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STEINER DISTANCE IN GRAPHS

GARY CHARTRAND‘, ORTRUD R. OELLERMANN!, SoNGLIN TIAN, HUNG BIN Zou, Kalamazoo

(Received December 10, 1987)

Summary. For a nonempty set S of vertices of a connected graph G, the distance d(S) of S
is the minimum size of a connected subgraph whose vertex set contains S. For integers n and p
with 2 < n < p, the minimum size of a graph G of order p is determined for which d(S) = n — 1
for all sets S of vertices of G having |S| = n. For a connected graph G of order p and integer n
with 2 < n < p, the n-eccentricity of a vertex v of G is the maximum value of d(S) over all
S € V(G) with v in S and |S| = n. The minimum n-eccentricity rad, G is called the n-radius
of G and the maximum n-eccentricity diam, G is its n-diameter. It is shown that diam, T <
< [n/(n— 1)] rad, T for every tree T of order p with 2 < n < p. For a graph G of order p the
sequence diam, G, diam; G, ..., diamp G is called the diameter sequence of G. In the case of
trees, the n-radius and n-diameter are investigated and the diameter sequences of trees are
characterized.

1. INTRODUCTION

One of the most basic concepts associated with a graph is distance. In particular,
if G is a connected graph and u and v are two vertices of G, then the distance d(u, v)
between u and v is the length of a shortest path connecting u# and v. The goal of this
paper is to introduce a generalization of distance and to investigate some of its
properties. (See [1] for basic graph theory terminology.)

Let G be a connected graph of order at least 2 and let S be a nonempty set of verti-
ces of G. Then the Steiner distance d(S) among the vertices of S (or simply the distance
of S) is the minimum size among all connected subgraphs whose vertex sets contain S.
Note that if H is a connected subgraph of G such that S < V(H) and |E(H)| = d(S),
then H is a tree. Such a tree has been referred to as a Steiner tree (see [3]). Further,
if § = {u, v}, then d(S) = d(u, v}; while if |S| = n, then d(S) 2 n — 1.

If G is the graph of Figure 1 and S = {u, v, x}, then d(S) = 4. There are several
trees of size 4 containing S. One such tree T'is also shown in Figure 1.

The usual distance defined on a connected graph G is a metric on its vertex set.
As such, certain properties are satisfied. Among these are: (1) d(u, v) = 0 for vertices
u,v of G and d(u,v) = 0 if and only if u = v, and (2) d(u, w) < d(u, v) + d(v, w)

1) Research supported in part by Office of Naval Research Contract N00014-88-K-0018.
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for vertices u, v, w of G. There are extensions of these properties to the Steiner
distance we have defined.

Figure 1

Let G be a connected graph and let S < V(G), where S = 0. Then d(S) = 0.
Further, d(S) = 0 if and only if |S| = 1. This is an extension of (1). To provide an
extension of (2),let S, S; and S, be subsets of V(G) such that @ & S < S; U S, and
Sy 0 S, =% 0. Then d(S) < d(S;) + d(S,). To sce this, let T; (i = 1,2) be a tree of
size d(S;) such that S; = V(T;). Let H be the graph with vertex set V(T;) u V(T3)
and edge set E(Ty) v E(T,). Since T, and T, are connected and V(T;) 0 V(T3) * 0,
the graph H is connected. Since S < V(H),

d(S) £ q(H) < d(S,) + d(S,).

2. THE SIZE OF (n; p) GRAPHS

Given a nonempty subset S of the vertex set of a connected graph G, the distance
d(S) is the minimum size of a connected graph whose vertex set contains S. Equi-
valently, d(S) equals |S| — 1 plus the minimum cardinality of a subset S’ of V(G) — S
such that SuU S’ induces a connected graph. The minimum posible value for d(S)
is |S| — 1, but d(S) has this value for every subset S if and only if G is complete;
for otherwise, if S* = {u, v} consists of two nonadjacent vertices, then d(S*) = IS*I.
In this section, we consider the related problem of determining the minimum size of
a graph G of order p having the property that d(S) = [S] — 1 for all subsets S
of V(G) with |S| = n for a fixed integer n(2 < n < p).

