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114(1989) ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY No. 4. 366—373 

NARROW SPACES, PRODUCTS OF TOPOLOGICAL SPACES 
AND SUPERTINY SEQUENCES OF A. SZYMANSKI*) 

A. I. VEKSLER, Leningrad 

(Received April 25, 1987) 

Summary. The first part is devoted to narrow spaces in connection with products of topological 
spaces. Examples and open questions are also considered. The second part is devoted to tiny and 
supertiny sequences in the sense of A. Szymanski. In particular, it is shown that a compact 
space is narrow iff it contains a supertiny sequence. A counterexample to a conjecture of A. 
Szymanski is also given. 

Keywords: Narrow space, product of topological spaces, tiny sequence, supertiny sequence. 

AMS Subject Classification: 54B05, 54G30, 54G99, 54B10. 

1. INTRODUCTION 

In [5] the author introduced the following notions: a dominant sequence (DS), 
a narrow space, a pivot and, in particular, solid and soft pivots. These notions were 
further investigated in [2], [6] — [9], In [8] the author gave a survey of the results 
obtained on this subject until 1984. The present work can be considered as a continua­
tion of [8]. Section 2 contains (mostly without proofs) some results from [9], which are 
devoted to narrow spaces in connection with their relations to products of topological 
spaces. Section 3 contains some examples and open questions. In particular, these 
examples give answers to three questions posed in [8]. Almost all examples from 
this section are based on Section 2. Section 4 is devoted to tiny sequences and super­
tiny sequences of A. Szymanski. In particular, it is shown (Theorem 7) that a compact 
space is narrow if and only if it contains a supertiny sequence. Besides, a counter­
example to a hypothesis of A. Szymanski [4] is presented. 

The letters X and Y always stand for topological spaces, the letter G (or F and 0) 
stands for open (closed, respectively) sets. Further Fn and Fn will always denote closed 
nowhere dense (cn.d.) sets. Under <9-sets we understand n.d. zero-sets. Under a P'-set 
(a P-set) in X we understand any F such that if F c A for some G -̂set A, then F c 
c cl int A (F c int A, respectively). A symbol of the type {En} always means 
{En\ neco}. 

*) Talk presented 6th Prague Topological Symposium 1986. 
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To make a work selfcontained we recall the definitions of the main notions used 
below. A dominant sequence (DS) on X is any sequence {F„} of c.n.d. sets satisfying 
the following two conditions: (a) U{^n: new} is dense in X, and (b) for each c.n.d. 
F'n with F'n n F„ = 0 (n e co), the union \j{F'n: n e co} is n.d. in X. Any set M of the 
form M = U{^n: new}, where {F„} is an arbitrary DS, is called a pivot. A space X 
is said to be narrow if X has a DS. 

Let M be a pivot in X. (i) M is called solid if each sequence {Fn} of c.n.d. sets 
such that Fn\ M (i.e. Fx c F2 c ... and U{^n: n e co} = M) is necessarily a DS. 
(ii) M is called soft if there exist two sequences (of c.n.d. sets) {F„} and {F'n} such 
that Fn t M, F; n Fn = 0 (n e co), and U{^* : w e co} is dense in X. 

2. NARROW SPACES AND PRODUCTS OF TOPOLOGICAL SPACES 

Proposition 1 ([9]). Let M be a meager Faset in X and let Z — X x y. Then the 
following statements are true: 1) If {F„ x Y} is a DS on Z, then {Fn} is a DS on X. 
If Yis a compact space, then the converse is also true. 2) Let Ybe compact and let M 
be a pivot in X. Then M x yis a pivot in Z. IfK is a Baire space, then the converse 
is also true. 3) M is a solid pivot in X provided M x Y is a solid pivot in Z. If X 
and Yare compact, then the converse is also true. 

Remark. As Theorem 3 below shows, the assumption of compactness of Y is 
essential (at least in some cases). 

Proposition 2 ([9]). Let M be a solid pivot in a compact space X, Fn j M, and let H 
be a dense Faset in X. Then {Fn n H} is a DS on H. 

Theorem 3 ([9]). Let the following conditions be satisfied: M is a dense meager 
Faset in a compact space X, Fn t M, Y is a metric compact space and Tis a dense 
set in Y. A necessary and, in case S — Y\ Tis dense in Y, sufficient condition for M 
to be a solid pivot is that {Fn x Y} is a DS on X x T 

Taking the space Q of rational numbers for T, we obtain a criterion of a solid 
pivot in compact spaces. Now we present a construction of narrow spaces. 

