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Summary. The paper deals with imbeddings of weighted Sobolev spaces W!12(2; S) (S is
a collection of weight functions) into weighted Lebesgue spaces LI(2; w) (w is a weight function).
General necessary and sufficient conditions for such imbeddings are established.
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1. INTRODUCTION

Let Q be a domain in RY. By #7(2) we denote the set of weight functions on Q,
i.e., the set of all measurable, a.e. in Q positive and finite functions.

For we #(Q), 1 £ q < oo the weighted Lebesgue space L(Q; w) is the set of all
measurable functions u defined on Q with a finite norm

(1.1) lula.0 = (Ja |u(x)|* w(x) dx)''" .
Obviously, the space L(Q; w) with the norm (1.1) is complete.

Let 1 < p < oo, p*=p[(p — 1) (p* = @ for p =1) and let S be a collection
of weight functions

(1.2) S={vew(Q);i=0,1,..N}.
Throughout the paper we assume that
(1.3) v,€ L (Q), viYelf(Q), i=0,1,..,N.

We define the weighted Sobolev space W!'”(Q; S) as the set of all functions u e
€ I’(2; vo) which have distributional derivatives du/dx; e I’(2;v,), i =1,...,N.
We can easily verify that the space W"P(Q; S) with the norm

N 14 1/p
(1.4) 4l s s = (uuu",n..,o +y )
i p,2,v;

ou

=1 ||0x;

is a Banach space. Further, we define the space
Wo"(2; 5)
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as the closure of the set Cg'(£2) with respect to the norm (1.4). The norm in this space
is again given by (1.4).

For two Banach spaces X, Y we write X QQ Yor X Q Yif X = Yand the natural
injection of X into Y is compact or continuous, respectively. ’

The symbol M = = X means that M is a closed subspace of a Banach space X.
Throughout this paper we will suppose that

Q=y29,,
n=1
where Q, are domains in R such that
f)" < Qn+1 c Q’ Q'H-l * Q.
Further, we set
@ =Q\Q,, neN.

In [6], [9] it was shown that
X = Wpn(2; S) QQ L2(Q; w)
if there are local imbeddings
wh(Q,;S)CQ IX(2,;w), neN,
and

lim  sup |u|,onw=0.
n— oo ueX,||u||xs1

The aim of the paper is to generalize this result. In Section 2 we will prove the fol-
lowing assertion:
Let p,qe {1, ®), X c = W'(Q; S). Suppose
wr(Q,; S)CQ L(Q2,;w) YneN.
Then
(1.5) X QQ L(Q; w)
if and only if

lim  sup Juf,onw=0.%
n—> o ueX,||u||x <1

Analogous results concerning the continuous imbedding X Q I)(Q; w) are also
included in Section 2. Theorems from this section are applied in [7], [4] and [8].

In Section 3 we establish some other conditions which are necessary and sufficient
for the compactness of the imbedding under investigation. Let us remark that the
theorems in Section 3 imply the result by A. Avantaggiati (see [1], Theorem 2.1).

2. NECESSARY AND SUFFICIENT CONDITIONS FOR IMBEDDINGS

The main results of this section are Theorems 2.4, 2.5 and 2.7. The proofs of the
first two of them are based on the following two lemmas.

*) The proof will be quite different from those in [6], [9].
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2.1. Lemma. Suppose p, g € {1, ©) and

(2.1) whr(Q,; S) CQ (2, w) VneN.
Further, for every € > 0 let there exist it € N such that

22) [l < efulf s + [ulfope Yue W25 5)
Then

(2.3) whe(Q; S) QQ IY(Q; w) .

Proof. Let {u,} = W'?(2;S), |ua]1,p.0,s < C for all ne N, where Ce (0, c0).
For a given ¢ > 0 choose ¢, € (0, £%/(2C* + 1)). By assumption there exists e N
such that

(24) lulfom = erultpas + luliopm YuewH(g;s).

The imbedding (2.1) implies the existence of a subsequence {u,,} which is a Cauchy
sequence in the space I%(;, w). Hence there exists ko € N such that

ttny, = 4,205 < &84 forall k, 12 k.
This and (2.4) yield
"unk - un,"Z,Q,w é 8lllunk - “n,"‘{,p,n,s + "unk - um”;’_,ﬂﬁ,w é
S 2CT 4+ =&,

Thus {u,,} is a Cauchy sequence in the space I%(Q; w) and therefore (2.3) holds.

2.2. Lemma. Suppose p, g € {1, ©) and
(2:5) Wr(Q; S) QQ L(Q; w) .
Then for every ¢ > O there exists i € N such that

(2:6) lulf.om < elullf s + [ulfom Vuew:2(2;5).

