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114(1989) ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY No. 4, 399—410 

STEINER DISTANCE IN GRAPHS 

GARY CHARTRAND1, ORTRUD R. OELLERMANN1, SONGLIN TIAN, HUNG BIN ZOU, Kalamazoo 

(Received December 10, 1987) 

Summary. For a nonempty set S of vertices of a connected graph G, the distance d(S) of S 
is the minimum size of a connected subgraph whose vertex set contains S. For integers n and p 
with 2 5̂  n ^ . p, the minimum size of a graph G of order p is determined for which d(S) = n — 1 
for all sets S of vertices of G having |S | = n. For a connected graph G of order/? and integer n 
with 2 S^n^p, the n-eccentricity of a vertex v of G is the maximum value of d(S) over all 
«->._ V(G) with v in S and |S | -= n. The minimum n-eccentricity radw G is called the w-radius 
of G and the maximum n-eccentricity diam., G is its n-diameter. It is shown that diamn T 5* 
5j [n/(w — 1)] rad,, T for every tree T of order p with 2 ^ « ^ / > . For a graph G of order p the 
sequence diam2 G, diam3 G,..., diamp G is called the diameter sequence of G. In the case of 
trees, the n-radius and n-diameter are investigated and the diameter sequences of trees are 
characterized. 

1. INTRODUCTION 

One of the most basic concepts associated with a graph is distance. In particular, 
if G is a connected graph and u and v are two vertices of G, then the distance d(u, v) 
between u and v is the length of a shortest path connecting u and v. The goal of this 
paper is to introduce a generalization of distance and to investigate some of its 
properties. (See [1] for basic graph theory terminology.) 

Let G be a connected graph of order at least 2 and let S be a nonempty set of verti­
ces of G. Then the Steiner distance d(S) among the vertices of S (or simply the distance 
of 5) is the minimum size among all connected subgraphs whose vertex sets contain S. 
Note that if H is a connected subgraph of G such that S _ V(H) and \E(H)\ = d(S), 
then H is a tree. Such a tree has been referred to as a Steiner tree (see [3]). Further, 
if S = (w, v}, then d(S) = d(u, v); while if \S\ = n, then d(S) = n - 1. 

If G is the graph of Figure 1 and S = {u,v,x}, then d(S) = 4. There are several 
trees of size 4 containing S. One such tree Tis also shown in Figure 1. 

The usual distance defined on a connected graph G is a metric on its vertex set. 
As such, certain properties are satisfied. Among these are: (l) d(u, v) = 0 for vertices 
u, v of G and d(u, v) = 0 if and only if u = v, and (2) d(u, w) _ d(u, v) + d(v, w) 

*) Research supported in part by Office of Naval Research Contract N0OO14-88-K-0O18. 
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for vertices u, v, w of G. There are extensions of these properties to the Steiner 
distance we have defined. 

v -o 

7: 

x 

Figure 1 

Let G be a connected graph and let S c V(G), where S * 0. Then d(S) :> 0. 
Further, d(S) = 0 if and only if |S| = 1. This is an extension of (1). To provide an 
extension of (2), let S, Sx and S2 be subsets of V(G) such that 0 =(= S £= S t u S2 and 
St n S2 4= 0. Then d(S) = 4 5 i ) + d(s-0- To see this, let Tt (i = 1, 2) be a tree of 
size d(St) such that Sf c V(Tt). Let H be the graph with vertex set V(Tt) u V(T2) 
and edge set E(TX) U £(T2). Since Tt and T2 are connected and V(Tt) n V(T2) 4= 0, 
the graph H is connected. Since S £ V(H), 

d(S) = q(H) = d(S0 + d(S2). 

2. THE SIZE OF (n; p) GRAPHS 

Given a nonempty subset S of the vertex set of a connected graph G, the distance 
d(S) is the minimum size of a connected graph whose vertex set contains S. Equi-
valently, d(S) equals \S\ — 1 plus the minimum cardinality of a subset S' of V(G) — S 
such that S u S' induces a connected graph. The minimum posible value for d(S) 
is \S\ — 1, but d(S) has this value for every subset S if and only if G is complete; 
for otherwise, if S* = {w, v} consists of two nonadjacent vertices, then d(S*) ^ |S*|. 
In this section, we consider the related problem of determining the minimum size of 
a graph G of order p having the property that d(S) = \S\ — 1 for all subsets S 
of V(G) with |S| = n for a fixed integer n(2 ^ n ^ p). 