Let n and p be integers with 2 < n < p. A graph G of order p is called an (n; p)
graph if it is of minimum size with the property that d(S) = n — 1 for all sets S
of vertices of G with |S| = n. Thus our goal here is to determine the size of an (n; p)
graph for each pair n, p of integers with 2 < n < p. For the purpose of presenting
this result, we recall two basic concepts from graph theory and a theorem from
the literature.
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A graph G is n-connected, where 1 < n < |V(G)|, if the removal of fewer than n
vertices from G always results in a connected graph. The kth power G* of G is the
graph with vertex set V(G) and such that uv is an edge of G* if and only if d(u, v) < k
in G. We denote the cycle of order p(=3) by C,,.

The following results appear within a proof of a theorem by Harary [2] and will
be useful to us.

Theorem A. (Harary) (i) If 2 < 2k = n < p, then C:‘, is n-connected.

(ii) Let p be an even integer satisfying p > n = 2k + 1 2 3. If G is the graph
obtained by joining diametrically opposite vertices of C, in Cf,, then G is n-con-
nected.

(iii) Let p be an odd integer such that p > n =2k 4+ 1 =2 3, and let C, be the
cycle vy, vy, 03, ..., 0,1, Vo. If G is the graph obtained by adding (p + 1)/2 edges
to Ck, namely those edges joining v; and v;, where j — i = (p — 1)/2, then G is
n-connected.

We precede the main result of this section by a lemma.

Lemma 1. Let n and p be integers with 2 <n < p. Every (n;p) graph is
(p — n + 1)-connected.

Proof. Suppose, to the contrary, that there exists an (n; p) graph G that is not
(p — n + 1)-connected. Then there exists a vertex cutset X of cardinality p — n
such that G — X is disconnected. Let S = V(G) — X. Since |S| = n and ¢S) is
disconnected, G is not an (n; p) graph, producing a contradiction. []

Corollary 1. If G is an (n; p) graph, where 2 < n < p, then 5(G) Z p —n + L.
We are now prepared to determine the size of (n; p) graphs.

Theorem 1. Let n and p be integers with 2 < n < p. The size of an (n; p) graph
isn—1ifp=nand[(p—n+1)p/2]ifp>n.

Proof. A graph is an (n; n) graph if and only if it is a tree of order n, so that the
size of such a graph is n — 1. Assume, then, that p > n. By the above corollary,
if G is an (n; p) graph, then 5(G) > p — n + 1. Therefore, if for given integers n
and p, with 2 < n < p, we can exhibit either a (p — n + 1)-regular (n; p) graph
or an (n; p) graph all of whose vertices have degree p — n + 1 except one, which
has degree p — n + 2, then the desired result follows.

Suppose first that there exists an integer k(=2) such that p = (n — 1) k. Then

kK,_, is an appropriate (n; p) graph. Hence we assume that n — 1} p. We may
then write p = (n — 1)g + r, where 2 < r < n, r+n — 1 and g = 1. For each
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such integer r, we describe an (n; n — 1 + r) graph H, with the desired properties.

From this, it will follow that H, + (-1 K, ,isan (n; p) graph with the required
properties and, consequently, will complete the proof.
To construct H,, we consider two cases.

Case 1. Assume r is even, so that r = 2k = 2. By Theorem A, part (i), the graph
H, = Ck_y,, is r-connected. Let S be a set of n vertices of H,. Since |V(H,) — S| =
= r — 1,{8S) is connected. Therefore, H, is an (n; n — 1 + r) graph with the desired
properties.

Case 2. Assume r is odd, so that r = 2k + 1 = 3. We consider two subcases.