Proof. Let us assume, on the contrary, that the statement of Lemma 2.2 is false.
Then there exists ¢ > 0 and a sequence {u,} = W!#(Q; S) such that

@7) .o > el os + [alinnm Ve N
Taking v, = u,/||u,]1,5.0,s (the inequality (2.7) implies |u,|;,,.0.5 * 0), we obtain
(2.8) “vn"z,n,w >¢&+ "v,,uz,nmw Vne N.

As the imbedding (2.5) holds and the sequence {v,} is bounded in W*?(Q; S), there
exists a subsequence {v,,} and a function v € IQ; w) such that v, — v in I(Q; w).
Now, (2.8) yields

loleom 2 & + o500
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This is a contradiction because ¢ > 0.

2.3. Remark: Inequality (2.6) can be rewritten in the form

(29) lu)l o8, < ef|u]fpas Yue W ?(Q;S).
Since ’

lulzaomw < [ulfcny for nza,
we have by (2.9)
(2.10) lim  sup [ufgonw=0.

n=o [[ull1,p,n,s51

Conversely, let us suppose that (2.10) is true. Let ¢ > 0 and denote & = &'/4,
Then by (2.10) there exists ii € N such that

sup ||ulgonw <& Yn2d
llsll1,p,0,s51

and so for every u € W"?(Q; S), [|u]1,,.0,s < 1, we have
(2.11) lullgonw S & VnZd.
The last inequality immediately yields

4]l gomw S €l|t)l1,p.05 Vo€ WP (R2;S), Vn=ii.
This implies
lulf.om < llulfras + [uliom Ynza
and therefore the inequality (2.6) is satisfied.
Summarizing the above lemmas and Remark 2.3 we obtain

2.4. Theorem. Suppose p, qe {1, ). If

(2.12) wir(Q,; S)CQ IX(R,;w) YneN

and -

(2.13) lim  sup  [ufgonw =0,
n=o [[ul1,p,9,s51

then

(2.14) wH(Q; S) QQ LA(Q; w) .

Conversely, if (2.14) holds, then the condition (2.13) is satisfied.
Let X c < W'?(Q; S) (e.8. X = Wy'’(@; S)). For ne N we set
X, ={u;u=1|p, veX}

and in this space we consider.the norm | +||x, = ||*||1,5.0..s- For simplicity we denote

Ilx = 11005

Analogously as we have proved Theorem 2.4 we can verify the following theorem.
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2.5. Theorem. Suppose p, q € {1, ©). If

(2.15) X, QQ L(Q,;w) VneN
and
Cl1. lim  sup Jul,omnw =0,
n—+o0 ueX,||lullx<1
then
(1.5) X QQ X5 w) .

Conversely, if (1.5) holds, then the condition C1 is satisfied.

2.6. Remark. (i) The condition (2.15) will certainly be fulfilled if
w2, S) CQ L(Q,;w) YneN.

(il) Theorem 2.4 implies that under the assumption (2.12) the condition (2.13)
is necessary and sufficient for the imbedding (2.14) to be compact. Similarly, under

the assumption (2.15) the imbedding (1.5) takes place if and only if the condition C1
is satisfied.

There is an analogue of Theorem 2.5 for continuous imbeddings.

2.7. Theorem. Suppose p, q € {1, «). If

(2.16) X,QI4Q,;w) VneN =
and
(2.17) lim  sup |luf onw < o0,
n—> o ueX, |lul|x<1

then '
(2.18) XQIQ; w).

Conversely, if (2.18) holds, then the condition (2.17) is fulfilled.

Proof. As

luls.0m = lulaonw + luloums

we have

sup uullmﬂ»wé Sup "““q.ﬂ".w+ Sup ““‘lq.ﬂn.w
ueX,||lu|xS1 ueX,|lullx=s1 ueXn, |lul| xn=1

and thus the assumptions (2.16), (2.17) imply (2.18).
The converse assertion follows by a contradiction argument from the inequality

l4lo.gnm < Jlo.0m-

2.8. Remark. Let us note that under the additional assumptions

6) Wo(Q;S) == X5
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(ii) there exist an open non-empty set Q = © and a constant C, 0 < C < o such
that
‘ Cl<wx)<C, C'<ypx)<C

fora.e.xeQand fori=0,...,N;

the imbedding (1.5) yields
N (1 - l) +1>0
q D

(or equivalently N~ > p~' — g~!) while (2.18) implies

N(1—1)+1;o
g p

(or equivalently N~ = p~* — ¢~!) — cf. [8], Lemma 8.10.

3. SOME OTHER NECESSARY AND SUFFICIENT CONDITIONS
FOR COMPACT IMBEDDINGS

The aim of this section is to establish some other conditions that are necessary
and|or sufficient for the imbedding (1.5) to be compact (see Theorems 3.8 and 3.9).
The symbols p, ¢, 2, X and X, have the same meaning as in Section 2.