Let n and p be integers with 2 _* n ^ p. A graph G of order p is called an (n; p) 
graph if it is of minimum size with the property that d(S) = n — 1 for all sets S 
of vertices of G with |S| = n. Thus our goal here is to determine the size of an (n; p) 
graph for each pair n, p of integers with 2 ^ n ^ p. For the purpose of presenting 
this result, we recall two basic concepts from graph theory and a theorem from 
the literature. 
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A graph C is n-connected, where 1 = n < |V(G)|, if the removal of fewer than n 
vertices from C always results in a connected graph. The kth power Gk of C is the 
graph with vertex set V(G) and such that uv is an edge of Gk if and only if d(u, v) = k 
in C. We denote the cycle of order P(^3) by Cp. 

The following results appear within a proof of a theorem by Harary [2] and will 
be useful to us. 

Theorem A. (Harary) (i) If 2 ^ 2k = n < p, then Ck
p is n-connected. 

(ii) Let p be an even integer satisfying p > n -= 2k + 1 _ 3. If C is the graph 
obtained by joining diametrically opposite vertices of Cp in Ck

p, then G is n-con­
nected. 

(iii) Let p be an odd integer such that p > n = 2k + 1 = 3, and let Cp be the 
cycle v0, vi, v2, ..., tfp-i, vQ. If G is the graph obtained by adding (p + l)/2 edges 
to C^, namely those edges joining vt and Vj, where j — / = (p — l)/2, then G is 
n-connected. 

We precede the main result of this section by a lemma. 

Lemma 1. Let n and p be integers with 2 = n g p. Every (n; p) graph is 
(p — n + \)-connected. 

Proof. Suppose, to the contrary, that there exists an (n; p) graph C that is not 
(p - n + l)-connected. Then there exists a vertex cutset X of cardinality p - n 
such that C - X is disconnected. Let S = V(G) - X. Since |S| = n and <S> is 
disconnected, C is not an (n; p) graph, producing a contradiction. • 

Corollary 1. If G is an (n; p) graph, where 2 < n = p, then 5(G) = p - n + 1. 
We are now prepared to determine the size of (n; p) graphs. 

Theorem 1. Let n and p be integers with 2 = n ^ P. The size of an (n; p) graph 
is n — 1 if p = n and [(p — n + 1) p/2] if p > n. 

Proof. A graph is an (n; n) graph if and only if it is a tree of order n, so that the 
size of such a graph is n — 1. Assume, then, that p > n. By the above corollary, 
if C is an (n; p) graph, then S(G) = p - n + 1. Therefore, if for given integers n 
and p, with 2 = n = p, we can exhibit either a (p — n + l)-regular (n; p) graph 
or an (n; p) graph all of whose vertices have degree p — n + 1 except one, which 
has degree p — n + 2, then the desired result follows. 

Suppose first that there exists an integer k(^2) such that p = (n — 1) k. Then 

kKM_i is an appropriate (n; p) graph. Hence we assume that n — 1 )( p. We may 

then write p = (n — 1) q + r, where 2 = r = n, r + n — 1 and q = 1. For each 
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such integer r, we describe an (n; n — 1 + r) graph Hr with the desired properties. 

From this, it will follow that Hr + (q — 1) Kn_ t is an (n; p) graph with the required 
properties and, consequently, will complete the proof. 

To construct Hr, we consider two cases. 

Case 1. Assume r is even, so that r = 2fc _ 2. By Theorem A, part (i), the graph 
Hr =" C£_i+ r is r-connected. Let S be a set of n vertices of Hr. Since |V(Hr) — S\ = 
= r — 1, <S> is connected. Therefore, Hr is an (n; n — 1 + r) graph with the desired 
properties. 

Case 2. Assume r is odd, so that r = 2/c + 1 _ 3. We consider two subcases. 

