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NECESSARY AND SUFFICIENT CONDITIONS 
FOR IMBEDDINGS IN WEIGHTED SOBOLEV SPACES 

BOHUMIR OPIC, Praha 

(Received January 14, 1987) 

Summary. The paper deals with imbeddings of weighted Sobolev spaces W1 tP(&; S) (S is 
a collection of weight functions) into weighted Lebesgue spaces Lq(Q; w) (w is a weight function). 
General necessary and sufficient conditions for such imbeddings are established. 

Keywords: Weight function, weighted Sobolev space, weighted Lebesgue space, compact 
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1. INTRODUCTION 

Let Q be a domain in RN. By iV{Q) we denote the set of weight functions on Q, 
i.e., the set of all measurable, a.e. in Q positive and finite functions. 

For w e Hr(Q), 1 ^ q < oo the weighted Lebesgue space B(Q; w) is the set of all 
measurable functions u defined on Q with a finite norm 

(i-i) l»U--(J«.K*)IM*)d*),/f. 
Obviously, the space B(Q; w) with the norm (1.1) is complete. 

Let 1 ^ P < oo, p* = p\(p — 1) (p* = co for p = 1) and let S be a collection 
of weight functions 
(1.2) S-=-{!>, e*r(0); i = 0, 1, ...,N} . 

Throughout the paper we assume that 
(1.3) VteLlXQ), v7i/peLp:c(Q), f = 0, 1, ...,N . 

We define the weighted Sobolev space Wl *P(Q; S) as the set of all functions ue 
eLP(Q;v0) which have distributional derivatives duidxte U(Q;v^, f = l,...,N. 
We can easily verify that the space Wl,p(Q; S) with the norm 

/ N \\f)u\\p \ifp 

(1-4) l«U-|«U + [P ) 
is a Banach space. Further, we define the space 

wy(Q;S) 
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as the closure of the set C£(Q) with respect to the norm (1.4). The norm in this space 
is again given by (1.4). 

For two Banach spaces X, Y we write X Q Q Yor X Q Y if X c= Y and the natural 
injection of X into Y is compact or continuous, respectively. 

The symbol M c: c X means that M is a closed subspace of a Banach space X. 
Throughout this paper we will suppose that 

n=l 

where Qn are domains in RN such that 

amcaH+i c O , QH+l * f l . 
Further, .we set 

Qn = Q\Qn9 neN. 

In [6], [9] it was shown that 

X= Wi>p(Q;S)QQIf(Q;») 

if there are local imbeddings 

W1'"(Qn;S)QQU(Qn;W), neN, 
and 

lim sup |HP>nn iW = 0 . 
ri->oo ue.Y,||i.| |x^l 

The aim of the paper is to generalize this result. In Section 2 we will prove the fol­
lowing assertion: 

Let p, q e <1, co), X a c WUp(Q; S). Suppose 

Wl<p(Qn;S)QQU(Qn;w) VneN. 
Then 
(1.5) X G G 15(0; w) 

if and only if 
lim sup ||i*||,tnn,w = 0 .. *) 
n-+co MeX,||i.||x^ 1 

Analogous results concerning the continuous imbedding X Q D(Q; w) are also 
included in Section 2. Theorems from this section are applied in [7], [4] and [8]. 

In Section 3 we establish some other conditions which are necessary and sufficient 
for the compactness of the imbedding under investigation. Let us remark that the 
theorems in Section 3 imply the result by A. Avantaggiati (see [1], Theorem 2.1). 

2. NECESSARY AND SUFFICIENT CONDITIONS FOR IMBEDDINGS 

The main results of this section are Theorems 2.4, 2.5 and 2.7. The proofs of the 
first two of them are based on the following two lemmas. 

*) The proof will be quite different from those in [6], [9]. 
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2.1. Lemma. Suppose p, q e <1, oo) and 

(2.1) W1>>{Qu;S)QQL%Qn;W) VneA t . 

