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GS-QUASIGROUPS 

VLADIMÍR VOLENEC, Zagreb 

(Received October 18, 1985, revised version November 22, 1988) 

Summary. A quasigroup (Q, •) is said to be a GS-quasigroup iff aa = a, a(ab • c) • c = b, 
a . (a . be) c = b for any a, b, ce Q. A geometrical terminology can be introduced in any GS-
quasigroup followed by some * 'geometrical" results. There is a GS-quasigroup (Q, •) iff there is 
a commutative group (Q, + ) and its automorphism <p such that the identity (<p 0 (p) (a) — (p(a) — 
— a = 0 holds. 

Keywords: GS-quasigroup, parallelogram space. 

AMS-classification: 20N. 

1. I N T R O D U C T I O N 

First of all, let us prove a lemma: 

Lemma. In any cancellative groupoid (Q, •) the identities 

(1) a(ab • c) • c = b , a • (a • 6c) c = b 

are equivalent. Any cancellative groupoid with these two identities is a quasigroup. 

Proof. According to (1) we have the identity [a • (a • be) c] c = be, which yields 
(1)'. Conversely, by (l) ' we obtain a [a(ab - c) - c] = ab, which implies (1). For every 
a,b e Q there are x, y e Q such that ax = b and j a = b. Indeed, we can take x = 
= (a - ba) a and y = a(ab • a) because of (1)' and (l). 

A quasigroup (Q, •) is said to be a golden section quasigroup or shortly a GS-
quasigroup iff it satisfies the identities (1), (l) ' and moreover the identity of idem-
potency 

(2) aa = a . 

E x a m p l e 1. Let (G, + ) be a commutative group which possesses an auto­
morphism cp such that 

(3) (cp o cp) (a) - cp(a) - a = 0 . 

If we define an operation • on the set G by 

(4) ab = a + cp(b - a), 
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then (G, •) is a GS-quasigroup. Let us prove this statement. For any a, b e G the 
equations ax = b and ya = b are equivalent, because of (4), to the equations 
a + (p(x — a) = b and y + (p(a) — (p(y) = b. The first equation has the unique 
solution x = a + (p~x(b — a) and the second equation can be written in the form 
(p(y) + (q> o (p) (a) - ((p o(p) (y) = (p(b), i.e. by (3) in the form (q> Q(p)(a) - y = 
= (p(b), and has the unique solution y = ((p o (p) (a) — (p(b). Obviously (4) implies 
(2). By virtue of (4) we obtain after some arrangements 

ab - c = ((p o (p) (a) — 2(p(a) + a — ((p o <p) (b) + (p(b) + (p(c). 

Because of (3) this becomes 

ab - c = 2a — q>(a) — b + (p(c) . 

Therefore, we have 

a(ab • c) • c = 2a — (p(a) — [2a — (p(a) — b + (p(cj] + (p(c) = b . 

We shall show later that Example 1 is a characteristic example of GS-quasi-
groups, i.e. that any GS-quasigroup can be derived from a commutative group as in 
Example 1. 

Example 2. Let (F, + , •) be a field in which the equation 

(5) q2 - q - 1. = 0 

has a solution q and let * be an operation on the set Q defined by 

(6) a * b = (1 - q) a + qb . 

The identity (p(a) = qa obviously defines an automorphism (p of the commutative 
group (F, + ) and (5) implies (3). The equality (6) can be written in the form a * b = 
= a + (p(b — a) and the result of Example 1 implies that (F, *) is a GS-quasigroup. 

