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NARROW SPACES, PRODUCTS OF TOPOLOGICAL SPACES
AND SUPERTINY SEQUENCES OF A. SZYMANSKI*)

A. 1. VEKSLER, Leningrad

(Received April 25, 1987)

Summary. The first part is devoted to narrow spaces in connection with products of topological
spaces. Examples and open questions are also considered. The second part is devoted to tiny and
supertiny sequences in the sense of A. Szymanski. In particular, it is shown that a compact
space is narrow iff it contains a supertiny sequence. A counterexample to a conjecture of A.
Szymarnski is also given.
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1. INTRODUCTION

In [5] the author introduced the following notions: a dominant sequence (DS),
a narrow space, a pivot and, in particular, solid and soft pivots. These notions were
further investigated in [2], [6]—[9]. In [8] the author gave a survey of the results
obtained on this subject until 1984. The present work can be considered as a continua-
tion of [8]. Section 2 contains (mostly without proofs) some results from [9], which are
devoted to narrow spaces in connection with their relations to products of topological
spaces. Section 3 contains some examples and open questions. In particular, these
examples give answers to three questions posed in [8]. Almost all examples from
this section are based on Section 2. Section 4 is devoted to tiny sequences and super-
tiny sequences of A. Szymanski. In particular, it is shown (Theorem 7) that a compact
space is narrow if and only if it contains a supertiny sequence. Besides, a counter-
example to a hypothesis of A. Szymanski [4] is presented.

The letters X and Y always stand for topological spaces, the letter G (or F and &)
stands for open (closed, respectively) sets. Further F, and F, will always denote closed
nowhere dense (c.n.d.) sets. Under @-sets we understand n.d. zero-sets. Under a P’-set
(a P-set) in X we understand any F such that if F = A for some G;-set 4, then F <
cclint A (F < int A, respectively). A symbol of the type {E,} always means
{E,: ne w}.

*) Talk presented 6th Prague Topological Symposium 1986.
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To make a work selfcontained we recall the definitions of the main notions used
below. A dominant sequence (DS) on X is any sequence {F,} of c.n.d. sets satisfying
the following two conditions: (a) U{F,: n € w} is dense in X, and (b) for each c.n.d.
F, with F, n F, = 0 (n € ®), the union Y{F,: n € o} is n.d. in X. Any set M of the
form M = {F,: n € o}, where {F,} is an arbitrary DS, is called a pivot. A space X
is said to be narrow if X has a DS.

Let M be a pivot in X. (i) M is called solid if each sequence {F,} of c.n.d. sets
such that F, T M (ie. Fy = F, = ... and U{F,: n e ®} = M) is necessarily a DS.
(ii) M is called soft if there exist two sequences (of c.n.d. sets) {F,} and {F,} such
that F,1 M, F,n F, = 0 (n € »), and U{F,: n € o} is dense in X.

2. NARROW SPACES AND PRODUCTS OF TOPOLOGICAL SPACES

Proposition 1 ([9]). Let M be a meager F,-set in X and let Z = X x Y. Then the
following statements are true: 1) If {F, x Y} is a DS on Z, then {F,} is a DS on X.
If Yis a compact space, then the converse is also true. 2) Let Y be compact and let M
be a pivot in X. Then M x Yis a pivot in Z. If X is a Baire space, then the converse
is also true. 3) M is a solid pivot in X provided M x Y is a solid pivot in Z. If X
and Y are compact, then the converse is also true.

Remark. As Theorem 3 below shows, the assumption of compactness of Y is
essential (at least in some cases).

Proposition 2 ([9]). Let M be a solid pivot in a compact space X, F, 1 M, and let H
be a dense F,-set in X. Then {F,n H} is a DS on H.

Theorem 3 ([9]) Let the following conditions be satisfied: M is a dense meager
F,-set in a compact space X, F, 1 M, Y is a metric compact space and T is a dense
set in Y. A necessary and, in case S = Y\ T is dense in Y, sufficient condition for M
to be a solid pivot is that {F, x Y} isa DSon X x T.