Subcase 2,1. Assume n is even. Let Hr be the graph obtained by joining diametrically 
opposite vertices of C n _ 1 + r in C*_1 + r . By Theorem A, part (ii), Hr is r-connected. 
The proof follows as in Case 1. 

Subcase 2.2. Assume n is odd. Let the vertices of Cn_1 + r be labeled v0,vl,... 
..., i\,-2+r> vo> a n - tet Hr ^ the graph obtained by adding (n + r)/2 edges to C*_1 + r, 
namely those edges joining vt and v}, where j — / = (n + r)/2. By Theorem A, 
part (iii), Hr is r-connected and, again, the proof follows as in Case 1. • 

3. ON THE n-RADIUS AND n-DIAMETER OF A TREE 

If v is a vertex of a connected graph G, then the eccentricity e(v) of v is defined by 

e(v) = max {d(u, v)\ue V(G)} . 

The radius rad G and diameter diam G of G are defined by 

rad G = min {e(v) \ v e V(G)} and diam G = max {e(v) j v e V(G)} . 

These last two concepts are related by the inequalities rad G = diam G g 2 rad G 
(see [1, p. 9], for example). In this section, we generalize eccentricity, radius and 
diameter. 

Let G be a connected graph of order p = 2 and let n be an integer with 2 = n 5g 
_̂  p. The n-eccentricity en(v) of a vertex v of G is defined by 

en(v) = max (d(S) j S <= V(G), | s | = n, and v e S} . 

The n-radius of G is 

radM G = min {en(v) | v e V(G)} , 

while the n-diameter of G is » 

diam,. G = max {en(v) | v _ V(G)} . 
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Note for every connected graph G that e2(v) = e(v) for all vertices v of G and that 
rad2 G = rad G and diam2 G = diam G. 

Each vertex of the graph G of Figure 2 is labeled with its 3-eccentricity, so that 
rad3 G = 4 and diam3 G = 6. 

Figure 2 

We now turn our attention to trees. It is useful to observe that if Tis a nontrivial 
tree and S i= V(T), where \S\ ^ 2, then there is a unique subtree Ts of size d(S) 
containing the vertices of S. We refer to such a tree as the tree generated by S. If S 
and S' are sets of vertices of a tree T with S cz S', then Ts cz Ts>; otherwise, 
Ts contains an edge e, say, that does not belong to Ts>. Since Ts is a tree of minimum 
size that contains S, there exists a pair u, v of vertices in S such that the u — v path 
in Ts contains the edge e. However, since T5, contains a u — v path that does not 
contain e, there are at least two distinct u — v paths in T, which is not possible 
since Tis a tree. Hence if S is a set of vertices of a tree Tand v is a vertex in V(T) — S, 
then the tree generated by S u {v} contains the tree generated by S. Let w be the 
(necessarily unique) vertex of Ts whose distance from v is a minimum. Then TSu{v} 

contains the unique v — w path and d(S u {v}) = d(S) H- d(v, w). If H is a subgraph 
of a graph G and v is a vertex of G, then d(v, H) denotes the minimum distance from v 
to a vertex of H. Therefore, d(S u {v}) = d(S) + <2(v, Ts). 

For a tree T, we denote by Vi(T) the set of end-vertices of Tand pt = |Vi(Fj|. 
If S = Vi(Tj, then Ts = T so that d(S) = q(T) and rf(S u {v}) = g(T) for all 
v e V(T). Hence if Tis a tree and n ^ 2 and integer with pi < n, then en(v) = q(T) 
for all v e V(F). The next result considers n-eccentricities of vertices in trees T with 
at least n end-vertices. 

Proposition 1. Let n ^ 2 be an integer and suppose that T is a tree of order p 
withpi = n.LetveV(T).IfS £ V(T)such thatv $ S,\S\ = n - 1 andd(S KJ {v}) = 
= eB(i>), f/ien S <= ^ ( T ) . 