Example 3. Let (C, + , •) be the field of complex numbers and * an operation 
on the set C defined by (6), where q = i ( l + y/5) or q = ^(i — ^5) . Then the 
equality (5) holds and the result of Example 2 implies that (C, *) is a GS-quasi­
group. This quasigroup has a beautiful geometrical interpretation which provides mo­
tivation for studying the GS-quasigroups and defining geometrical notions in them. 
Let us regard complex numbers as points of the Euclidean plane. For any two different 
points a, b the equality (6) can be written in the form 

a * b — a 

b — a 

which means that the point a * b divides the pair a, bin the ratio q. If q = ^(1 + V5) 
or q = ^(1 — y/5), then the point b or a divides the pair a, a * b or the pair b, a * b, 
respectively, in the ratio of the golden section, which justifies the term of GS-quasi-
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groups. Any identity in the GS-quasigroup (C, *) can be interpreted as a geometrical 
theorem which, of course, can be proved directly, but the theory of GS-quasigroups 
gives a better insight into the mutual relations of such theorems. For example, 
Figure 1 gives an illustration of the identity (l) in the quasigroup (C, *) with q = 

d=ab 

Fig. l 

= i ( l + y/5) [and also of the identity (l) ' in the quasigroup (C, *) with q = 
= i ( l — V5)], where the sign • is used instead of the sign * (we shall use the same 
in all figures). All figures shall be represented in the above-mentioned quasigroup. 
Nevertheless, if we interchange the role of the elements x and y in all "products" 
of the form x * y, then we obtain in the same figures illustrations of the quasigroup 
(C, *) with q = 1(1 - V5). 

2. ELEMENTARY PROPERTIES 

The following result is obvious. 

Theorem 1. If the operation • on the set Q is defined by the equivalence 

a*b = coba = c, 

i.e. by the identity a • b = ba, then (Q, •) is a GS-quasigroup iff (Q, •) is a GS-
quasigroup. 

Further, we have 

Theorem 2. In any GS-quasigroup (Q, •) the mediality holds, i.e. we have the 

identity 

(7) ab - cd = ac - bd . 

Proof. We have successively 
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ac • (ab • cd) d = ( I ) ' a[ab • (ab • cd) d] • (ab • cd) d = ( 1 ) b = ( 1 ) ' 

= ac • (ac • bd) d , 

which yields (7). 

Corollary. In any GS-quasigroup (Q, •) the elasticity and left and right distri-
butivity hold, i.e. we have the identities 

(8) ab • a = a • ba , 

(9) a • be = ab • ac , ab • c = ac • be, (9)' 

Proof. Follows by (7) and (2). 
Because' of Theorem 2 we can apply all results of [3]. 

Theorem 3. In any GS-quasigroup (Q, •) the identities 

(10) a(ab-b) = b, (b • ba) a = b, (10)' 

(11) a(ab-c) = b-bc, (c • ba) a = cb • b (11)' 

and the equivalencies 

(12) ab = c o a = c • cb , ab = c o b = ac • c (12)' 

ho/d. 

Proof. We have successively 

a(ab • c) • c = ( 1 ) b = ( 1 ) 6(bb • c) • c = ( 2 ) (6 • be) c , 

which implies (11). Now, (10) follows from (11) because of (2). The identities (10)' 
and (11)' follow from (10) and (11) by Theorem 1. Moreover, by (10)' and (10) 
we have (c • cb) b = c nad a(ac • c) = c and therefore the equality ab = c is equi­
valent to a = c • cb and b = ac • c . 

In the sequel, let (Q, •) by any GS-quasigroup. 

Theorem 4. Any three of the four equalities 

(13) ab = d, 

(14) a*=f, 

(15) dc = e , 

(16) fc = b 

imply the remaining equality (Fig. 1). 

Proof. The substitutions b «-• e, d<-+f imply the substitutions (13)<->(14) and 
(15) <-> (16). Therefore, it is sufficient to prove the implications (14) & (15) & (16) => 
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=> (13) and (13) & (14) & (16) => (15). However, we have successively 

ab = ( 1 6 ) a -fc = ( 1 4 ) a(ae • c) = ( 1 5 ) a • (a • dc) c = w d , 

dc = ( 1 3 ) ab • c = ( 1 6 ) (a -fc) c = ( 1 4 ) a(ae • c) • c = ( 1 ) e . 