Taking the space Q of rational numbers for T, we obtain a criterion of a solid
pivot in compact spaces. Now we present a construction of narrow spaces.

Let X® be a topological space, xi’ € X (ke w) and x, = (x{", x5, ...). We
denote by X = N({X®, x{}) the o-product of spaces X* with center x, and endow
X with the box-product topology. An infinite g-product of the type A; X ...

. x A, x ... will always denote a set in the o-product X.

Theorem 4 ([9]). If X® is a compact space and x{ is a nonisolated point in X®
(k € w), then X = N({X®, x{°}) is a narrow space and even a pivot in itself with
a DS of compact sets F, = {xeX:x® = x{ for k > n}. If x{ is a P'-point
in X® for all k = ko, then X is a solid pivot, otherwise X is a soft pivot.
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Proof. Let us take p € w and represent X in the form
X=(X"x .. xXP)x(XCD x . )=Y,xX.

Obviously, Pr_ is a closed mapping (since Y, is compact). For any 4 = X we denote
A=Pr, A and 4={(x”,...,x")} x 4. Let ¢ be closed and #F,=0.
Evidently @ is a c.n.d. set. Note also that ¢ n F, = 0. Otherwise we would have
&N F,={x,},ie. ®n F, * 0, a contradiction.

Let now &, be a c.n.d. set in X and @, " F, = 0 (n € w). To prove the first part
of the theorem we need to verify only that U{®,: n € } is a n.d. set. Take an arbitrary
nonvoid open basic set G in X. Then G can be written as follows

1 +1 +2
G=G"Y x..x Gm™x U™ x ym*+2) x|

where all factors are nonvoid and open, and x%’ e U¥. We have already proved
that 5,, n F, = 0 for every p € . Hence, without loss of generality we may assume
that §, c @, ie. xe @, implies {(x{",....,x{")} x {X} € @,. Since x,€F,, we
have x, € @,. Consequently, there is an open set G, 3 x, such that G,n @, = 0.
Let G, =U{" x U x .. (pew), where x(’ e U} (kew) and U® 5 UP o
>UP > ...(k=zm+1).Put

G, =X x ... x X® x UP*D x UP+D x ...

Then G, o G, and G, n &, = 0. Otherwise we would have G, N &, % 0, and since
G,> G, @, > &, this would imply G, n @, + 0, a contradiction.

Now we put Gy = GV x ... x G™ x UL D x Uy x UMD x ... Then
9 #+ G, = G and G, > G, for all p = m. Hence Gy n (U{®,: n = m}) = 0. But
this means that J{®,: n € o} is a n.d. set in X.

Let x be a P’-point in X® for all k > ko. Then it is easy to see that F, is a P’-set
for the same k. This and the equality X = U{F,: n € ®} imply (in view of Theorem
19 in [8]) that X is a solid pivot in fX. But then Proposition 10.3 in [5] implies
that X is a solid pivot in itself. If x§ is not a P’-point in X®, then in X®) there exists
a @-set O 3 x{¥, Thus x, belongs to a @-set @, = X x ... x X« D x @® x
x X®*1 x .. in X. Obviously ©,,, o F,. Hence, if an infinite number of points
X are not P’-points, then X can be covered by a sequence of @-sets and by Theorem
9 from [8] the pivot X is soft.

3. EXAMPLES AND QUESTIONS

Example 1. Let X and Y be compact spaces with a solid pivot My < X and a soft
pivot My < Y. By Proposition 1, Z = X x Y is a narrow space with a solid pivot
My x Y and a soft pivot X x My. This solves in the affirmative question Q1 from
[8]. If F,1 My and &,1 My are DS on X and Y, respectively, then F, x ¢, =
= (F, x Y)n (X x &,)is a DS on Z in view of Proposition 1.1 above and Proposi-
tion 3.3 from [8]. Moreover, F, x @, is a n.d. subset (in the induced topology)
both of F, x Yand of X x &,. Eatlier (see [8], Example 4) it was shown that the
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space uw, exhibits analogous properties. However, the existence of a soft pivot in uw,
depends on some set-theoretical assumptions.

