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1. INTRODUCTION

The following result has been proved in [2]:

A Riemannian manifold is locally symmetric if and only if all local geodesic
symmetries are harmonic.

The locally symmetric Riemannian manifolds form a subset of the class of locally
s-regular manifolds and generalized symmetric spaces. These manifolds may be
defined by using local diffefomorphisms which are generalizations of the geodesic
symmetries. The main purpose of this note is to derive a charactenzatlon of these
spaces which extends the above one for locally symmetric spaces.

2. LOCALLY s-REGULAR MANIFOLDS

Let (M, g) be a smooth connected manifold of dimension n with Riemannian
metric g. Further, let T; denote the algebra of all smooth tensor fields on M with
contravariant and covariant orders p and g, respectively. In particular, we put qu =
T, and T§ = T*. Let V denote the Riemannian connection and R the curvature ten-
sor field on M where we define the curvature operator Ryy by

Ryy = V|;x,)r] - [Vx, VY]
for all X, Ye T
Any S e T} may be considered as a field of endomorphisms of tangent spaces and
a tensor field P € T} is then called S-invariant if for all wy, ..., w,€ Ty and X4, ...
X eT!

P(@,S, ..., 0,8, X4,...,X,) = Py, ..., 0,, SXi, ..., SX,)

where (0S) X = w(SX) for we Ty and X e T".
Next, S is called a symmetry tensor field if I — S is non-singular and g is S-
invariant. In particular, if VS and V2S are S-invariant, then we say that S is regular.
Write B(m, r) for the geodesic ball on M with center m and sufficiently small
radius r. For any symmetry tensor field S on M we define a local symmetry s,
on B(m,r) by :
Sy = €XPp 0 S o EXPyy
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Clearly s,, is a diffeomorphism of B(m,r). If {x!,...,x"} is a normal coordinate
system on B(m, r) such that {90x', ..., 9/0x"} is an orthonormal basis at m, then

(1) x'os, = Sj(m)x!

where Sj(m) are the natural components of S at m and form an orthogonal matrix.
We denote by s the map m + s,, so defined on M and note that for each me M

Sm*le=Sm.

Hence S is determined uniquely by s.

We recall from [ 5] (see also [8]) that (M, g) together with s is called a (Riemannian)
locally s-regular manifold if each s, is also a local isometry which preserves S,
thatis .

Smx(SX) = S(sxX)

for each m € M and each vector field X defined on some neighborhood of m. Then s
is called a local regular s-structure on (M, g). We refer to [8] for an extensive study
and many nice and non-trivial examples.

For later use we state the following lemmas from [5]:

Lemma 1. If S is regular and R and VR are S-invariant, then (M, g) is a IocaIly
s-regular manifold with symmetry tensor field S.

Lemma 2. If S is regular and the tensor field P and VP are S-invariant, then VP
and all higher order covariant differentials of P are S-invariant.

3. HARMONIC MAPS

Let (M, g) and (N, h) be two Riemannian manifolds with metrics g and h and let
f:(M, g) - (N, h) be a smooth map. The pullback f*h is a semidefinite symmetric
covariant tensor of order two, called the first fundamental form. Further, the
covariant differential V(df) is a symmetric tensor of order two with values in f ~*(TN),
called the second fundamental form of f (see [3], [4]). A map with vanishing second
fundamental form is said to be totally geodesic.

The trace of V(df) is denoted by 1(f) and it is called the tension field of f. A ‘map
with vanishing tension field is called a harmonic map.

If % = M is a domain with coordinates (x', ..., x™) and ¥" = N a domain with
coordinates (y', ..., y") such f(%) = ¥, then f can be locally represented by y* =
= f(x',...,x™), « = 1,...,n. The metric tensor g is represented by g(x) =
= gi(x)dx*dx’, i,j=1,...,m, and similarly we have h(y) = h,(y)dy*dy’,
@, B =1, ..., n.df(x) is represented by the matrix (8f*/0x’). In this case we have

af* off
h*i = s~ 3 tap s
() oxiox)
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_mpe 7 o of’f
(2) (V(df))ll = dx a N Au) r a k r a e PR

where MI'}; and "I}, are the Christoffel symbols for (M, g) and (N, h), respectively.
It follows that f is harmonic if and only if
() W) = ¢" (V) = 0.
Now we return to the local diffeomorphisms s, defined in Section 2. Using normal
coordinates {x’, ..., x"}, (1), (2) and (3) we get at once

Theorem 3. The local symmetries s,,, m € (M, g), are harmonic if and only if for
each p e B(m, r) we have

(4) w(sm)* (p) = 9"(—Tiy(p) Si(m) + Ia(s(p)) Si(m) Sj(m) = 0
for k=1,2,.
We note that the Christoffel symbols I i; are given by
1 ag; 0g; 0g;i
5 Fk=—“__l+_-’.l.__'_l.
©) v a9 {axf ox' 6x'}

4. POWER SERIES EXPANSIONS OF g AND g~ ! IN NORMAL COORDINATES

To prove our main result we will write down a power series expansion for the
tension field (s,,). Therefore we need power series expansions for g and g~' with
respect to normal coordinates. This can be done by using the general method given
in [6] (see also [1], [7]) or by using the technique of Jacobi vector fields (see [1], [9]
for details and further references). We now write down the result but we delete the
long but straightforward computations.