Further, for every £ > 0 let there exist n e Nsuch that 

(2.2) B«||;Aw ^ £ | |t/| |?,P.0,s + ||«l;.0, lW Vu e H""(<2; S) . 

Then 

(2.3) H " - ' ( f i ; S ) G G 4 Q ; w ) ' 

Proof. Let {«.} c T y ^ Q . S ) , ||«n|l1,P,0,s = c for all n e N, where C G ( 0 , OO). 
For a given £ > 0 choose e t e (0, 8*/(2C* + 1)>. By assumption there exists n e .V 
such that 

(2.4) ||ii||;iflfW ^ B1||u||?fFifliS + ||u||;,fi/i,w Vu e WitP(Q; S). 

The imbedding (2.1) implies the existence of a subsequence {wnJ which is a Cauchy 
sequence in the space B(Q„, w). Hence there exists k0 e iVsuch that 

K * - Mn»ll;,f-S,w -S *i for all k, 1 ̂  k0 . 

This and (2.4) yield 

I K - w.,l;.n.w ^ « i l K - Wmlli.p.n.s + I K - M-.I!!.OI,.W -S 

^ 6! 2C* + fit g £* . 

Thus {MBJ is a Cauchy sequence in the space 13(Q; w) and therefore (2.3) holds. 

2.2. Lemma. Suppose p, q e <1, oo) and 

(2.5) ^1f l ;s )GQU(f i ;w) . 

Then for every e > 0 ffcgre exists in e N such that 

(2.6) | | « | | ^ > w g «||«||!,p.0.s + ||u||*>fls>w Vu e Wl'"(Q; S ) . 

Proof. Let us assume, on the contrary, that the statement of Lemma 2.2 is false. 
Then there exists s > 0 and a sequence {u j c WitP(fi; S) such that 

(2.7) ||«,l;>0|1, > £||u„||?>p>0>s + ||uM||«>nB,w VB e At. 

Taking v„ = u„/|u„||1>p>n>s (the inequality (2.7) implies ||u„|1>p>QS * 0), we obtain 

(2-8) Kl;,o.w > - + IW:.n..w V n e A . 

As the imbedding (2.5) holds and the sequence {vn} is bounded in WltP(Q; S), there 
exists a subsequence {v„J and a function v e B(Q; w) such that vnk -» t; in I?(Q; w). 
Now, (2.8) yields 

І ÎA.Ž.+ ИÍA.' 

345 



This is a contradiction because e > 0. 

2.3. Remark." Inequality (2.6) can be rewritten in the form 

(2.9) \\4U*.» = 44\,P.n.s Vue^fl ;S). 
Since 

Hl2.«\w^ Hlt-fl".* for n ^ S , 
we have by (2.9) 

(2.10) lim sup IMb,*-"." = ° • 
«->oo [ [u l l i .p .n.s^l 

Conversely, let us suppose that (2.10) is true. Let e > 0 and denote et = ei!q. 
Then by (2.10) there exists n e iVsuch that 

sup |HLft»,w = £x Vn = n 
l l« l l i .P ,n , s^ l 

and so for every u e Wl>p{Q\ S), ||ti||i,pfulS US 1, we have 

(2.11) ML-*-.*-S fli Vn = ii. 

The last inequality immediately yields 

Hl,,fi»,w = £i||«li,P,Q,s Vu e WX>\Q; S) , Vn = n. 
This implies 

l«l;.D.w = *iMip** + l»lu.w *" = * 
and therefore the inequality (2.6) is satisfied. 

Summarizing the above lemmas and Remark 2.3 we obtain 

2.4. Theorem. Suppose p, q e <1, oc). If 

(2.12) W1>'(Qn;S)QQI3(Qn;w) VneN 

and 

(2.13) lim sup ||«||,>n„>w = 0 , 
n-»oo l lu l l l .p .n.sS l 

then 
(2.14) W1-"(Q;S)QQD(Q;w). 