Example 2. Let {X'“} be a sequence of compact narrow spaces with DS {F®:
new}and let X = IM{X%: k e w}. Put

Fom=F"x  xF" xI{X®: kzm+ 1} cX.
Then {Fn,,,.i ne w} is a DS on X for each m, and F, 4, is a n.d. subset of F

n,m
in the (induced) topology on F, ,,. If all the initial pivots M* = {F®: ne o} are
solid in X, then the pivots M,, = U{F, : n € o} are solid in X (m € ). However,
if MY, M@ are solid pivots and MP* ") is a soft pivot, then the pivots M, ... M

are solid in X, and M, ... are soft.

4

Example 3. Let X be an arbitrary compact space having both a solid pivot M,
and a soft pivot M, (see Example 1). In view of Theorems 7 and 9 from [8] we can
assume without loss of generality that there exist on X a DS of P'-sets F, 1 M, and
a DS of @-sets ©, 1 M,. Hence M, is a soft pivot in itself. On the other hand, one
can easily see that M, is the union of the increasing sequence {F, n M,} of n.d.
P’-subsets in M,. This means that Theorem 7 from [8] cannot be generalized to
normal topological spaces, which is the negative answer to question Q3 from [8].

Example 4. Under the conditions of Theorem 3, let { F,} be a DS and let the pivot
M be not solid. Then {F, x Y}isaDSonZ = X x Y, but the restrictions {F, x T}
and {F, x S} of this DS to two sets X x T and X x S mutually complemented
in Z fail to be DS.

Example 5. Let X* be a unit circle with x{ = (1, 0). Then N({X®, x{}) is
a topological group under the natural group operation. By Theorem 4 the topological
space of this group is a narrow space and a soft pivot in itself.

Example 6. Let X be a countable compact space with a single nonisolated
point x{”, i.e. X® is homeomorphic to aw. Then N({X®, x{°}) is a countable normal
narrow space which is a soft pivot in itself. This example was constructed by P.
Simon (see [8], Example 9). The first example of this kind was constructed (under

CH) by V. 1. Malyhin [2].

Example 7. Let X be the absolute of the Stone-Cech compactification of a count-
able normal narrow space (see Example 6). By virtue of Corollary 1 to Proposition
17 and Corollary to Proposition 2 from [8], X is also narrow and, obviously,
a separable extremally disconnected compact space.

Another example of a similar space was constructed by A. Szymanski [4]. His
space is homeomorphic to a P-set S in w*, and S (under MA) is not a retract of fw.

In [8] it was asked (Q2) if there exists a narrow compact space X with a pivot M
such that the space X \ M is narrow as well. We will give the affirmative answer
to this question.
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Example 8. Let X be a basically disconnected compact space with a solid pivot.
Then there is a smaller pivot M which is the union of an increasing DS of n.d. P-sets
{®,}. We embed each &, in a netting F, (recall [10] that a netting is a set X \ U{X,:
a € A} where {X,} is an arbitrary maximal family of pairwise disjoint open and closed
sets in X). Put Y=X\M, F, = F,n Y and show that Y is a narrow space with
DS {F,}.

First of all we note that the intersection of the netting F, and the n.d. P-set @, is
a n.d. subset of F, ([10], Theorem 4). Hence the set F, = F,\U{F, n &,: k€ v}
is dense in F,. Consequently, U{F,: n € o} is dense in X and, moreover, in Y.

Further we show that if F = X \U{X,: o€ A} is a netting in X and F’ is a c.n.d.
set in Y which is disjoint from F = Fn Y, then cly F' n F = 0. Indeed, putting
F, = F' A X,, we will show that all but a finite number of the sets F., are empty.
If not, there exist x, € F,, (k€ w). Put H = cly {x,: k € }. Since ¥, is a P-set and
x, € ®P,, we have Hn &, = 0. Hence H = Y, H = F’'. Since F is a netting, we have
Fn H #+ 0and F n F' #+ Q. But this contradicts the closedness of F’ in Y and the
disjointness F n F’ = (. Thus, there is only a finite number of « with F., % . This
implies that cly F'n F = (.