Let K(k) be a topological space, x(
0
fc) eXik) (fce co) and x0 = ( x ^ , x(

0
2),...). We 

denote by X = N({K(fc), x0
fc)}) the cr-product of spaces X(k) with center x0 and endow 

X with the box-product topology. An infinite cr-product of the type At x ... 
... x Ak x ... will always denote a set in the cr-product X. 

Theorem 4 ([9]). If X(k) is a compact space and x(
0
fc) is a nonisolated point in K(fc) 

(fc e co), then X = N({K(fc), x(
0
fc)}) is a narrow space and even a pivot in itself with 

a DS of compact sets Fn = { x e K : x(fc) = x0
fc) for fc > n}. If x(

0
fc) is a P'-point 

in K(fc) for all fc _ k0, then X is a solid pivot, otherwise X is a soft pivot. 
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Proof. Let us take p e co and represent X in the form 

X = (X(1) x ... x X(p)) x (X{p+1) x ...) = yp x X . 

Obviously, Prx is a closed mapping (since yp is compact). For any i c l w e denote 
A = Prx A and A = { (x^ , . . . , x(

0
p))} x A. Let <l> be closed and <*> n Fp = 0. 

Evidently $ is a c.n.d. set. Note also that $ n Fp = 0. Otherwise we would have 
$ n Fp = {x0}, i.e. $ n Fp 4= 0, a contradiction. 

Let now $n be a c.n.d. set in X and <Pn n F,, = 0 (n e co). To prove the first part 
of the theorem we need to verify only that U{^V- n e co} is a n.d. set. Take an arbitrary 
nonvoid open basic set G in X. Then G can be written as follows 

G = G(1) x ... x G(m) x U{m+l) x U{m+2) x ... , 

where all factors are nonvoid and open, and x(
0
fc) e U(fc). We have already proved 

that $pr\ Fp = 0 for every p e co. Hence, without loss of generality we may assume 
that <Pp a <PP, i.e. xe<Pp implies {(x(

0
l),...,x(

0
p))} x [x}e<Pp. Since x0 e Fp, we 

have x0 e #p . Consequently, there is an open set Gp a x0 such that G'pc\ <Pp = 0. 
Let G; = Up

l) x Up
2) x .. (peco), where x(

0
fc)eU(

p
fc) (keco) and U(fc) •=> U(k) ZD 

=> U(
2

fc) => ...(fc = m + 1). Put 

Gp = X{1) x ... x K(^ x Up
p+1) x U<f+2) x ... . 

Then Gp 3 Gp and Gpn <Pp = 0. Otherwise we would have Gp n $p =4= 0, and since 
Gp =) 5 p , <3̂ p => <?p, this would imply Gp n # p + 0, a contradiction. 

Now we put G0 = G(1) x ... x G(m) x U{m+1) x U^^ x U(
m

M
+

+
2

3) x ... . Then 
0 * G0 c G and Gp z> G0 for all p ^ m. Hence G0 n (U{^n : n = m}) = 0. But 
this means that U{^V n e o>} is a n.d. set in X. 

Let x(
0
fc) be a P'-point in K(fc) for all k = k0. Then it is easy to see that Fk is a P;-set 

for the same fc. This and the equality X = U{^V neco} imply (in view of Theorem 
19 in [8]) that X is a solid pivot in ($X. But then Proposition 10.3 in [5] implies 
that X is a solid pivot in itself. If x(

0
fc) is not a P'-point in K(fc), then in Z(fc) there exists 

a <9-set <9(fc) a x(
0
fc). Thus x0 belongs to a O-set 0k = K(1) x ... x K^-D x 0(fc) x 

x K<fe+1> x ... in X. Obviously 0k+i ZD Fk. Hence, if an infinite number of points 
X0

k) are not P'-points, then X can be covered by a sequence of <9-sets and by Theorem 
9 from [8] the pivot X is soft. 