Conversely, if (2.14) holds, then the condition (2.13) is satisfied. 

Let X <= <= WUp(Q; S) (e.g. X = W£'P(Q; S)). For n e At we set 

X„ = {u;u = 4 v °e.Y} 

and in this space we consider.the norm j| • jXn = || • ||1>p>fin>s. For simplicity we denote 

IHIx= I'li.P.a.s-
Analogously as we have proved Theorem 2.4 we can verify the following theorem. 
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2.5. Theorem. Suppose p, q e <1, oo). If 

(2.15) XnQQ L\Qn;w) Vn e At 

and 

CI. lim sup ||tt||qffJn>w = 0 , 

then 

(1.5) XQQU(Q;w). 

Conversely, if (1.5) holds, then the condition CI is satisfied. 

2.6. Remark, (i) The condition (2.15) will certainly be fulfilled if 

W1 >p(Qn\ S) QQ U(Qn\ w) Vn e 1V. 

(ii) Theorem 2.4 implies that under the assumption (2.12) the condition (2A3) 
is necessary and sufficient for the imbedding (2.14) to be compact. Similarly, under 
the assumption (2.15) the imbedding (1.5) takes place if and only if the condition CI 
is satisfied. 

There is an analogue of Theorem 2.5 for continuous imbeddings. 

2.7. Theorem. Suppose p , ^ e ( l , co). If 

(2.16) XnQ L*(rQ,.; vv) Vn e 1V 

and 

(2.17) lim sup ||tt|,i0ilfW < oo , 

then 

(2.18) XQU(Q;w). 

Conversely, if (2.18) holds, then the condition (2.17) is fulfilled. 

Proof. As 

llML,-i,w^ H,.n»,w+ IMLo-.-w, 
we have 

sup H,,í2,w á sup M,.n».w + SUP P I U A . W 
ueX,\\u\\xíl i .sX-,| |!i | |xgl ueXn,\\u\\Xnšl 

and thus the assumptions (2.16), (2.17) imply (2.18). 
The converse assertion follows by a contradiction argument from the inequality 

И,.-" .*-- IMU.OЛГ. 

2.8. Remark. Let us note that under the additional assumptions 

0) W^(Q;S)<=^X; 
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(ii) there exist an open non-empty set Q c Q and a constant C, 0 < C < oo such 
that 

C"1 < w(x) < C, C"1 < v((x) < C 

for a.e. x e Q and for i = 0 , . . . , N; 
the imbedding (1.5) yields 

44) + i > o 

(or equivalently N'1 >• p - 1 — cj-1) while (2.18) implies 

tffi-rUiao 

(or equivalently N"1
 = p"1 - q"1) - cf. [8], Lemma 8.10. 

3. SOME OTHER NECESSARY AND SUFFICIENT CONDITIONS 
FOR COMPACT IMBEDDINGS 

The aim of this section is to establish some other conditions that are necessary 
and/or sufficient for the imbedding (1.5) to be compact (see Theorems 3.8 and 3.9). 
The symbols p, q, Q, X and Xn have the same meaning as in Section 2. 

Let us consider a measurable space (Q, s/) where s/ is a cr-algebra of all Lebesgue 
measurable subsets of the domain Q, and let {an} be a sequence of non negative and 
finite measures on s/. By B(5) (S > 0) we denote the ball {xeRN; \x\ < 5}. The 
Lebesgue measure of a set E e s/ is denoted by |£| . If {Ek} c s/ then the notation 

00 

Ek \ E means that Ek+l c Ek for fc e N and E = lim Ek ( = fi Ek). 
k-*ao k~l 

In order to facilitate a concise formulation of our next result, we first recall the 
definitions of certain kinds of continuity for set functions. 

