-t

Ty
< JM2T'-2/vE f 16a(5, xo(1-1)) = Bo(s> Xo(Ti— )| ds)?

Ti~y

and the Lebesgue dominated convergence theorem together with the assumption
(Vc) yields that this term tends to 0 as « — 0+. Further,

[ 5 100 xofere) = ol xofei-)1* S0 = 5 e ds

lIA

J ) jo 15 = )% ]2 [ba(5, xo(ei-1)) — bols, xo(ri- )| ds <

IIA

Cro j h §+1||S(t — 5)* o] ds

-y I

and this term is arbitrarily small for J sufficiently large; that is; we can find ag > 0
such that J, < #? for « € (0, g]. Combining all the estimates we obtain

IRl < Cuo(n+ (| 180 = 9 1) = xo()2 ds)”’) ,

0

hence
I%.(6) = xo()[2 = Cao (nz ¥ j St = 9 5l6) - xo(5)|? ds),

where f € L'([0, T]) and is positive, thus using Lemma 2 we complete the proof.
Q.E.D.

The ““cylindrical version” of Theorem 4 is a consequence of Theorem 5 just in the
same way as Theorem 4 follows from Theorem 3.

As the last topic we will briefly consider an interesting and important modification
of the theory of semilinear equations driven by a cylindrical Wiener process sug-
gested by G. DaPrato and J. Zabczyk ([2], see also [14], [17], [18]). They investi-
gated the problem

(19) dx(t) = (4 x(r) + f(¢, x(1))) dt + dB(1),
x(0) = ¢,

where the state space V, on which the nonlinear coefficient f is defined, is not identical
with the Hilbert space H on which the cylindrical process B(t) is defined. To be more
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correct, let us formulate this problem in the following precise form. First, let us
introduce some dssumptions:

(z1) Let H be a real separable Hilbert space, V a Banach space embedded con-
tinuously and as a Borel subset into H. Let A: D(4) - V, D(A4) < V, define a (C,)-
semigroup S(t) on ¥, extendable to a (C,)-semigroup So(f) on H with the infinitesimal
generator A,. Let B(t) be an (#.)-adapted cylindrical Wiener process in H, defined
on a stochastic basis (2, #, (#,), P).

(Z2) Let Ay: D(4,) — H be self-adjoint and negative definite. Suppose that the
operator A;' is nuclear and that the Gaussian measure N(0, —34;") (with the
mean 0 and the covariance operator —%Ag‘) on H is supported by V.

The nuclearity of Ay " implies [{ [|S(t)|3s df < oo forany T > 0, thus the process
2(t) = [ So(t — s) dB(s) is defined correctly. Let us further assume:

(Z3) The process Z(t) has an (&,)-adapted modification Z(t) with V-continuous
trajectories.

First we mention a simple existence result for the equation (19).

Lemma 4. Let (Z1),(Z2),(Z3) be fulfilled. Let the function f:[0,T] x V>V
satisfy
sup sup |x — y|y " | £(t, x) = £t y)|v < o,

te[0,T] x,yeV

sup || f(2,0)||y < .
te[0,T]

Let ¢ e L?(Q; V) be F,-measurable. Then there exists a unique V-valued mild
solution of (19) in ([0, TT; L*(2; V)).

Remark. Much more general existence results (for the autonomous case) can be
found in the papers quoted above. The last assertion of our lemma, however, seems
not to have appeared explicitly yet.

Proof. The proof is standard and resembles e.g. that of Theorem 1, so we only
sketch it. We define an operator

fx(f) = S() o + f "S(t — 5) £(s, x(s)) ds + Z(1)

wanting to prove that this operator maps the subspace of the (#,)-adapted functions
in ¢([0, T]; L?(2; V)) into itself and is contractive if that subspace is endowed with
an equivalent norm |[y| = sup {e”*(E|y(1)[§)"/", te[0, T]}, & > O sufficiently
large. The only difficulty appears when checking that &x(+) is continuous, because
we need to show that Z(*) € ¢([0, T]; L?(2; V)). To this end, we choose r e [0, T]
and a sequence {h,} of real numbers with the limit 0 arbitrarily and realize that Z(r +
+ h,) — Z(r)is Gaussian in V. Indeed, in [17], Prop. 3, it is proved that if the assump-
tions (Z1), (Z2) hold then there exists a sequence IT, € £(H, H) of self-adjoint op-
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erators with finite-dimensional ranges Rng IT, < V, such thatlim |IT,x — x|,, = Ofor

arbitrary x e V. K(r, k) = Z(r + h) -- Z(r) is Gaussian in H, i.e. <K(r, k), hy is
a real Gaussian random variable for each h e H ({.,.) denotes the scalar product
in H). Let x* € V* be arbitrary. Since dim Rng IT, < oo, x* € (Rng IT,, |-|H)*, hence
there exists y, € H such that x*(y) = <y, y, for all y € Rng IT,, so x*(IT,K(r, k)) =
= (IT,K(r, k), y.> = (K(r, k), IT,y,>, i.e. x*(IT,K(r, k)) are Gaussian and tend to
x*(K(r, k))a.s.as n - oo, hence in L%(Q) (see [ 12], Th.I.1). Consequently, x*(K(r, k))
is Gaussian. By the assumption (Z3)