Let us consider a measurable space (2, &) where & is a g-algebra of all Lebesgue
measurable subsets of the domain £, and let {5,} be a sequence of non negative and
finite measures on /. By B(5) (6 > 0) we denote the ball {x € R"; |x| < &}. The
Lebesgue measure of a set E €  is denoted by |E|. If {E,} = & then the notation

E, \ E means that E;,, < E, for ke Nand E = lim E, (= N E).
k= k=1

In order to facilitate a concise formulation of our next result, we first recall the
definitions of certain kinds of continuity for set functions.

3.1. Definition. (i) We say that the terms of the sequence {c,} are equicontinous
from above at 9 (and write {o,} € ECA0), if the following condition holds:

(3.) {E} =« o, E,~9=limsupo,(E)=0.
. k= neN
(i) We say that the terms of the sequence {o,} are uniformly absolutely con-
tinuous (and write {o,} € UAC), whenever for every ¢ > O there exists 6 > 0 such

that o,(E) < & for every positive integer n and for every set E € o, |E| < 6.
[Obviously, {,} € UAC if and only if the following condition is satisfied:

(3.2) {Ek} c o , lim IE"I = 0= 1lim sup U"(Ek) — 0.]
k= o :

k= neN
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(iii) The terms of the sequence {0,} are said to be uniformly absolutely continuous
in the narrower sense (and we write {5,} € UAC*), if for every ¢ > 0 there exists
d > 0 such that ¢,(E) < ¢ for every positive integer n and for every set E € o,
|E| < 6 or E n B(1/5) = 0.

The relations between these three notions of continuity are established in the
following two lemmas proved in Section 4.

3.2. Lemma. UAC* = UAC n ECAQ.

3.3. Lemma. If |Q| < o, then UAC* = UAC.

In this section we shall deal with a specific sequence of measures defined by
(3.3 0(E) = (g |u(x)]*w(x)dx, Eesf/, neN,
where w e #(Q), q € {1, o) and {u,} is a sequence of functions from X.

Now we are ready to introduce some conditions on the measures (3.3) and in-
vestigate their relations to the compactness of the imbedding

(1.5) XQQIQ;w).
C2. {0,} € ECAO for every bounded sequence {u,} = X.

C3. {0,} € UAC for every bounded sequence {u,} = X.

C4. {0,{ € UAC* for every bounded sequence {u,} < X.

The following assertion is an immediate consequence of Lemma 3.2.

3.4. Lemma. C4 < C2 A C3.

Further relations between the conditions C1—C4 are given by the next lemma.*)

3.5. Lemma.
(i) €2 = CI;
(ii) C4 = CI;
(i) if |@| < oo, then C3 = CL.

Proof. ad (1) Evidently, the condition C1 is equivalent with the following one:

C1*, lim sup ||u,|, ox, = O for every bounded sequence {u,} = X.

k— o neN
Therefore we will prove the implication C2 => C1*.
Let {u,} = X be a bounded sequence. As Q% \, §, condition C2 yields

*) For the condition C1 see Theorem 2.5.
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lim sup |1, ] 4,0¢., = lim sup o,(2%)7 = 0
, k—+ o0 neN k=0 neN
and so the condition C1* holds.
The statement (ii) follows from (i) and Lemma 3.4. Finally, (iii) is a consequence
of (ii) and Lemma 3.3

3.6. Lemma. Let
(1.5) XCQ K2 w).
Then the conditions C2 and C3 are satisfied.

Proof. Let X CQQ L"(Q; w). We shall only prove that condition C2 holds. The
proof of C3 is analogous.

Suppose on the contrary that condition C2 is not satisfied. Then there exist
a bounded sequence {u,,} < X, a number ¢ > 0 and a sequence {Ek} c o, E,\ 0D,
such that

(3:5) o(E)=¢, nkeN.

The imbedding (1.5) and the boundedness of {u,} in the space X imply that there
exist a subsequence {u, } and a function v € I{(Q; w) such that

(3-6) u, »v in L(Q;w).
The inequalities (3.5) yield
() ¢ S 0u(B) = [ () W) dx =

< 227 Y(q |un, — v|* wdx + [g, [0]*wdx}.
If |E,| < oo for some k, we have |E,| — 0 and, consequently,
(3-8) lim [g, |o(x)|? w(x) dx = 0,
k=

which contradicts (3.6) and (3.7).
Hence, suppose that |E,| = oo for every k € N. In view of

fa |o(x)|* w(x) dx < o
there exists 6 > 0 such that
[ |o(x)|* w(x) dx < ¢g[2¢

for every set E e & for which |E| < 6 or E n B(1/) = 0. For k € N we set
1 1
F = E nB -1, G = E \B -1
k k (6) k k (5)
1
G,‘nB((—S)=Q) for ke N,
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we have :
69) o Il 5) e < e
The inequalities (3.5), (3.9) together with (3.6) imply
(3.10) e 27 Yo |up, — v|*wdx + [r, [o]Twdx + g, [o]2wdx} <
< 27" Yfq |un, — v]*wdx + fg, [o]fwdx} + g2
Since |F,| < |B(1/5)| < 0, k€ N, and F; 0, we have |F,| — 0, and consequently
(3.11) klim Jr Jo(x)|*w(x)dx = 0.