Subcase 2.1. Assume n is even. Let H, be the graph obtained by joining diametrically
opposite vertices of C,_,4, in C:_,,,. By Theorem A, part (ii), H, is r-connected.
The proof follows as in Case 1.

Subcase 2.2. Assume n is odd. Let the vertices of C,_,, be labeled vy, v, ...

«++» Uy—2.4p Vo, and let H, be the graph obtained by adding (n + r)/2 edges to C}_,,,,

namely those edges joining v; and v;, where j — i = (n + r)/2. By Theorem A,
part (iii), H, is r-connected and, again, the proof follows as in Case 1. []

3. ON THE »#-RADIUS AND »#-DIAMETER OF A TREE

If vis a vertex of a connected graph G, then the eccentricity e(v) of v is defined by
e(v) = max {d(u, v) | u € V(G)} .
The radius rad G and diameter diam G of G are defined by
rad G = min {¢(v) | ve ¥(G)} and diam G = max {e(v) | ve V(G)} .

These last two concepts are related by the inequalities rad G < diam G < 2rad G
(see [1,p.9], for example). In this section, we generalize eccentricity, radius and
diameter.

Let G be a connected graph of order p = 2 and let n be an integer with2 < n <
=< p. The n-eccentricit y.e,,(v) of a vertex v of G is defined by

e,(v) = max {d(S) | S = V(G)}, |S| = n, and ve S} .
The n-radius of G is
rad, G = min {e,(v) | ve V(G)},
while the n-diameter of G is A
diam, G = max {e,(v) | ve V(G)} .
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Note for every connected graph G that e,(v) = e(v) for all vertices v of G and that
rad, G = rad G and diam, G = diam G.

Each vertex of the graph G of Figure 2 is labeled with its 3-eccentricity, so that
rad; G = 4 and diam; G = 6.

6
5 5
5 5
6 m
5 5 6
Figure 2

We now turn our attention to trees. It is useful to observe that if T'is a nontrivial
tree and S < V(T), where |S| 2 2, then there is a unique subtree Ty of size d(S)
containing the vertices of S. We refer to such a tree as the tree generated by S. If S
and S’ are sets of vertices of a tree T with S = §’, then Ty < Tg.; otherwise,
Ts contains an edge e, say, that does not belong to Ts.. Since Ty is a tree of minimum
size that contains S, there exists a pair u, v of vertices in S such that the u — v path
in T contains the edge e. However, since Ts. contains a u — v path that does not
contain e, there are at least two distinct u — v paths in T, which is not possible
since T'is a tree. Hence if S is a set of vertices of a tree Tand v is a vertex in V(T) — S,
then the tree generated by S U {v} contains the tree gencrated by S. Let w be the
(necessarily unique) vertex of Tg whose distance from v is a minimum. Then s,
contains the unique v — w path and d(S U {v}) = d(S) + d(v, w). If H is a subgraph
of a graph G and v is a vertex of G, then d(v, H) denotes the minimum distance from v
to a vertex of H. Therefore, d(S L {v}) = d(S) + d(v, Ts).

For a tree T, we denote by V;(T) the set of end-vertices of T'and py = |V,(T)|.
If S=V,(T), then Ts = T so that d(S) = ¢(T) and d(S v {v}) = ¢(T) for all
ve V(T). Hence if T'is a tree and n > 2 and integer with p, < n, then e,(v) = ¢(7T)
for all v e V(T). The next result considers n-eccentricities of vertices in trees T with
at least n end-vertices.