3. EXAMPLES AND QUESTIONS 

Example 1. Let X and ybe compact spaces with a solid pivot Mx a X and a soft 
pivot MY CI y By Proposition 1,Z = K x y i s a narrow space with a solid pivot 
Mx x yand a soft pivot X x My . This solves in the affirmative question Ql from 
[8]. If Fn t Mx and $n | M y are DS on K and y, respectively, then Fn x <Pn = 
= (Fw x y) n (K x $w) is a DS on Z in view of Proposition 1.1 above and Proposi­
tion 3.3 from [8]. Moreover, F„ x <Pn is a n.d. subset (in the induced topology) 
both of F„ x yand of X x <Pn. Earlier (see [8], Example 4) it was shown that the 
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space wcoj exhibits analogous properties. However, the existence of a soft pivot in U(ov 

depends on some set-theoretical assumptions. 

Example 2. Let {X{k)} be a sequence of compact narrow spaces with DS {F(k): 
new} and let X = n{X (k): kea>}. Put 

Fn,m = J*" x ... x F("l) x Yl{X(k): k = m + 1} cz X . 

Then {Fnm: n e w } is a DS o n l for each m, and F„,m+1 is a n.d. subset of F„fM 

in the (induced) topology on F,l>m. If all the initial pivots M{k) = (J{F(k): n e co} are 
solid in X(k), then the pivots Mm = U{IVm: neco} are solid i n X ( m e co). However, 
if M ( 1 ) , . . . , M(/7) are solid pivots and M(p+l) is a soft pivot, then the pivots Mt ... Mp 

are solid in X, and M p + x ... are soft. 

Example 3. Let X be an arbitrary compact space having both a solid pivot Mx 

and a soft pivot M2 (see Example 1). In view of Theorems 7 and 9 from [8] we can 
assume without loss of generality that there exist on I a DS of P'-sets Fn f Mx and 
a DS of <9-sets 0n f M2 . Hence M2 is a soft pivot in itself. On the other hand, one 
can easily see that M2 is the union of the increasing sequence {Fn n M2} of n.d. 
P'-subsets in M2 . This means that Theorem 7 from [8] cannot be generalized to 
normal topological spaces, which is the negative answer to question Q3 from [8]. 

Example 4. Under the conditions of Theorem 3, let {Fn} be a DS and let the pivot 
M be not solid. Then {F„ x Y} is a DS on Z = X x Y, but the restrictions {Fn x T} 
and {FM x S} of this DS to two sets X x T and X x S mutually complemented 
in Z fail to be DS. 

Example 5. Let X(k) be a unit circle with x(k) = (1,0). Then N({X(k), x(k)}) is 
a topological group under the natural group operation. By Theorem 4 the topological 
space of this group is a narrow space and a soft pivot in itself. 

Example 6. Let X(k) be a countable compact space with a single nonisolated 
point x(

0
fc), i.e. X(k) is homeomorphic to oca). Then N({X(k), x(

0
k}}) is a countable normal 

narrow space which is a soft pivot in itself. This example was constructed by P. 
Simon (see [8], Example 9). The first example of this kind was constructed (under 
CH) by V. I. Malyhin [2]. 

Example 7. Let X be the absolute of the Stone-tech compactification of a count­
able normal narrow space (see Example 6). By virtue of Corollary 1 to Proposition 
17 and Corollary to Proposition 2 from [8], X is also narrow and, obviously, 
a separable extremally disconnected compact space. 

Another example of a similar space was constructed by A. Szymanski [4]. His 
space is homeomorphic to a P-set 5 in co*, and 5 (under MA) is not a retract of jSco. 

In [8] it was asked (Q2) if there exists a narrow compact space X with a pivot M 
such that the space X \ M is narrow as well. We will give the affirmative answer 
to this question. 
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Example 8. Let X be a basically disconnected compact space with a solid pivot. 
Then there is a smaller pivot M which is the union of an increasing DS of n.d. P-sets 
{#„}. We embed each <Pn in a netting Fn (recall [10] that a netting is a set X \ \j{Xa: 
a e A} where {Xa} is an arbitrary maximal family of pairwise disjoint open and closed 
sets in X). Put Y = X \ M, F„ = F B n y and show that Y is a narrow space with 
DS {Fn}. 

First of all we note that the intersection of the netting Fn and the n.d. P-set <Pk is 
a n.d. subset of Fn ([10], Theorem 4). Hence the set Fn = Fn\\J{Fnn <Pk: keco} 
is dense in Fn. Consequently, \J{Fn: n e co} is dense in X and, moreover, in Y. 