Theorem 5. Any two of the four equalities 

(17) ab = c, 

(18) dc = b, 

(19) ac = d, 

(20) db = a 

imply the remaining two equalities (Fig. 2). 

Fig. 2 

Proof. The substitutions a «-> d, b «-> c imply the substitutions (17)<-»(18) and 
(19) «-> (20). Therefore, it is sufficient to prove the first of the two implications 

(21) (17) «& (18) => (19) , 

(22) (17)&(18)=>(20); 

for the proof of the implication (19) &(20) => (17) &(18) it suffices to prove the 
implication 

(23) (19) & (20) => (18) 

and for the proof of the implications 

(24) (17) & (19) => (18) «fe (20) , 

(25) (17) <& (20) => (18) & (19) , 

(18) & (20) => (17) & (19) and (18) & (19) => (17) & (20) it is sufficient to prove the 
implications (24) and (25). We have successively 

ac = ( 2 ) a • cc = ( 1 7 ) a(ab • c) =-(»> a • (a • dc) c = ( 1 ) ' d , 

dc = ( 2 ) dd • c = ( 1 9 ) (d • ac) c = <2°> d(db -c)-c = ( 1 ) b , 

which proves the implications (21) and (23). Further, we obtain 
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dc • b = ( 1 9 ) (ac • c) b = ( 1 7 ) (a • ab) (ab) • b = ( 9 ) a(ab • b) • 6 = ( 1 ) 

= b=(2)bb, 

d • ac = ( 1 7 ) d(a • ab) = ( 2 0 ) d • (db) (db • b) = ( 9 ) ' d • (d • db) b = ( 1 ) \ 

= d=^dd, 

which implies the equalities (18) and (19), i.e. the implications (17) &(19) =>(18) 
and (17) & (20) => (19) hold. The first of these implications together with (22) proves 
(24) and the second together with (23) proves (25). 

3. PARALLELOGRAMS 

In any GS-quasigroup (Q, •) we shall introduce a geometrical terminology 
motivated by Example 3. The elements of the set Q are called points. 

We shall say that the points a, b, c, d form a parallelogram and writePar(a, b, c, d) 
iff there are two points p and q such that ap = bq and dp = cq [3, Corollary l ] . 

In [3] it was proved that (Q, Par) is a parallelogram space, i.e the quaternary 
relation Par c Q4 has the following properties: 

1° For any three points a, b, c there is exactly one point d such that Par(a, b, c, d). 
2° If (e,f, g, h) is any cyclic permutation of (a, b, c, d) or of (d, c, b, a), then 

Par(a, b, c, d) implies Par(c,f, g, h). 
3° Par(a, b, c, d) and Par(c, d, e,f) imply Par(a, b,f, e). 
Let us prove 

Theorem 6. For any points a, b, c we have Par(a, b, c, a * b(ca • a)) (Fig. 3). 

ca 

b(caa) d-ab(ca-a) 
r—f—* 

Fig. 3 

Proof. It is sufficient to prove the equalities ap = bq, [a • b(ca • aj] p = cq 
with p = ab • b, q = b. We have successively 

a(ab • b) = ( 1 0 ) b = ( 2 )ftb , 

[a • b(ca • a)] (ab • b) = ( 7 ) (a • ab) \b(ca • a) • b] =(8> 
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= (a • flb) [b • (cfl • A) b] = ( 7 ) flb • [flb • (cfl • A) b] = ( 9 ) ' 

= [A • fl(cfl • A)] b = ( 8 ) [A • (A • Cfl) A] b = ( 1 0 ) ' cb . 

By virtue of \° Theorem 6 gives an alternative definition of parallelograms: 

(26) Par(fl, b, c, d) od = a • b(ca • a) . 