Proposition 1. Let n = 2 be an integer and suppose that T is a tree of order p
withp, = n.Letve V(T).If S < V(T)suchthatv¢S,|S| =n — Lland d(S v {v}) =
= ¢,(v), then S = Vy(T). V

Proof. Suppose, to the contrary, that there exists a set S of vertices of T satisfying
the hypothesis of the proposition such that S ¢ V(T). Then there exists we S
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such that degrw > 2. Let T, denote the subtree of T generated by S, = S U {v},
and let T, be the branch of T at w that contains v. If there exists an end-vertex x
of Tin a branC_h of T at w different from T, such that x ¢ S, then

d((So v {x}) — {w}) > d(S),
which produces a contradiction. Hence, there is no such end-vertex x. But then T,
is also the tree generated by S; = S, — {w}. Let y € V{(T) such that y ¢ S. Then

d(S; v {y}) > d(So),

again a contradiction. [

Corollary 2. Let n = 2 be an integer and T a tree with p, = n. Then diam, T =
= d(S), where S is a set of n end-vertices of T.

Proof. If n = 2, then the result follows immediately. Assume thus that n = 3.
Suppose that ve V(T) with e,(v) = diam, T. Let S’ be a set of n — 1 vertices such
that d(S’ U {v}) = e,(v). By Proposition 1, S’ = Vy(T). If ueS’, then e,(u) =
2 d(S' v {v}) = e,(v), implying that e,(u) = diam, T. However, then it follows
by Proposition 1 that S’ U {v} — {u} is a set of n — 1 end-vertices of T, so that
S = S"u {v} is a set of n end-vertices of T with d(S) = diam, T. O

We now state, without proof, a basic lemma that will prove to be useful.

Lemma 2. Let S be a set of n = 3 end-vertices of a tree T and suppose that ve S.
Then Ts_(, can be obtained from Tg by deleting v and every vertex of degree 2
on a shortest path from v to a vertex of degree at least 3 in Tg.

The next result will serve as a useful tool when proving the main theorem of this
section.

Proposition 2. Let n = 3 be an integer and suppose that T is a tree with py(=n)
end-vertices. If v is a vertex of T with e, (v) = rad, T, then there exists a set S of
n — 1 end-vertices of T such that d(S u {v}) = e,(v) and ve V(Ty).

Proof. Assume that the proposition is false. Then there exists a tree T that is
a counterexample to the proposition and a vertex v of T'for which the conclusion fails.
By Proposition 1, there exists a set S of n — 1 end-vertices of T such that e,(v) =
= d(S v {v}). From our assumption, it follows that S belongs to a component T,
of T — v. Let u be the unique vertex of T; that is adjacent to v in T, and let T, be
the component of T — u containing v. Then T is decomposed into T;, T, and a com-
plete graph of order 2 whose edge is uv.

Suppose that there exists a set S’ of n — 1 end-vertices of T, such that e,(v) =
= d{S’ u {v}). Let x, € S and x, € §’; and define

Sy =(S—{xi})u{x;} and S, =(5~{xz})u{x,}.
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Then the tree Ts, s, = Tsos- contains one more edge than the forest Tgy,y U T oqis
namely uv. Hence

|E(TS1US2)| = IE(TSU(M))I + IE(TS’U(V))I +1.

Since each of Ty, and Ty, has size e,(v) — 1, it follows that

IE(TSJUSZ)I = IE(Tsx)l + IE(Tsz)I - lE(TSI) N E(TSJ)l =
= |E(Tso)| + |E(Tsc)] + 1 = 2e,(v) = 1.

Therefore, either |E(Ts,)| = e,(v) or |E(Ts,)| 2 e,(v), which implies that |E(Ts,)| =
= ¢,(v) or |E(Ts,)| = e,(v). However, since Ty, and Ty, both contain v, this contradicts
our assumption about T and v. Of course, if S’ is a set of n — 1 end-vertices such
that e,(v) = d(S’ U {v}), then it follows from our assumption that S’ cannot contain
vertices from different branches of T'at v. Therefore, every set S’ of n — 1 end-vertices
for which e,(v) = d(S’ U {v}) is contained in T;.