Put

p = exp, (ru)
where

i 0 4
rum 6t L(m), ul =1
X

Then we have

Theorem 4. With respect to normal coordinates the metric g is given by
(6) 91i(p) = i — Ix*x"Ryip(m) — $x°x*x(VoRysc;) (m) +
+ Eaxaxbxcxd( 3VZbRcidj + % Z Raibschds) (m) +
s

+ ;laxaxbxcxdxk[—vasbcRdik jt2 Z(VaRbicstjks + Vanjcstiks)] (m) +
s
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+ %xaxbxcxdxkx‘[_ 10V:bcdeil] + 34 Z(V:bRcidstjls + Vbecjdstns) +
+ 55 ZVaRbicsVdejls -16) Raib:chdrRkslt] (m) + 0("7) .
] s,t
From this we get

Theorem 5. With respect to normal coordinates g~ is given by
(7) g ij(P) =0, + %xaxbRaibj(m) + Jo’xaxbxc(VaRbicj) (m) +
+ gl—ox"x"xcx"(BVf,,Rcw + 4 Y R,sR.jas) (m) + O(r°) .

5. MAIN THEOREM

We are now ready to prove the
Main Theorem. Let (M, g) be a Riemannian manifold with a regular tensor

field S.If the local symmetry s, at each point p € M is a harmonic map, then (M, g)
is a locally s-regular manifold with symmetry tensor field S, and conversely.

Proof. First we note that the converse is trivial since any isometric map is har-
monic.
To prove the direct result we put

(®) | —TIi(p) Si(m) + Lay(su(p)) Si(m) Si(m) ='§1a’,‘.-,-(m, u)rt + 0(r°)

where p = exp,, (ru), |u| = 1. Then, using this and (7), the condition (4) gives the
following necessary conditions:

A. Za’{“(m, u) = 0;
B. Zi:tx';ﬁ(m, u) = 0;
C. Zitx';“(m, u) + &éa'{ij(m, u) Ry, (m) = 0;
D. Zi:aiﬁ(m, u) + %g oy, (m, u) Rypf(m) + 3 'ZI: oy ,(m, u) (V,R,y,;) (m) = 0;
E. Zi:oc';“(m, u) + 1 ‘_ZJa’;u(m, u) Ryi(m) + % '2; o3 i(m, 1) (VuRusy) (m) +
+ o5 ; o ;(m, u) BV2ER,; + 4 %RuiusRu.ius) (m)=o0.
Hence we'need to compute «f;; for t = 1,...,5. These computations are straight-
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forward using (5) and (6) but they are very long. Therefore we delete the detailed
expressions and consider at once the consequences of the conditions A, ..., E.

The conditions A. Here we obtain for the Ricci tensor g at m
Qus-1k — Qsuk = 0
or equivalently,
Osusk — Qu = 0,

where Sk and S™!k, denote the vectors S,,(8/0x*) (m) and S, '(8/8x*) (m), respectively
k =1,...,n. Since (9/0x*) (m) and u are are arbitrary, this implies that the Ricci
tensor @ is S-invariant.

The conditions B. These conditions turn out to be equivalent to

) —6V,05-114 + Vs-10uu + 6Vs5u0ksu — ViQsusu = 0.
First, put S~k = u. Then we get

(10) Vi0uu = Vsulsusu -

Next, put S™'k = v in (9). Then we have

(11) 6V.i0u — Violuu — 6Vs05us0 + Vsulsusu = 0 5

and by interchanging u and v,

(12) 6Vu2us — V0w — 6Vsi0suso + Vsi@sesy = 0.

Further, replace u by u + v in (10) and develop. This gives

(13) 2Vuqu + 2Vl}Q|‘U + VMQI)U + Vllgllll =

= 2VSuQSuSv + 2VSUQSuSu + VSuQSuSu + VSUQSuSu .
Now we put
A= VuQuu - VSuQSuSv ’ A = Vuguv - VSvQSuSv ’
B = VuQuu - VSvQSuSu ’ B = Vuqu - VSuQSvSv .
Then we obtain from (11), (12) and (13)
64 —B =0,
64’ — B =0,
2A+A)+B+B =0
and so

A+A'=0=B+ B'.
The last expression gives

(14) Vuguu - VSuQSuSu = Vude - VSuQSvSv J

395



Finally we put v = x + y in (14) and develop. This yields

” VuQxy = VSuQSxSy s
which implies that Vg is S-invariant. -
Note that, since S is regular, it follows from the conditions A and B and Lemma 2
that all the covariant derivatives V¥o are S-invariant.