Further we show that if F = X \ \J{Xa: a e .A} is a netting in X and F' is a c.n.d. 
set in Y which is disjoint from F = F n Y9 then cl* F' n F = 0. Indeed, putting 
F'a = F' n Xa, we will show that all but a finite number of the sets F'a are empty. 
If not, there exist xk e Fak [k e co). Put H = c\x {xk: fc e co}. Since <Pn is a P-set and 
xk e <Pn, we have H n <Pn = 0. Hence Ha Y, H c F'. Since F is a netting, we have 
F n H 4= 0 and F n F' + 0. But this contradicts the closedness of F' in Y and the 
disjointtiess F n F' = 0. Thus, there is only a finite number of a with F'a + 0. This 
implies that clx F' n F = 0. 

Finally, let F'n be a c.n.d. subset in Yand F'nr\Fn = 0. Then (as proved above) 
(clx F'n) n F„ = 0. Hence U(clx -^i" n e co} is a n.d. set in X, since {Fn} is a DS on X. 
Consequently, F,, is a DS on Y, i.e. Y = X \ M is a narrow space. 

To conclude this section we pose several questions. 

Ql . Is it true that X x Q is not a narrow space, provided X is a separable compact 
space? 

Q2. Do narrow spaces X and Y exist for which X x Y is not narrow? 

Q3. Do non-narrow K and Yexist for which X x Y is narrow? 

Q4. (see [8], Q4).LetK be a compact space and M a dense meager Fff-set in K. 
To find (simple enough) characterizations for M to be a soft pivot. In case M is 
already a pivot in K such characterizations are known ([8], Theorem 9). 

Q5. To find a simple enough characterization of pivots in compact spaces. 

Q6. Does there exist a soft pivot M in an extremally disconnected compact space X 
satisfying the Souslin property, such that M covers no nonvoid 0-set in XI 

In view of Theorem 9 from [8] a solution of Q5 would imply a solution to Q4. 

4. NARROW SPACES AND SUPERTINY SEQUENCES OF A. SZYMAtfSKI 

A. Szymanski in [4] introduced the following notion. 

Definition 1. A sequence {0>n: n e co} of families of open sets in X is called a tiny 
sequence (TS) if the following two conditions are satisfied: a) \J^n is dense in X 
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for each n E to, b) for any finite family &'n c &n (n e w ) t h e set U { ( U ^ ) : n e co} is 
not dense in X. 

In any space without the Souslin property a TS always exists. This led Szymanski 
to another definition. 

Definition 2. A T S { ^ „ : n e co} is called supertiny (STS), if for any G 4= 0 there 
exists mEco such that {0n \ G: n = m} is a TS on G. 

A. Szymanski has established the following proposition. 

Proposition 5. Let {&n: nE co} be a STS in a compact space X and let Fn = 
= X \ \J0>„. Then {Fn} is a DS on X. 

To prove this proposition we will make use of the following criterion of DS (see 
[8], Proposition 13 and Theorem 12): The condition (*) is necessary and, in case of 
a normal X, sufficient for a sequence Fn of c.n.d. sets to be a DS: 

(*) if Wn is a regular closed (r.c.) set in X and Wn n Fn = 0 (n E CO), then there 
exists no G + 0 such that \j{Wn n G: n = m} is dense in G for each m E CO. 

Proof of Proposition 5. Let us assume that {Fn} is not a DS. Then by (*) there 
exists G =)= 0 and a r.c. Wn such that Wn n Fn = 0 (n e co) but U{^n n G: n = m } 
is dense in G for each m e co. Obviously, W„ c: U^n- Since KVn is a compact space, 
there exists a finite ^ n c ^ such that \J0>'„ => VK Hence U{(U^» | G): n = m} 
is dense in G (m e co). But this is impossible, since {0>n: H e co} is a STS in X, a contra­
diction. 

Now we will show that the converse statement is also true. 

Proposition 6. Let X have a n-base of re. sets, let {Fn} be a DS on X and let &„ 
be a maximal family of pairwise disjoint open sets such that (U a £Pn=> Fnr\ 
n cl U = 0). Then {0>n: n e w } is a STS in X. 