Let R be a set of n — 1 end-vertices such that e,(#) = d(R u {u}). If R is contained
in Ty, then d(R U {v}) > d(R U {u}), contradicting the fact that v has minimum
n-eccentricity. If R contains vertices from both T; and T,, then

d(Ru {v}) = d(R) = d(R U {u}) = e,(u) = e,(v) = d(RU {v}),
contrary to our assumption about T and v. Thus, R is contained in T5. ‘
Now,
e(u) =d(Ru{u}) =dRu{v}) + 1.

As we have seen, since R is a set of n — 1 end-vertices contained in T,. then
d(R v {v}) < e,(v). Thus, e,(u) < e,(v) so that e,(u) = e,(v), and u also has minimum
n-eccentricity.

Let xe R and y € S, and define

X=R-{x)u{y} and Y=(S-{y}u{x}.
Then
2e,(v) = 2d(S U {v}) = d(R U {u}) + d(S U {v})
=d((Ruf{u})u(Su{v}) +1
=d(RuS) +1
=dXuY)+1=<dX)+ dY) = 2e,v)

since uv belongs to both Ty and Ty. However, then, d(X) = e,(v) or d(Y) 2 e,(v),
which implies that d(X) = e,(v) and d(Y) = e,(v). However, X is a set of n — 1
end-vertices such that Ty contains v. This again contradicts our choice of Tand v. []

Corollary 3. Let n = 3 be an integer and suppose that T'is a tree with at least n
end-vertices. If v is a vertex of T with e,(v) = rad, T, then v is not an end-vertex of T.
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We now establish a relationship between the n-diameter and (n — 1)-diameter of
a tree, where n = 3 is an integer.

P

Proposition 3. Let n > 3 be an integer and T a tree of order p = n. Then

diam,_, T < diam, T £ ( )diam,,_l T.

n—1

Proof. If S is a set of n — 1 vertices such that d(S) = diam,_, T, then for every
set S’ of n vertices of T with S = §’, we have diam,_, T = d(S) < d(S’) £ diam, T.
Hence the left inequality of the proposition follows.

To verify that diam, T < (n/(n — 1)) diam,_, T, we observe first that if T has at
most n — 1 end-vertices, then

diam,_; T=diam, T=p -1,

so that diam, T < (n/(n — 1)) diam,_, T'in this case.

Assume now that T has at least n end-vertices. By Corollary 2, there is a set S
of n end-vertices such that diam, T' = d(S). Let S = {v,,v,,...,v,} and let [; (1 <
< i £ n) denote the shortest distance from v; to a vertex of degree at least 3 in Ts.

We show now that there exists at least one i (1 < i < n)such that I; < (1/(n — 1))
diam,_,; T. Suppose that I; > (1/(n — 1)) diam,_, T for all i (1 £i < n). Since
by Lemma 2, Ts_(,, can be obtained from T by deleting v, and every vertex of
degree 2 on a shortest path from v, to a vertex having degree at least 3 in Ty, it follows
that

1

n-—1

n—1
ATs-wy) 2 Y 1> (n—1) diam,_, T = diam,_, T.
i=1

This is not possible because
diam,_; T= d(S — {v,}) = @(Ts-n) -
We may therefore assume that I, < (1/(n — 1)) diam,_, T. Then
diam, T = d(S) = d(S — {v,}) + d(v, Ts-(,) <

n

diam,_, T =
n-—1 n—1

< diam,_, T + diam,_, T. O

The following proposition will aid us in deriving a relationship between the n-dia-
meter and n-radius of a tree.

Proposition 4. Let n = 3 be an integer and T a tree of order p = n. Then

diam,_y T=rad, T.
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Proof. If p, £ n — 1, then rad, T = diam,_; T= p — 1. Assume then that
py = n. We show first that rad, T = diam,_, T. Let v be any vertex of T and S
a set of n — 1 end-vertices of T such that d(S) = diam,_; T. Then

e,(v) = d(S U {v}) 2 d(S) = diam,_ T.

Hence rad, T = min,yr, e,(v) = diam,_,; T.