On the other hand, we can start with this definition (26) and prove the properties 
1° —3°. The property 1° is obvious. Further, let Par(fl, b, c, d), i.e. a • b(ca • a) = d. 
For the proof of 2° it is sufficient to prove Par(b, c, d, a) and Par(c, b, a, d), i.e. 
b • c(db • b) = A and c • b(ac • c) = d. However, we have successively 

b[b • c(db • b)] = ( 9 ) b[bc • b(db • b)] = ( 8 ) b[bc • (b • db) b] = ( 1 1 ) ' 

= b • (be) (bd • d) = ( 9 ) (b • be) • b(bd • d) = ( 1 0 ) (b • be) d = 

= (b • be) [A • b(cfl • A)] = ( 7 ) bfl • [be • b(cfl • A)] = ( 9 ) 

= b[fl-c(cfl-fl)] =(10)b'flfl =(2)bfl, 

which implies b • c(db • b) = a, and we obtain 

c • b(flc • c) = ( 9 ) cb • c(ac • c) = ( 8 ) cb • (c • AC) c = ( 9 ) ' 

= [ c - ( c - f l c )c ] [b - ( c - f l c )c ] = ( 1 ) ' f l [b - (c - f lc )c ] = ( 1 1 ) ' 

= a • b(cfl • A) = d . 

Now, let Par(fl, b, c, d) and Par(c, d, e,f), i.e. a • b(ca • A) = d, c • d(ec • c) = f 
Then 

f = c • d(ec • c) = ( 9 ) cd • c(ec • c) = ( 8 ) cd • (c • ec) c = ( 1 1 ) ' 

= cd • (ce • e) = ( 7 ) (c • ce) • de = ( 1 1 ) e(ec • e) • de = ( 8 ) 

= (e • ec) e • de =A9>' (e • ec) d ' e = (e • ec) [a • b(ca • aj] • e = ( 7 ) 

= (ea) [ec • b(ea • A)] • e = ( 7 ) (ea) [cb • C(CA • A)] • c = ( 1 0 ) 

= (ea) (eb • A) • e = ( 9 ) ' (c • cb) a • c = ( 9 ) ' (c • cb) c • AC = ( 8 ) 

= c(cb • e) • AC = ( 1 1 ) (b • be) • AC = ( 7 ) ba • (be • e) = ( 9 ) ' 

= b(bc • e) • A(be • c) = ( 1 0 ) e • A(bc • c) , 

i.e. Par(e, A, b,f), wherefrom by 2° we obtain Par(A, b,f, e). 
Let us prove some theorems about parallelograms. 

Theorem 7. For any points a, b we have Par(A, a, b, b). 

Proof. We have 

A • a(ba • a) = ( 8 ) a • (a • ba) a = ( 1 ) ' b . 
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Theorem 8. Any two of the three statements Par(a, b, c, d), Par(e,f,g,h) and 

Par(ac, bf eg, dh) imply the remaining statement. 

Proof. By (7) we obtain successively 

ae • [bf • (eg • ae) (aej] = ae • [bf • (ca • ge) (ac)] = 

= ae • [bf - (ca • a) (ge • ej] = ae • [b(ca • a) • f(ge • ej] = 

= [a-b(ca-a)] [e-/(ge-c)] 

and it becomes obvious that any two of the three equalities a • b(ca • a) = d, 

e • f(ge • e) = h and ae • [bf • (eg • ac) (ae)] = dh imply the remaining equality. 

Theorem 9. For anj; points a, b, c, d wc have Par(ab, cb, cd, ad). 

Proof. According to Theorem 7 and the property 2° we have Par(a, c, c, a) and 

Par(b, b, d, d), wherefrom by Theorem 8 Par(ab, cb, cd, ad) follows. 

Theorem 10. For any point p the statements Par(a, b, c, d), Par(ap, bp, cp, dp) 

and Par(pa, pb, pc, pd) are equivalent. 

Proof. By Theorem 7 we have Par(p, p, p, p) and the statement of our theorem 
follows by Theorem 8. 

Theorem 11. If a, b, c are any three points and d = ac, e = ab,f = ec, g = df, 

then Par(a, b, d,f), Par(b, e,f, g), Par(a, e, d, g) hold (Fig. 4). 