3.1. Definition, (i) We say that the terms of the sequence {an} are equicontinous 
from above at 0 (and write {an} e ECA0), if the following condition holds: 

(3.1) {Ek} c s/ , Ek \ 0 => lim sup an(Ek) = 0 . 
fc->oo neN 

(ii) We say that the terms of the sequence {an} are uniformly absolutely con­
tinuous (and write {an} e UAC), whenever for every e > 0 there exists 5 > 0 such 
that an(E) < e for every positive integer n and for every set Ee s/, \E\ < 5. 
[Obviously, {an} e UAC if and only if the following condition is satisfied: 

(3.2) {Ek} as/, lim \Ek\ = 0 => lim sup an(Ek) = 0.] 
/c-*oo fc-*oo neN 
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(iii) The terms of the sequence {on} are said to be uniformly absolutely continuous 
in the narrower sense (and we write {on} e UAC*), if for every s > 0 there exists 
S > 0 such that on(E) < e for every positive integer n and for every set E e stf, 
\E\ < S or E n B(l/<5) = 0. 

The relations between these three notions of continuity are established in the 
following two lemmas proved in Section 4. 

3.2. Lemma. UAC* = UAC n ECA0. 

3.3. Lemma. If \Q\ < oo, then UAC* = UAC. 

In this section we shall deal with a specific sequence of measures defined by 

(3.3) on(E) = $E\un(x)\«w(x)dx, Eest, neN9 

where w e iV(Q)y q e <1, oo) and {un} is a sequence of functions from X. 

Now we are ready to introduce some conditions on the measures (3.3) and in­
vestigate their relations to the compactness of the imbedding 

(1.5) XQQL\Q;w). 

C2. {on} e ECA0 for every bounded sequence {un} cz X. 

C3. {on} e UAC for every bounded sequence {un} cz X, 

C4. {on{ e UAC* for every bounded sequence {un} cz X. 

The following assertion is an immediate consequence of Lemma 3.2. 

3.4. Lemma. C4 <=> C2 A C3. 

Further relations between the conditions CI—C4 are given by the next lemma.*) 

3.5. Lemma. 
(i) C2 => CI; 

(ii) C4=>C1; 
(iii) if \Q\ < oo, then C3 => CI. 

Proof. ad(i). Evidently, the condition CI is equivalent with the following one: 

CI*, lim sup Hi/nll̂ a^H, = 0 for every bounded sequence {un} cz X. 
fc->oo neiY 

Therefore we will prove the implication C2 => CI*. 
Let {wn} cz X be a bounded sequence. As Qk \ 0, condition C2 yields 

*) For the condition CI see Theorem 2.5. 
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lim sup ||un||g>Qk>w = lim sup an(Q
k)q = 0 

fc->co neN fc->oo neN 

and so the condition CI* holds. 
The statement (ii) follows from (i) and Lemma 3.4. Finally, (iii) is a consequence 

of (ii) and Lemma 3.3 

3.6. Lemma. Let 

(1.5) XQQU(Q;w). 

Then the conditions C2 and C3 are satisfied. 

Proof. Let XQQ U(Q; w). We shall only prove that condition C2 holds. The 
proof of C3 is analogous. 

Suppose on the contrary that condition C2 is not satisfied. Then there exist 
a bounded sequence {un} c Z , a number e > 0 and a sequence {Ek} a s/9 Ek \ 0> 
such that 

(3.5) °n(Ek)^£, n,keN. 

The imbedding (1.5) and the boundedness of {un} in the space X imply that there 
exist a subsequence {u„,} and a function v e I3(Q; w) such that 

(3.6) uni -> v in Lq(Q; w) . 

The inequalities (3.5) yield 

(3.7) e < atti(Ek) = JEfc |«Bj(x)|« w(x) dx < 

= Z^HJn |«„, ~ v\" wdx + JEk \v\* w dx} . 