(20) ’1‘111:0 IK(r, K)ly =0 as..

The random variables K(r, k) are Gaussian and centered, which together with (20)
yields the existence of « > 0 such that

sup E exp («|K(r, k)]}) < o
keN

(this strengthening of the theorem of Fernique is proved e.g. in [11], p. 148; we
may also apply Prop. 1 in [14]), so the functions |K(r, k)||} are uniformly integrable
and we obtain K(r, k) » 0, k > oo, in L?(Q; V). Q.E.D.

Having checked that the mild solution of the equation (19) lies in ([0, T];
L?(Q; V)) we see that the proof of Theorem 3 can be easily modified to work also
for the equations of DaPrato-Zabczyk’s type; the modified version of Theorem 3
reads as follows:

Theorem 6. Assume that the hypotheses (Z1), (Z2), (Z3) hold. Let f,: R, x V -V,
a € [0, 1], be measurable functions and suppose that there exists K > 0 such that
forallx,yeV,t20,ae[0,1]

112, x) = £(t. M)y < K[x = y]v,
[7:(t, 0]y = K.

Let ¢, € LP(Q; V) be & ,-measurable. Denote by x,(t) the mild solutions of the
equations

dx,(t) = (A x,(t) + fot, x(2))) dt + dB(z),

xa(O) =Q,.
Suppose that for some 4, > 0 and each xe€ H, t1, t, € R, suchthat0 < t, <t, <
<t + 4y < © we have

lim f Sty — 5) [fuls, %) = fols, )] ds = 0.

a=0+ J,

If lim @, = ¢, in L?(Q; V) then for all T > 0

a—=0+

limx, = x, in ([0, T]; L(2; V)) -

=0+
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Souhrn

METODA PRUMERU PRO STOCHASTICKE EVOLUCNI ROVNICE

JAN SEIDLER, Ivo VRKOC

Ve stati jsou dokazany vty o integralni spojitosti ¥eSeni stochastickych parcialnich diferencial-
nich rovnic evoluéniho typu podle parametru. Tyto rovnice jsou vySetfovany v ramci semi-
grupového pristupu jako rovnice v Hilbertové prostoru, ptriemz je paraleln& uvaZovan pripad
rovnic s Wienerovym procesem s nuklearnim kovarian&nim operatorem, rovnic s cylindrickym
Wienerovym procesem a rovnic DaPrato-Zabczykova typu. Jako pomocny vysledek je dokazana
dosti obecna existencni véta pro rovnice s cylindrickym Wienerovym procesem.

Pe3lome

METOA YCPEOAHEHUA AJII CTOXACTUYECKUX
3BOJIIOUUOHHBIX YPABHEHU

JAN SEIDLER, Ivo VRKOC

B crarbe ycTaHOBJICHBI TEOpeMbl 00 WHTErpalbHOM HENPEPLIBHOCTH IO NapaMeIpy PelueHHit
croxacruieckux nuddepsHLManbHbIX YPaBHEHHI B YaCTHBIX NPOM3BOHBIX IBOJIFCLIMOHHOTO THIA.
OTH YpaBHEHMS MCCIEAYIOTCA METOAAMH TEOPMM TIOJNYTPYNIl KakK ypaBHeHus B TUIbOepTOBOM
NPOCTPAHCTBE, MapaJUIeIbHO U3Y4alOTCsA YpaBHEHUS C IPOLEcCOM BuHepa ¢ siiepHbIM KOBapUALMOH~-
HBbIM OIEPaTOPOM, YPaBHEHHS C LMJIMHAPUYECKMM npoueccoM Buuepa u ypasnenus tuna allpa-
Ta-3264uka. [ToAroTOBUTENILHO [OKA3aHa AOBOJIBHO OOLIAs TeOpeMa O CyLISCTBOBAHMM P2LICHUI
YpaBHEHHS C LWJIMHAPHUYECKUM IIpoLeccoM Bunepa.
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