У • 

Proof. We must prove the statements Par(a, b, ac, ab • c), Par(b, ab, ab • c, 
(a • ab) c), Par(a, ab, ac, (a • ab) c) because of/ = ec = ab • c and 

g = df = ac • (ab • c) = ( 9 ) ' (a • ab) c . 

However, we have successively 
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a[b • (ac • a) a] = ( 9 ) ab • [a • (ac • a) a] = ( 8 ) ab • [a(ac • a) • a] = ( 1 ) 

= ab • c , 

b • (ab) [(ab -c)b-b] = ( 9 ) b • [ab • (ab • c) b] (ab • b) = ( 1 1 ) 

= b • (c • cb) (ab • b) = ( 9 ) b(c • cb) • b(ab • b) = ( 8 ) 

= b(c • cb) • (b • ab) b = ( 7 ) b(b • ab) • (c • cb) b = ( 1 0 ) ' 

= b(b • ab)-c = ( 8 ) b(ba • b) • c = ( 1 1 ) (a • ab) c , 

a[ab-(ac-a)a] = ( 8 ) a[ab • (a • ca) a] = ( 1 1 ) ' a -(ab)(ac-c) = ( 9 ) 

= (a • ab) • a(ac • c) = ( 1 0 ) (a • ab) c . 

Now, if c = ab = e, then we have two equalities ab = c and ac = d of Theorem 
5 andf = ec = cc = c because of (2). Therefore Par(a, b, d,f) implies the following 
theorem: 

Theorem 12. By the hypothesis of Theorem 5 we have Par(a, b, d, c) (Fig. 2). 

Corollary. For any points a, b we have Par(a, b, a • ab, ab). 

4. MIDPOINTS 

We shall say that b is a midpoint of the pair of points a, c and write M(a, b, c) 
iff Par(a, b, c, b). 

The properties 1°, 2° and Theorem 7 immediately imply 

Theorem 13. FOr any points a, b there is exactly one point c such that M(a, b, c). 
M(a, b, c) implies M(c, b, a). For any point a we have M(a, a, a). 

Theorem 14. The statement M(a, b, c) holds iff c = ba • b. 

Proof. Par(a, b, c, b) is equivalent with Par(b, a, b, c), i.e. with c = b • a(bb • b). 
Because of (2) and (8) this equality can be written in the form c = ba • b. 

Theorem 15. From ae = c, af = b, eg = f, M(b, d, c), hg = d it follows that 
bg = c, dh = a, M(a, h, g) (Fig. 5). 

a 
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Proof. From ae = c, af = b, eg = f and Theorem 4 we conclude bg = e. 
Further, we obtain 

a[(hg • h) (bg) • g] = ( 7 ) a[(hg • b) (hg) • g] = 

= a • (db • d) g = a • eg = af = b = ( 1 ) ' a • (a • bg) g , 

which implies hg • h = a. This equality proves the statement M(g, h, a) and the 
equality dh = a. 

In the case of the quasigroup (C, *) Theorem 15 proves a result from [ l ] : 
If two cevians divide the opposite sides (from the common vertex) of a triangle 

in the ratio of golden section, then their intersection divides them in the same ratio 
and the midpoint of the common vertex and this intersection divides in the same ratio 
the third-cevian through the intersection. 

We will say that (Q, •) is a GS-quasigroup with unique halving iff for any two 
points a, c there is exactly one point b such that M(a, b, c) holds. 

D. Vakarelov [2] has axiomatized the notion of the central symmetry by an 
idempotent medial quasigroup with the operation • such that the identity (a • b) • 
• b = a holds. Therefore, the next theorem naturally holds. 

Theorem 16. If (Q, •) is a GS-quasigroup with unique halving and • the operation 
on the set Q defined by a • b = ba . b, then (Q, • ) is a quasigroup of Vakarelov. 

Proof. By Theorem 14 we have the equivalence 

a • b = c oM(a, b, c) . 