Proof. The existence of a 71-base of r.c. sets in X implies that \J0n is dense in X 
and \J0n | G is dense in G for any open G and each n E CO. Let us assume that {0n: 
nEco} is not a STS. Then there exists G 4= 0 such that for any mEco, {£Pn | G: 
n = m} is not a TS in G. This means that for any m e co and n _ m there exists 
a finite ^ c ^ such that U{(U^C | G): n = m} is dense in G. Define 

^ = U{(U{clU:C/e^}):fc = n } . 

Then W„ is a r.c. set in X and Wn n F„ = 0 (n e co), but for any mE co, \j{Wn n G: 
n = m} is dense in G. This contradicts (*) above. Hence, {^n: w e co} is a STS in X. 

As an immediate corollary to Propositions 5 and 6 we obtain the following result. 

Theorem 7. A compact space is narrow if and only if it has a STS. 
As we see, A. Szymanski's notion of a space X with a STS is close to that of a nar­

row space and they coincide for compact spaces. Szymanski proved that any Y 
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dense in X has a STS if and only if X has a STS. Thus, in the class of completely 
regular spaces the study of spaces with STS is reduced to the study of compact spaces 
with STS. Hence, for example, the negative answer to question Q2 for spaces with 
STS is trivial. This sort of reduction to compact spaces is apparently not possible for 
narrow spaces. A. Szymanski [4] showed that in ZFC the following statement cannot 
be proved: "compact spaces without TS are precisely those which are coabsolute 
with dyadic compact spaces" and he conjectured that this statement is consistent 
with ZFC. The following example disproves it. 

Example 9. Let X be the extremally disconnected compact Stone space of the 
complete Boolean algebra of Lebesgue measurable sets (mod 0) in the interval 
[0, 1]. Then X has no TS though X is not coabsolute with any dyadic compact 
space. 

Let us admit that {0>n: n e co} is a TS in X. We may assume that each 0>

n consists 
of pairwise disjoint open and closed sets. Let JJ. be a measure on X generated by the 
Lebesgue measure. Since fiE = 0 for any n.d. set £ c I , we obtain fi((J^n) = 1 for 
each neto. Pick up a finite &'n a 0>n such that n(\J^'n) > 1 - l/n. Then \i{\J{(^'n): 
n e a)}) = 1. Hence U{U^n : n E &>} is dense in X. This means that {&n: ne OJ} is 
not a TS. 

To complete the proof we assume that X is coabsolute with a dyadic compact 
space Y. Since X is extremally disconnected, there exists an irreducible surjection 
<p: X -i• Y. Since wX = c, we have wY = c and thus the dyadic compact space Y is 
a continuous image of Dc ( [ l ] , Ch. 3, 323). But Dc is separable ([3], § 14), hence Yis 
also separable. This implies that its irreducible preimage X is separable as well, 
a contradiction. 
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Souhrn 

ÚZKÉ PROSTORY, SOUČINY TOPOLOGICKÝCH PROSTORŮ A „SUPERTINY" 
POSLOUPNOSTÍ A. SZYMAŇSKÉHO 

A. I: VEKSLER 

První část práce je věnována úzkým prostorům v souvislosti se součiny topologických prosto­
rů. Jsou uvedeny i příklady a otevřené problémy. Druhá část je věnována „tiny" a „supertiny" 
posloupnostem ve smyslu A. Szymaňského. Je dokázáno, že kompaktní prostor je úzký, právě 
když obsahuje supertiny posloupnosti, a je podán protipříklad k hypotéze A. Szymaňského. 

Резюме 

УЗКИЕ ПРОСТРАНСТВА, ПРОИЗВЕДЕНИЯ ТОПОЛОГИЧЕСКИХ 
ПРОСТРАНСТВ И „СУПЕРКРОШЕЧНЫЕ" ПОСЛЕДОВАТЕЛЬНОСТИ 

А. ШИМАНСКОГО 

А. I. УЕКЗГЕК 

Первая часть работы посвящена узким пространствам в связи с произведениями топологи­
ческих пространств. Приведены примеры и открытые проблемы. Вторая часть посвящена 
„крошечным" и „суперкрошечным" последовательностям в смысле А. Шиманского. Доказа­
но, что компактное пространство является узким тогда и только тогда, когда оно содержит 
„суперкрошечные" псоледовательности, и приведен контрпример к гипотезе А. Шиманского. 

АшНог'з аМгеза: ЕПЪР пп. 8. М. Киоуа, и1. Сеггепа 18, 191065 Еешп8гаа\ Ш 8 К . 
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