Finally, let F, be a c.n.d. subset in Y and F, n F, = 0. Then (as proved above)
(clx F;) n F, = 0. Hence U{clx F;: n € w} is a n.d. set in X, since {F,} is a DS on X.
Consequently, F,is a DS on Y,i.e. Y = X \ M is a narrow space.

To conclude this section we pose several questions.

Q1. Isittrue that X x Q is not a narrow space, provided X is a separable compact
space?

- Q2. Do narrow spaces X and Y exist for which X x Yis not narrow?

Q3. Do non-narrow X and Y exist for which X x Yis narrow?

Q4. (see [8], Q4). Let X be a compact space and M a dense meager F,-set in X.
To find (simple enough) characterizations for M to be a soft pivot. In case M is
already a pivot in X such characterizations are known ([8], Theorem 9).

Q5. To find a simple enough characterization of pivots in compact spaces.

Q6. Does there exist a soft pivot M in an extremally disconnected compact space X’
satisfying the Souslin property, such that M covers no nonvoid @-set in X? _
In view of Theorem 9 from [8] a solution of Q5 would imply a solution to Q4.

4, NARROW SPACES AND SUPERTINY SEQUENCES OF A. SZYMANSKI

A. Szymariski in [4] introduced the following notion.

Definition 1. A sequence {Z,: n € w} of families of open sets in X is called a tiny
sequence (TS) if the following two conditions are satisfied: a) |J2, is dense in X

370



for each n € w, b) for any finite family 2, = 2, (ne ) the set U{(UZ;): ne w} is
not dense in X.

In any space without the Souslin property a TS always exists. This led Szymanski
to another definition.

Definition 2. A TS {2,: n € w} is called supertiny (STS), if for any G + 0 there
exists m € o such that {#, | G: n 2 m} is a TS on G.
A. Szymanski has established the following proposition.

Proposition 5. Let {9’,,: new} be a STS in a compact space X and let F, =
= X\UZ,. Then {F,} is a DS on X.

To prove this proposition we will make use of the following criterion of DS (see
[8], Proposition 13 and Theorem 12): The condition () is necessary and, in case of
a normal X, sufficient for a sequence F, of c.n.d. sets to be a DS:

(*) if W, is a regular closed (r.c.) set in X and W,n F, = 0 (n € ), then there
exists no G = 0 such that Y{W, n G: n 2 m} is dense in G for each m € w.

Proof of Proposition 5. Let us assume that {F,} is not a DS. Then by (*) there
exists G & 0 and a r.c. W, such that W,n F, = 0 (ne w) but Y{W,n G:n = m}
is dense in G for each m € w. Obviously, W, = JZ,. Since W, is a compact space,
there exists a finite 2, = 2, such that U#, > W. Hence U{(UZ,|G): n = m}
is dense in G (m € ). But this is impossible, sincc {Z,: n € w} is a STS in X, a contra-
diction.

Now we will show that the converse statement is also true.

Proposition 6. Let X have a n-base of rc. sets, let {F,,} be a DS on X and let 2,
be a maximal family of pairwise disjoint open sets such that (U = #,=F,
nclU = Q). Then {2,: n€ w} is a STS in X.

Proof. The existence of a n-base of r.c. sets in X implies that {J2, is dense in X
and U2, | G is dense in G for any open G and each n € w. Let us assume that {2,
new} is not a STS. Then there exists G % @ such that for any me o, {2, | G:
n= m} is not a TS in G. This means that for any m e w and n = m there exists
a finite 27" = 2, such that U{(UZ} I G):n = m} is dense in G. Define

W, = U{(U{clU: Ue 2;}): k < n}.

Then W, is a r.c. set in X and W, F, = 0 (n € w), but for any m € o, Y{W, n G:
n = m} is dense in G. This contradicts (x) above. Hence, {#,: n € o} is a STS in X.
As an immediate corollary to Propositions 5 and 6 we obtain the following result.