Proof. Suppose, to the contrary, that there exists a set S of vertices of Tsatisfying 
the hypothesis of the proposition such that S $ V^T). Then there exists w e S 
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such that degrw = 2. Let T0 denote the subtree of T generated by S0 = S u {v}, 
and let T0 be the branch of T at w that contains v. If there exists an end-vertex x 
of Tin a branch of Tat w different from T0 such that x $ S, then 

d((S0 u {x}) - {w}) > d(S0) , 

which produces a contradiction. Hence, there is no such end-vertex x. But then T0 

is also the tree generated by Sx = S0 — {w}. Let y e Vi(T) such that y $ S. Then 

d(S, u {y}) > d(S0) , 

again a contradiction. • 

Corollary 2. _ef n = 2 be an integer and T a tree with pt = n. Then diamn T = 
= d(S), where S is a set of n end-vertices of T. 

Proof. If n = 2, then the result follows immediately. Assume thus that n _ 3 . 
Suppose that v e V(T) with en(v) = diam,. T. Let S' be a set of n — 1 vertices such 
that d(S'\j{v}) = e„(v). By Proposition 1, S' _= VX(T). If u e S', then en(u) = 

_ d(S' u {v}) = en(v), implying that en(u) = diam., T. However, then it follows 
by Proposition 1 that S' u {v} — {u} is a set of n — 1 end-vertices of T, so that 
S = S' u {v} is a set of n end-vertices of T with d(S) = diam,, T. • 

We now state, without proof, a basic lemma that will prove to be useful. 

Lemma 2. Let S be a set of n _ 3 end-vertices of a tree T and suppose that v e S. 
Then Ts„{v} can be obtained from Ts by deleting v and every vertex of degree 2 
on a shortest path from v to a vertex of degree at least 3 in Ts. 

The next result will serve as a useful tool when proving the main theorem of this 
section. 

Proposition 2. Let n = 3 be an integer and suppose that T is a tree with p^ — n) 
end-vertices. If v is a vertex of t with en(v) = rad„ T, then there exists a set S of 
n — 1 end-vertices of Tsuch that d(S u {v}) = en(v) and v e V(TS). 

Proof. Assume that the proposition is false. Then there exists a tree Tthat is 
a counterexample to the proposition and a vertex v of Tfor which the conclusion fails. 
By Proposition 1, there exists a set S of n — 1 end-vertices of Tsuch that en(v) = 
= d(S u {v}). From our assumption, it follows that S belongs to a component Tx 

of T — v. Let u be the unique vertex of Tx that is adjacent to v in T, and let T2 be 
the component of T — u containing v. Then Tis decomposed into Tl9 T2 and a com­
plete graph of order 2 whose edge is uv. 

Suppose that there exists a set S' of n — 1 end-vertices of T2 such that en(v) = 
= d(S' u {v}). Let xte S and x2 e S'; and define 

S, = (S - {x,}) u {x2} and S2 = (S' - {x2}) u {x,} . 
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Then the tree TSluS2 = TSuS, contains one more edge than the forest TS}J[u) u Ts.u{l,,, 
namely uv. Hence 

\E{TSluSl)\ = \E(TSuM)\ + |£(r s .U{ . ,) | + 1 . 

Since each of TSU{M} and Ts,u{v) has size en(v) - 1, it follows that 

|£(TSjuS2)| = |F(TSl)| + |F(TS2)| - |E(TSl)nE(TS2)| = 

= \E(TSU{U))\ + \E(TS^[V))\ + 1 = 2e„(v) - 1 . 

Therefore, either |F(TSl)| = en(v) or |F(TS2)| = en(v\ which implies that |F(TSl)| = 
= en(v) or |F(TS2)| = en(v). However, since TSl and TS2 both contain v, this contradicts 
our assumption about T and v. Of course, if S' is a set of n — 1 end-vertices such 
that en(v) = J(5 ' u {v}), then it follows from our assumption that S' cannot contain 
vertices from different branches of Tat v. Therefore, every set 5' of n — 1 end-vertices 
for which en(v) = d(S' u {v}) is contained in Tv 

Let R be a set of n — 1 end-vertices such that en(u) = d(R u {u}). If R is contained 
in Tu then d(Ru {v}) > d(Rv {u}), contradicting the fact that v has minimum 
n-eccentricity. If R contains vertices from both Tt and T2, then 

d(R u {v}) = d(R) = d(R u {u}) = en(u) = en(v) = d(R u {v}) , 

contrary to our assumption about Tand v. Thus, R is contained in T2. 
Now, 

en(u) = d(R u {u}) = d(R u {v}) + 1 . 