We now verify that diam,_, T = rad, T. Let v be a vertex of T such that e,,(v) =
= rad, T. By Proposition 2, there exists a set S of n — 1 end-vertices of T such that
d(S) = e,(v) = rad, T and v e V(Ty). Therefore,

diam,_, T = max {d(5'): |S'| = n — 1, §' = V|(T)} 2 d(S) = rad, T.
Hence diam,_; T=rad, T. O

Corollary 4. If n = 2 is an integer and T a tree of order p = n, then

. n
rad, T < diam, T <

rad, T.
n —

Proof. The result is well-known for n = 2. If n = 3, then Propositions 3 and 4
provide the desired inequalities. [J
We conjecture that Corollary 3 can be extended to any connected graph.

Conjecture. If n = 2 is an integer and G is a connected graph of order p = n,
then

. n
rad, G < diam, G £

rad, G .
n-—1

For a graph G of order p = 2, the diameter sequence of G is defined as the
sequence
diam, G, diam; G, ..., diam, G,

while the radius sequence is the sequence
rad, G, rad; G, ...,rad, G .

In order to characterize diameter sequences of trecs, we first introduce an additional
term and state a useful result.

Let G be a connected graph of order p. For 2 £ n < p, a set S consisting of n
vertices of G is called an n-diameter set of G if d(S) = diam, (G). The following
result appears in [4].

Theorem B. Let T be a nontrivial tree with k(22) end-vertices. For every integer n
with 2 < n £ k, there exists an n-diameter set S, of T(consisting of n end-vertices

of T) such that S, c S; = ... = §,.
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We are now prepared to present the desired characterization of diameter sequences
of trees.

-

Theorem 2. A sequence a,, as, ..., a, of positive integers is the diameter sequence
of a tree of order p having k end-vertices if and only if

(1) ay-y < a, < (nf(n — 1)) a,—y for 3<n =k,
(2 a,=p—1for k<n<p,and
(3) uiyg — Ay = Ay — dy—y fOl’ 3=sns p— L.

Proof. Let T be a trec of order p with k(=2) end-vertices and having diameter
sequence a,, ds, ..., d,. By Proposition 3,
n a
n—1) "t

for 3 < n £ k. By Theorem B, there exists an n-diameter set S, and an (n - 1)
diameter set S,_,, each consisting only of end-vertices of T, such that S,_; = S,;
so S, = S,-, U {v} for some end-vertex ve V(T) — S,_;. Thus,

a, = diam, T = d(S,) = d(S,-, v {v}) =
g (I(S,,_l) + 1 > d(S"_l) = diamn_l T= a"_l ’

I\

ap-4 é ay

which verifies (1).

If n 2 k, then diam, T = p — 1, so that a;, = a;4, = ... =a, = p — 1 and (2)
is established.

To verify (3), we again employ Theorem B. Let a,-, = d(S,-,), a, = d(S,) and
ays1 = d(Sn+1), Where

S,=S,-;u{v} and S,;, = S,u{u}.
Let T,_, be the tree generated by S,_, and T, the tree generated by S,. By the remark

preceding Proposition 1,

d(S,,) = d(S,,_,) + d(v9 Tn—l) s
so that
a, = d(S,,) =d(S,-, v {v}) =

= d(sn—l) + d(l), Tn-l) =ay,-y + d(v’ Tn-l) .
Similarly, a,+, = a, + d(u, T,). Therefore,
Apyy — Ay = d(u’ Tn) § d(u’ Tn—l) é d(U, Tn—l) =d, — ay_1,

which verifies (3). _
For the converse, suppose that a,, as,...,a, is a sequence of positive integers
satisfying properties (1)—(3). Let H, be a path of length a, and suppose H,: vy, vy, ..
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vy U For 3 2 i Sk, let Hy: 050,044, .0y U g,-q,., b€ @ path of length a; — a;_,.
Define T'to be the tree obtained by identifying v; o (3 £ i < k) with v,, where r =
= [a,/2]. Then T has size

az+(a3'—az)+(a4—‘a3)+...+(ak‘—ak_1)=ak=p_l,

and therefore has order p. Further, T has diameter sequence a,, as, ...,a,. [

Corollary 5. A sequence a,, as, ..., a, of positive integers is the radius sequence
of a tree of order p 2 2 having k end-vertices if and only if (1) a,-y < a, <
S(nf(n-1)a,-y for3=n=<k+1,(2 a,=p—1fork+1=<n=<pand
(3)ayey —a,<a,—a,_y fora <n < p.