If \Ek\ < oo for some fc, we have |£J„| -> 0 and, consequently, 

(3.8) lim j £ k |t;(x)|^ w(x) dx = 0 , 
fc-00 

which contradicts (3.6) and (3.7). 
Hence, suppose that \Ek\ = oo for every fc e N. In view of 

Jr. K*)|« w(x) dx < oo 

there exists 3 > 0 such that 

f£Kx)|Mx)dx<£/2* 
for every set E e si for which \E\ < S or E n B(ljS) = 0. For fc e /V we set 

As 
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we have 

(3.9) k K * ) M * ) <-*<-/-«• 
The inequalities (3.5), (3.9) together with (3.6) imply 

(3.10) e £ 2"- '{Jo |«„, - v\" wdx + JFk |»|« w dx + k \v\" w dx} < 

< 2"~ '{f0 \u„, - v\" wdx + lFk \v\" w dx} + «/2 . 

Since \Fk\ ^ |B(1/<5)| < oo, ke N, and Fk \ 0, we have \Fk\ -> 0, and consequently 

(3.11) lim Jfk \v(x)\q w(x) dx = 0 . 
fc->oo 

Letting i -^ oo in (3.10), we again obtain (in view of (3.6) and (3.11)) a controversial 
inequality e ^ E/2. Thus the condition C2 holds. 

3.7. Remark. As an immediate consequence of Lemmas 3.6 and 3.4 we obtain the 
following assertion: 

If 
XQQI3(Q;w), 

then the condition C4 holds. 
Summarizing the above lemmas and Theorem 2.5 we conclude: 

3.8. Theorem. Suppose p, q e <1, oo). If 

(2.15) X„QQU(Qn;w) VneA t 

and if at least one of the conditions CI, C2, C4 is fulfilled, then 

(1.5) XQQU(Q;w). 

Conversely, if (1*5) holds, then all the conditions CI, C2, C3, C4 are satisfied. 

3.9. Theorem. Suppose p, q e <1, oo), \Q\ < oo and 

XnQQ Lq(Q;w) Vne=1V. 

If the condition C3 is fulfilled, then 

XQQI3(Q;w). 

3.10. Remark. Theorem 3.8 implies that under the assumption (2.15) all the 
conditions CI, C2, C4 and (1.5) are equivalent. 

If we suppose in addition that \Q\ < oo, then by Theorem 3.8 and 3.9 all the 
conditions CI, C2, C3, C4 and (1.5) are equivalent. 
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4. APPENDIX 

Proof of Lemma 3.2. As 

UAC* c UAC, 

it is sufficient to verify the inclusions 

(4.1) UAC* c ECA0 , 

(4.2) UAC n ECA0 c UAC* . 

a) Let {(Tn) e UAC* and {Ek} c s/9 Ek \ 0. Further, let s be a positive number. 
Then there exists S > 0 such that 

(4.3) * sup an{E) < e for every E e s/ with 
neN 

\E\<8 or E n B f- j = 0 . 

We have to distinguish the following two cases: 
(i) there exists fc0 e /Vsuch that |Ffeo| < oo; 

(ii) |Efe| = oo for every k e N 
In the case (i) we have lim |Ffe| = 0, and consequently there exists fcx e IVsuch that 

fc->oo 

|Ffe| < S for every fc = ku ke N Now (4.3) implies 

sup an{Ek) < e for every fc = kt , fc e IV, 
neN 

i.e. 

(4.4) lim sup <7n(£fe) = 0 , 
Jt-*oo neN 

which completes the proof of (4.1) in the case (i). 
To prove (4.1) in the case (ii) we denote 

Fk = EknB^Y Gk = Ek\Bp?\9 keN. 