Theorem 7. A compact space is narrow if and only if it has a STS.
As we see, A. Szymanski’s notion of a space X with a STS is close to that of a nar-
row space and they coincide for compact spaces. Szymanski proved that any Y
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dense in X has a STS if and only if X has a STS. Thus, in the class of completely
regular spaces the study of spaces with STS is reduced to the study of compact spaces
with STS. Hence, for example, the negative answer to question Q2 for spaces with
STS is trivial. This sort of reduction to compact spaces is apparently not possible for
narrow spaces. A. Szymariski [4] showed that in ZFC the following statement cannot
be proved: ‘“‘compact spaces without TS are precisely those which are coabsolute
with dyadic compact spaces” and he conjectured that this statement is consistent
with ZFC. The following example disproves it.

Example 9. Let X be the extremally disconnected compact Stone space of the
complete Boolean algebra of Lebesgue measurable sets (mod 0) in the interval
[0,1]. Then X has no TS though X is not coabsolute with any dyadic compact
space.

Let us admit that {?,: ne w} is a TS in X. We may assume that each 2, consists
of pairwise disjoint open and closed sets. Let u be a measure on X generated by the
Lebesgue measure. Since uE = 0 for any n.d. set E = X, we obtain u(U2,) = 1 for
each n € w. Pick up a finite 2, = 2, such that u(U2,) > 1 — 1/n. Then p(U{(2,):
new}) = 1. Hence Y{UZ,: n e w} is dense in X. This means that {?,: n€ w} is
not a TS.

To complete the proof we assume that X is coabsolute with a dyadic compact
space Y. Since X is extremally disconnected, there exists an irreducible surjection
¢:X — Y. Since wX = ¢, we have wY < ¢ and thus the dyadic compact space Y is
a continuous image of D° ([ 1], Ch. 3, 323). But D¢ is separable ([3], § 14), hence Yis
also separable. This implies that its irreducible preimage X is separable as well,
a contradiction.
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Souhrn

UZKE PROSTORY, SOUCINY TOPOLOGICKYCH PROSTORU A , SUPERTINY*"
POSLOUPNOSTI A. SZYMANSKEHO

A. 1. VEKSLER

Prvni &ast prace je vénovana uzkym prostorim v souvislosti se souiny topologickych prosto-
ru. Jsou uvedeny i priklady a oteviené problémy. Druha &ast je v€novana ,,tiny* a ,,supertiny‘
posloupnostem ve smyslu A. Szymanského. Je dokazano, Ze kompaktni prostor je Gzky, pravé
kdyZ obsahuje supertiny posloupnosti, a je podan protipfiklad k hypotéze A. Szymanského.

Pesome

V3KUE ITPOCTPAHCTBA, ITPOU3BEJEHUWSA TOITOJIOI'MYECKUX
ITPOCTPAHCTB U ,,CYIIEPKPOIIEYHBIE' ITOCJIEAOBATEJIbBHOCTH
A. IIMMAHCKOI'O

A. I. VEKSLER

IlepBast yacTh paboThI OCBALICHA Y3KHM NPOCTPAHCTBAM B CBA3M C NPOU3BEACHUSMM TOMOIOTH-
YeCKUX MPOCTPaHCTB. IIpUBENEHBI MPUMEPBI W OTKPbITHIE NpobieMbl. BTopas 4acTh HOCBSAIEHA
,,KPOILIEYHBIM * H ,,CYNIEPKPOLLIECYHBLIM * NIOCIIEIOBATENBHOCTAM B cMbiciie A. Ilumanckoro. loka3a-
HO, YTO KOMIIAaKTHO€ MPOCTPAHCTBO SABJISAETCS Y3KMM TOTJA M TOJBKO TOTOA, KOraa OHO COACPKUT
+»CYNIEPKPOLLEYHBIE  TICOJIEJOBATEILHOCTH, ¥ NIPHBEAECH KOHTpNpuMep k runorte3de A. Illmmanckoro.
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