Further work on this subject has been done in [4].
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Souhrn

STEINEROVA VZDALENOST V GRAFECH

GARY CHARTRAND, ORTRUD R. OELLERMANN, SONGLIN TIAN, HUNG GING Zou, Michigan

Je-li S neprazdnd mnoZina uzlu souvislého grafu G, pak vzdalenost d(S) mnoZiny S je mini-
malni velikost souvislého podgrafu jehoZ mnoZina uzlt obsahuje S. Pro cela &islan, p, 2 < n < p,
je urfena nejmensi velikost grafu G fadu p pro ktery plati d(S) = n — 1 pro kaZdou mnoZinu S
uzlu grafu G, pro niZ |S| = n. Pro souvisly graf G ¥adu p a celé &islo n, 2 < n < p, definujeme
n-excentricitu uzlu v grafu G jako maximalni hodnotu d(S) ptes vSechny S & V(G), kde vleZiv S
a |S| = n. Minimalni n-excentricita rad, G se nazyva n-polomér G, maximalni n-excentricita
diam, G se nazyva jeho n-pramédr. Je dokazano, Ze plati diam, T < [n/(n— 1)] rad, T pro
ka?dy strom fadu p, 2 < n < p. Je-li G graf tadu p, pak posloupnost diam, G, diam; G, ...
veey diamp G se nazyva posloupnost prum&ru grafu G. V ptipad€ stromu jsou vySetfovany pojmy
n-polomér, n-prumér a jsou charakterizovany posloupnosti prumé&rt stromu.
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Paccrosiune d(S) HEMycTOro MHOXeCTBa S BEPIIMH CBA3HOrO rpaga G — 3T0 MHMHMMAJIBHOE
yucio peGep cBA3aHOro moarpada, MHOXECTBO BEPLIMH KOTOPOro conepxut S. B cratee Ans
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JIOObIX LIENIbIX YUCENT p = n == 2 ONpeleeHo HaliMeHblee yucio pebep rpad G, mis KOTOpOro
d(S)= n— 1 ns KaxA0ro MHOXeCTBa S ero BEPIUHH MOIIHOCTH |S| = n. s ces3Horo rpada G
MOPAAKA p U LENOTQ YHCHa n, 2 = n <. p, onpeeneH n-3KCLEHTPUCUTET BepliHHbI v rpada G Kak
Makcumym uucen d(S) aas Beex S < V(G) mowuocTtu |S| = u, conepxaumx v. MUHUMAbHBIHL
n-skcueHTpHcuTeT rad, G HaspiBaeTCA n-paauycoM rpada G M MaKCHMAJbHBI 1-3KCUCHTPHCHTET
diam, G Ha3mBaetcst n-anameTpom rpada G. Jloxasano Hepasenctso diam, T <. [n(n — D] rad, T
JUT KaXIOTo JiepeBa Mopsaka p u miA 2 < n < p. Jlnsa rpada nopsaka p Nocnes0BaTeIbHOCTh
diam, G, diam; G, ..., diam, G Ha3bIBaeTCA NOC/IEJOBATENIBHCCTHIO iuameTpoBrpada G. B ciyyae
JIepeBbeB HCCIIEAYIOTCS MOHATHS n-pajliyca ¥ n-IMaMeTPa ¥ XapaKTePU3yrOTCs II0C/Ie0BAaTEIbHOCTh
IMaMETPOB JePEBbEB.
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