Since Eh \ 0, we have Ffe \ 0. Further, \Fk\ = \B(lj8)\ < oc for fc e IV, hence 
lim |Ffe| = 0. Therefore there exists fct e IV such that |Ffe| < 3 for every fc _ kl9 

keN Using (4.3) we obtain 

(4.5) sup cr„(Ffe) < e for every fc = fct , keN. 
neN 

Since Gk n 5(1/5) = 0, (4.3) yields 

sup <Jn(Gk) < s for every keN. 
neN 

The last estimate and (4.5) imply 
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sup a„(Ek) = sup [a(Fk) + an(Gk)\ = sup a„(Fk) + sup a„(Gk) < 2e 
"eN neN «e.V neJV 

for every fc _ fc1} fce 1V, and consequently, (4.4) again holds. The proof of (4.1) 
is complete. 

b) To prove (4.2) we assume that the statement of (4.2) is false, i.e., there exists 
{<*,,}> W e t/AC n ECA0 but {<Jn} £ UAC*. Then it is possible to find £ > 0 and 
a sequence {Ek} c &t such that 

| £ f t | < i or FfcnB(fc) = 0 

and 

(4.6) sup en(Ek) = £ for every fc e IV. 
neN 

We have to distinguish the following two cases: 

(i) there exists an infinite set Nx c IVsuch that Ek n B(fc) = 0 for every fc e Nx; 
(ii) there exists an infinite set N2 c IV such that |Fk| < l/fc for every fc e N2. 

If we denote Gk = RN \ B(fc), fc e Nj in the case (i), we have G* \ 0 for fc -> oo, 
keN1. Then the condition {crn} e ECA0 implies 

(4.7) lim sup on(Gk) = 0 . 
fc-+co neN 
keNi 

Since Ek cz Gk for keNl, (4.7) implies 

lim sup <T„(Ffc) = 0 . 
fc-+oo nejV 
keNi 

Hence there exists k0 £ IV such that 

sup c7„(Ffc) g - for every fc ^ fc0 , fc e Nt . 
neN 2 

However, this contradicts (4.6). 
Now, let us consider the case (ii). Since {an} 6 UAC, there is S > 0 such that 

super„(£) ^ e/2 for every set £ e i , JF| < 5. As \Ek\ < l/fc for every fceN2, we 
neN 

can find fc0 e IV such that \Ek\ < S for fc = fc0, fc e N2. Consequently, 

sup o-M(Ffc) ;= - for every fc _ fc0 , fc e N2 , 
neiV 2 

which contradicts (4.6). The proof of Lemma 3.2 is complete. 

Proof of Lemma 3.3. By Lemma 3.2 it is sufficient to verify 
(4.8) UAC c ECA0 . 

353 



If {Ek} c si, Ek \ 0, we have |£k| = \Q\ < oo for every k e N, and consequently 

hm|£ t | = 0. 
fc->oo 

This and the condition {an} e UAC imply 

and therefore {an} e ECA0. 

lim sup (тп(Ек) = О 
fc-+oo neJV 
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Souhrn 

NUTNÉ A POSTAČUJÍCÍ PODMÍNKY PRO VNOŘENÍ VÁHOVÝCH 
SOBOLEVOVÝCH PROSTORO 

BOHUMÍR OPIC 

V článku jsou zkoumána vnoření váhových Sobolevových prostorů W1,p(í2; S) (S je systém 
váhových funkcí) do váhových Lebesgueových prostorů Lq(Q; w) (w je váhová funkce). Jsou 
nalezeny nutné a postačující podmínky pro vyšetřovaná vnoření. 
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Резюме 

НЕОБХОДИМЫЕ И ДОСТАТОЧНЫЕ УСЛОВИЯ ДЛЯ ВЛОЖЕНИЙ 
ВЕСОВЫХ ПРОСТРАНСТВ СОБОЛЕВА 

Вон1Л\ц"к Оме 

В работе исследуются вложения весовых прсстранст» Соболева IV , р № 5 ) (5 — система 
весовых функций) в весовые пространства Лебега Ьч(&\ и>)(и> — весовая функция). Установле­
ны необходимые и достаточные условия для существования рассматриваемых вложений. 

Ашког'з аМгезз: Ма1ета11ску йзгау СЗАУ, Йила 25, 115 67 РгаЬа 1. 
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