As we have seen, since R is a set of n — 1 end-vertices contained in T2. then 
d(R u {v}) < e„(v). Thus, en(u) = en(v) so that en(u) = e„(v), and u also has minimum 
n-eccentricity. 

Let XG R and }> 6 S, and define 

X = (R - {x}) u {y} and y = (5 - {;•}) u {x} . 

Then 

2e„(v) = 2d(S u {v}) = d(R u {u}) + d(S u {v}) 

= d((R u {u}) u (S u {v})) + 1 

= d(RvS) + I 

= d(X u y) + 1 = d(K) + d(Y) g 2gn(v) 

since uv belongs to both Tx and Ty. However, then, d(X) ^ e„(v) or d(y) ^ en(v), 

which implies that d(X) = en(v) and d(y) = en(v). However, X is a set of n — 1 

end-vertices such that Tx contains v. This again contradicts our choice of Tand v. • 

Corollary 3. Let n ^ 3 be an integer and suppose that T is a tree with at least n 
end-vertices. If v is a vertex of T with en(v) = rad„ T, then v is not an end-vertex of T. 
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We now establish a relationship between the n-diameter and (n — l)-diameter of 
a tree, where n _t 3 is an integer. 

Proposition 3. Let n ^ 3 be an integer and T a tree of order P _ n. Then 

diam,,-! T= diam„ T = ( — — j d i a m ^ ! T. H ^ 
Proof. If S is a set of n — 1 vertices such that d(S) = diam,.-! T, then for every 

set S' of n vertices of T with S _= S', we have diam,._ i T = d(S) = d(S') = diamn T. 
Hence the left inequality of the proposition follows. 

To verify that diamM T g (nj(n — 1)) diam„_! T, we observe first that if T has at 
most n — 1 end-vertices, then 

diam,.-! T = diam„ T = p - 1 , 

so that diam„ T < (n/(n — 1)) diamn_ t Tin this case. 
Assume now that T has at least n end-vertices. By Corollary 2, there is a set S 

of n end-vertices such that diamn T = d(S). Let S = {vt, u2 , . . . , vn} and let Zc (1 g 
_a i _5 n) denote the shortest distance from vt to a vertex of degree at least 3 in Ts. 

We show now that there exists at least one i (l f_ i = n) such that lt ^ (l/(n - 1)) 
diamn_! T. Suppose that lt > (l/(n - l ^ d i a m ^ i T for all i (I = i = n). Since 
by Lemma 2, Ts_{i;ri} can be obtained from Ts by deleting vn and every vertex of 
degree 2 on a shortest path from vn to a vertex having degree at least 3 in Ts, it follows 
that 

n - l x 

q(Ts_{lJn}) _? £ J, > (n - 1) -d iam, .^ T = diam,,-! T. 
i = i n — 1 

This is not possible because 

diam--,. T_^ d(S - {v„}) = q(Ts_{lJn}) . 

We may therefore assume that /„ _̂  (l/(n — 1)) diam,.-! T. Then 

diam„ T = d(S) = d(S - {vn}) + d(vn9 Ts_{tJri}) = 

= diamn_x T + diam^.j T = diam„_1 T. • 
n - l n - l 

The following proposition will aid us in deriving a relationship between the n-dia­
meter and n-radius of a tree. 

Proposition 4. Let n _t 3 be an integer andTa tree of order p _̂  n. Then 

diam,,-! T = rad„ T. 
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Proof. If pt ^ n — 1, then rad„ T = diam„«1 T = p — 1. Assume then that 
pi = n. We show first that rad„ T = diam„_! T. Let v be any vertex of T and S 
a set of n — 1 end-vertices of T such that d(S) = diam,,-! T. Then 

e„(v) = d(S u {v}) = d(S) = diam„_i T . 