The conditions C. Taking into account the results obtained above, these conditions
become, with S™'k = u,

(15) ZjRuiuj(Ruiuj - RSuSiSqu) =0.

To derive a useful result from (15) we proceed as followvs. We identify T,,M with
an n-dimensional Euclidean space R" via the orthonormal basis {(0/0x’) (m), i =
=1,...,n}. Then the left hand side of (15), after multiplication with r*, may be

regarded as a homogeneous polynomial of order 4. Further, let D denote the
Laplacian of R". Then, taking twice the Laplacian in (15) we easily obtain

(16)' Z .Raibj(Raibj - RSaSiSbS_i) =0

a,b,i,j
and hence also

(17) Z (Raibj - RSaSiSbj)2 =0
a,b,i,j
So we have from (17)
Raibj = RSaSiSij s

which yields that R is S-invariant.

Remark. Instead of using the Laplacian we may also use integration over S"~ 1(1)
in T,,M (see [1], [7] for details).

The conditions D. Putting again S™'k = u and taking into account the results
from conditions A, B and C we obtain

(18) ;’Ruiuj(vuRuiuj - VSuRSuSiSuS]) =0.

(We will not need this conditions to prove the theorem.)

The conditions E. Procegding in the same way, a long computation leads to
(19) 4 ‘2; Ruiuf(VaRuinj — ViusuRsusisuss) +
+ 22 izj[(VuRuiuj)z - (VSuRSuSiSqu)z] -
- 70 E VuRuiuj(VuRuiuj - VSuRSuSiSqu) =0,
where we used the fact that R is S-invariant. Using again the method of the Laplacian
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or integration over the unit sphere, we obtain

Z VaRbicj(VaRbicj - VSaRSbSiSch) =0

a,b,c,i,j
and hence also
2 _
Z (VaRbicj - VSaRSbSiSch) =0.
a,b,c,i,j

This yields
VaRbicj = VSaRSbSiSch ’

which means that VR is S-invariant.
The required result follows now from Lemma 1.

Remark. The result about locally symmetric manifolds mentioned above follows
at once from our Main Theorem by putting S = —1I.
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Souhrn

HARMONICKE ZOBRAZEN{ A s-REGULARN{ VARIETY

K. SEKIGAWA, L. VANHECKE

V [2] bylo dokazino: Riemannovska varieta je lokalng symetrickd pravé kdy? vSechny lokalnd
geodetické symetrie jsou harmonické. LokAaln& symetrické Riemannovské variety tvofi pod-
mnoZinu t¥idy lokaln& s-regularnich variet a zobecn&nych symetrickych prostoru. Tyto variety
1ze definovat pomoci lokélnich difeomorfismi, jeZ jsou zobecnénim geodetickych symetrii.
Hlavnim cilem prace je odvodit charakterizaci t&chto prostort, kterd rozsifuje vyse uvedenou
charakterizaci lokaln&€ symetrickych prostoru.

397



Pe3ome

TAPMOHUNYECKHE OTOBPAXEHMS N s-PET'VIISIPHBIE MHOI'OOBPA3USL

K. SEKIGAWA, L. VANHECKE

B pa6ote [2] noxa3aHO, YTO PUMaHOBO MHOroo0pasue SBIAETCS JIOKAIBHO CHMMETPHYECKHM
TOrJa ¥ TONBKO TOr/Aa, KOT/a BCE JIOKAJIbHBIE Ie0/Ie3MYeCKHe CHMMETPHH SABJITFOTCA TaPMOHUYECKH -
MH OTOOpaxkeHHstMH. JIOKAJIbHO CHMMETpHYECKHEe PUMAaHOBBI MHOroo6pasusi o6pa3yioT MOAMHO-
JKECTBO KJIacca BCEX JIOKAIIBHO S-PETYJIAPHBIX MHOroo6pasuiit 1 OGOGIIEHHBLIX CHMMETPHYECKHX
MPOCTPAHCTB. DT MHOrooOpa3us MOXHO ONpPEAEMTh IPH IOMOIUM JIOKaNbHEIX Juddepeomop-
¢usmoB, oGobmaromux reoae3uyeckue cummeTpur. IIenb cTaTbu — BHIBECTM XapaKTEPH3ALMIO
3THX NPOCTPAHCTB, AaHAJIOTUYHYIO NPUBEACHHOH BBIIIE XapaKTEpU3alUY JIOKAJILHO CHMMETpPHYEC-
KHX IIPOCTPAHCTB.
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