However, (Q, •) is a GS-quasigroup with unique halving and Theorem 13 holds. 
Therefore, it follows that (Q, • ) is an idempotent quasigroup. Moreover, we have 

(a • b) • (c • d) = (dc • d) (ba • b) • (dc • d) = ( 7 ) 

= (dc • ba) (db) • (dc • d) = ( 7 ) (db • ca) (db) • (dc • d) = ( 7 ) 

= (db • ca) (dc) • (db • d) = ( 7 ) (db • d) (ca • c) • (db • d) = 

= (a • c) • (b • d) , 

(aUb)Ub = b(ba-b)-b = ( 1 ) a . 

Corollary. If (Q, •) is an arbitrary GS-quasigroup, then (Q, • ) is a left quasi­
group of Vakarelov. 

5. CHARACTERIZATION OF GS-QUASIGROUPS 

Let us return to any GS-quasigroup (Q, •). Let O be any given point. We define 
an addition of points by the equivalence 
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(27) a + b = c <=> Par(0, a, c, b) , 

i.e. Par(0, a, a + b, b) for any points a, b. 
In [3] it is proved that (Q, + ) is a commutative group with the neutral element O. 

Theorem 17. The mapping cp: Q -> Q defined by cp(a) = Oa is an automorphism 
of the group (Q, + ) such that the identity (3) holds. 

Proof. For any points a, b we have Par(0, a, a + b, b), which by Theorem 10 
yields Par(00, Oa, 0(a + b), Ob), i.e. Par(0, Oa, 0(a + b), Ob) because of (2). 
Therefore, by (27) we have cp(a + b) = cp(a) + cp(b). Accoding to Corollary of 
Theorem 12 for any point a we have Par(0, a, O • Oa, Oa), i.e. by (27) we have the 
equality a + Oa = O • Oa, which can be written in the form (3). 

Theorem 18. For any points a, b the equality (4) holds, where cp is the mapping 
defined by cp(a) = Oa. 

Proof. By Theorem 9 we have Par(00, aO, ab, Ob) and because of (2) we have 
Par(0, aO, ab, Ob), i.e. by (27) we obtain the equality 

(28) ab = aO + Ob . 

This equality and (2) immediately imply aO = a — Oa, which substituted back 
into (28) gives ab = a — Oa + Ob. According to Theorem 17 this equality can be 
written in the form (4). 

From Theorems 17 and 18 it follows that any GS-quasigroup can be derived as 
in Example 1, i.e. we have the following theorem. 

Theorem 19. There is a GS-quasigroup (Q, •) iff there is a commutative group 
(Q, + ) and its automorphism cp such that the identity (3) holds. If a commutative 
group (Q, + ) and its automorphism cp with the identity (3) are given, then the 
operation • is defined by (4), and if a GS-quasigroup (Q, •) and a element 0 e Q 
are given, then the operation + is defined by 

(29) a + b = x\,-1(a).cp-1(b) 

and O is the neutral element of the group (Q, + ) , where cp, \J/ are the bijections of 
the set Q defined by cp(a) = Oa, \j/(a) = aO. 

Indeed, the identity (29) follows from (28) if we substitute the variables a and b 
by ij/'^a) and cp-^b). 

Theorem 19 gives a more precise version (in the case of a GS-quasigroup) of the 
well-known Toyoda's theorem about medial quasigroups. Moreover, here we have 
its "geometrical" proof. 
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GS-QUASIGRUPY 

VLADIMÍR VOLENEC 

Kvazigrupa (Q, •) se nazývá GS-kvazigrupa, jestliže platí aa = a, a(ab • c) • c = b, a* 
• (a* bc) c = b pro všechna a,b,ceQ. V každé kvazigrupě lze zavést geometrickou termino­
logii, která vede ke „geometrickým'* výsledkům. GS-kvazigrupa (Q, •) existuje právě když existu­
je komutativní grupa (Q, + ) a její automorfizmus <p takový, že platí identita (<p • q>) (a) — <p(a) — 
= 0. 
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