Hence rad„ T = minueK(r) en(v) ^ diam„_1 T. 
We now verify that diam„_! T = rad„ T Let u b e a vertex of T such that en(v) = 

= rad„ T. By Proposition 2, there exists a set S of n — 1 end-vertices of T such that 
d(S) = en(v) = rad„ T and v e V^TS). Therefore, 

diam„_! T = max {d(S')i \S'\ = n - 1, S' _ VX(T)} = d(S) = rad„ T. 

Hence diam„_ t T = rad„ T. • 

Corollary 4. If n _ 2 /s an integer and Ta tree of order p ^ n, l/ien 

rad„ T ^ diam„ T = — — rad„ T. 
n — 1 

Proof. The result is well-known for n = 2. If n = 3, then Propositions 3 and 4 
provide the desired inequalities. • 

We conjecture that Corollary 3 can be extended to any connected graph. 

Conjecture. If n = 2 is an integer and G is a connected graph of order p _ n, 
then 

rad„ G ^ diam„ G g — — rad„ G . 
n — 1 

For a graph G of order P = 2, the diameter sequence of G is defined as the 
sequence 

diam2 G, diam3 G,..., diam^ G , 

while the radius sequence is the sequence 

rad2 G, rad3 G,.. . , radp G . 

In order to characterize diameter sequences of trees, we first introduce an additional 
term and state a useful result. 

Let G be a connected graph of order p. For 2 ^ n ^ /?, a set S consisting of n 
vertices of G is called an n-diameter set of G if d(S) = diam„ (G). The following 
result appears in [4], 

Theorem B. Let The a nontrivial tree with k(.= 2) end-vertices. For every integer n 
with 2 ^ n ^ fc, there exists an n-diameter set Sn of T(consisting of n end-vertices 
of T) such that S2 c S3 _ ... _ Sk. 
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We are now prepared to present the desired characterization of diameter sequences 
of trees. 

Theorem 2. A sequence a2, a3,..., ap of positive integers is the diameter sequence 
of a tree of order p having k end-vertices if and only if 

(1) a,., <an = (n\(n - \))aH-x for 3 = n = k, 

(2) a„ = p — 1 for k _ n _ p, and 

(3) an + i - a„ _ an - aH-t for 3 = n = p - L 

Proof. Let Tbe a tree of order p with k(_2) end-vertices and having diameter 
sequence a2, a3,..., ap. By Proposition 3, 

« . . t = a. á (-!-)«.. 

for 3 = n _ k. By Theorem B, there exists an n-diameter set Sn and an (n — 1)-
diameter set Sn_ t , each consisting only of end-vertices of T, such that Sn_t c Sn; 
so Sn = Sn_i u {v} for some end-vertex v e V(T) — Sn_i. Thus, 

an = diamn T = d(Sn) = d(Sn^ u {v}) _ 

_ d(Sn_0 + 1 > d(SH.x) = diamn_i T = a,,_i , 

which verifies (l). 
If n _ k, then diamn T = p — 1, so that afc = afc+1 = ... = a^ = p — 1 and (2) 

is established. 
To verify (3), we again employ Theorem B. Let tf„_i = d(Sn_i), an = d(Sn) and 

an+l = d(Sn + l), where 

Sn = Sn_i u {v} and Sn+1 = Sn u {u} . 

Let Tn_ x be the tree generated by 5n_ t and Tn the tree generated by Sn. By the remark 
preceding Proposition 1, 

d(Sn) = d(Sn.1) + d(v,T,^l), 
so that 

an = d(Sn) = d(Sn.1Kj{v}) = 

= d(Sn_i) + d(v, TH-t) = a,,_i + d(v, Tn_j) . 

Similarly, an + l = an + d(w, Tn). Therefore, 

0«+l - «n = 4 W ' T") = d(U> T M - 0 = d(r» T " - 0 = <*n~ «n-l » 

which verifies (3). 
For the converse, suppose that a2,a3, ...,ap is a sequence of positive integers 

satisfying properties (l) — (3). Let H2 be a path of length a2 and suppose H2:v0,v1,... 
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. . ., vay For 3 _g i _S fc, let Ht: vit0, vM, . . . , -!;,_,-_,^ be a path of length a, - a^v 

Define T t o be the tree obtained by identifying vi0 (3 _g i _g fc) with vr, where r = 
= \a2\2\ Then Thas size 

«2 + («3 - al) + («4 - ^3) + ..• + (flfc - flfc-l) = afc = P - 1 , 

and therefore has order p. Further, Thas diameter sequence a2, a 3 , . . . , ap. • 

Corollary 5. A sequence a2, a3, ...,ap of positive integers is the radius sequence 
of a tree of order P __: 2 having k end-vertices if and only if (1) a„_ 1 < an _g 
_S (n/(n - 1)) tf„__ for 3 _S 71 _S fc + 1, (2) an = p - 1 for k + 1 __; w _g /? and 
( 3 ) a n + 1 - a„ _g a„ - an_xfor4 _ n _$ P. 

Further work on this subject has been done in [4]. 
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Souhrn 

STEINEROVA VZDÁLENOST V GRAFECH 

GARY CHARTRAND, ORTRUD R. OELLERMANN, SONGLIN TIAN, HUNG GING Zou, Michigan 

Je-li S neprázdná množina uzlů souvislého grafu G, pak vzdálenost d(S) množiny S je mini­
mální velikost souvislého podgrafu jehož množina uzlů obsahuje S. Pro celá čísla n, p, 2 ff„ n _í. p, 
je určena nejmenší velikost grafu G řádu p pro který platí d(S) = n — 1 pro každou množinu S 
uzlů grafu G, pro niž |S | = n. Pro souvislý graf G řádu p a celé číslo n, 2 _̂_ n 5^p, definujeme 
n-excentricitu uzlu v grafu G jako maximální hodnotu d(S) přes všechny S _ V(G), kde v leží v S 
a |S | = n. Minimální n-excentricita radw G se nazývá n-poloměr G, maximální n-excentricita 
diam,. G se nazývá jeho n-průmer. Je dokázáno, že platí diamn T5_ [nj(n— 1)] radw T pro 
každý strom řádu p, 2 ___ n _£_p. Je-li G graf řádu p, pak posloupnost diam2 G, diam3 G, ... 
..., diamp G se nazývá posloupnost průměrů grafu G. V případě stromů jsou vyšetřovány pojmy 
n-poloměr, n-průměr a jsou charakterizovány posloupnosti průměrů stromů. 

Pe3K>Me 

PACCTOJIHHE UITEMHEPA B TPAOAX 

GARY CHARTRAND, O R T R U D R. OELLERMANN, SONGLIN TlAN, H U N G BiN Zou 

PaccTOHHHe d(S) HenycToro MH03KecTBa S BepinHH CBH3Horo rpa<_>a G — 3TO MHHHMajibHoe 
HHCJIO pe6ep CBH3aHoro no Arpáda, MHOHCCCTBO BepuiHH KOToporo co/jepacHT S. B CTaTbe R JISL 
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любых целых чисел р ^ п ^ 2 определено наименьшее число ребер граф С, для которого 
а1 (8) = п — 1 для каждого множества 5 его вершин мощности | 5 | = п. Для связного графа С 
порядка р и целого; числа л, 2 ^ и 5̂ ./?, определен л-эксцентриситет вершины г> графа С как 
максимум чисел *1(5) для всех 5 с У(0) мощности | 5 | = ы, содержащих V. Минимальный 
л-эксцентриситет гас!,. С называется л-радиусом графа С и максимальный л-эксцентриситет 
(Иат,, С называется л-диаметром графа О. Доказано неравенство сНатл Т^ [п(п — 1)] гао!п Т 
для каждого дерева порядка р и для 2 5* п — р. Для графа порядка р последовательность 
<Нат2 Оу аЧат3 О,..., Шатр О называется последовательностью диаметров графа С. В случае 
деревьев исследуются понятия л-радиуса и л-диаметра и характеризуются последовательность 
диаметров деревьев. 

АшНогз' айгеазез: С. СкаПгапй, О. К. ОеПегтапп, 5. Тгап, ОераПтеШ оГ Ма1петаНсз апс! 
Зга^зНсз \Уе81егп МюЫ§ап УтуегзИу, Ка1атахоо, МкЫ§ап 49008; Н. В. Хои, 1пгегта§пеис8 
Сепега! Согрога1юп. 
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