Letting i — oo in (3.10), we again obtain (in view of (3.6) and (3.11)) a controversial
inequality ¢ < &/2. Thus the condition C2 holds.

3.7. Remark. As an immediate consequence of Lemmas 3.6 and 3.4 we obtain the
following assertion:
If -
XQC L@ w),
then the condition C4 holds.
Summarizing the above lemmas and Theorem 2.5 we conclude:

3.8. Theorem. Suppose p, g € {1, o). If
(2.15) X, QQ I(2,;w) VneN
and if at least one of the conditions C1, C2, C4 is fulfilled, then
(1.5) XQCQC (2 w).
Conversely, if (1.5) holds, then all the conditions _Cl, C2, C3, C4 are satisfied.

3.9. Theorem. Suppose p, q e'(l, ©), |2] < w and
X,CQ I w) VneN.
If the condition C3 is fulfilled, then
XCQ (25 w).
3.10. Remark. Theorem 3.8 implies that under the assumption (2.15) all the
conditions C1, C2, C4 and (1.5) are equivalent.

If we suppose in addition that IQI < o0, then by Theorem 3.8 and 3.9 all the
conditions C1, C2, C3, C4 and (1.5) are equivalent.

351



4. APPENDIX

Proof of Lemma 3.2. As

UAC* <« UAC,
it is sufficient to verify the inclusions
(4.1) UAC* < ECAQ,
(4.2) UAC n ECAQ = UAC*.

a) Let {0,} e UAC* and {E,} = &, E; \« 0. Further, let & be a positive number.
Then there exists 6 > 0 such that

(43) - supo,(E) <& forevery Ees/ with

neN
|E| <6 or EnBG):@.

We have to distinguish the following two cases:
(i) there exists ko € IV such that |E, | < oo;
(ii) |Ey| = oo for every ke N.
In the case (i) we have lim |E,| = 0, and consequently there exists k, € IV such that
k=0

|Ei| < & for every k 2= k,, k € N. Now (4.3) implies
supo(E,) <& forevery k=k,, keN,

neN
i.e.
(4.9) limsup a,(E;) =0,

k— o neN

which completes the proof of (4.1) in the case (i).
To prove (4.1) in the case (ii) we denote

Fk=EkﬂB(§), Gk=Ek\B<_’;'>, kGN.

Since E, \ 0, we have F, \ 0. Further, |F,| < |B(1/8)] < oc for ke N, hence
lim |F,| = 0. Therefore there exists k, € N such that |F,| < 6 for every k = ki,

k— 0

ke N. Using (4.3) we obtain
(4.5) supo,(F,) <& forevery k>k,, keN.
neN

Since G, n B(1/6) = 0, (4.3) yields

sup 0,(G,) < ¢ forevery ke N.
neN

The last estimate and (4.5) imply
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sup ¢,(E,) = sup [6(F,) + 0,(G\)] < sup o,(Fy) + sup 0,(Gy) < 2¢
neN neN neN neN

for every k 2 ky, ke N, and consequently, (4.4) again holds. The proof of (4.1)
is complete.

b) To prove (4.2) we assume that the statement of (4.2) is false, i.e., there exists

{6.}, {0s} € UAC A ECAD but {0,} ¢ UAC*. Then it is possible to find ¢ > 0 and
a sequence {E,} < & such that

]E,‘|<:-; or E,nB(k)=90

and
(4.6) supo,(E,) = ¢ forevery keN.

neN
We have to distinguish the following two cases:
(i) there exists an infinite set N; = N such that E, n B(k) = 0 for every ke Ny;
(ii) there exists an infinite set N, = NN such that |E,,.| < [k for every k € N,.
If we denote G, = R¥\ B(k), ke N, in the case (i), we have G, \ 0 for k — oo,
k € Ny. Then the condition {o,} € ECAD implies
4.7 limsupo,(G,) =0.

k— o neN
keNy

Since E;, = G, for ke N, (4.7) implies
limsup o, (E,) =0.

k— o0 neN
keNy

Hence there exists k, € N such that

sup 6,(E;) <

neN

forevery k= k,, keN,.

N ™

However, this contradicts (4.6).

Now, let us consider the case (ii). Since {5,} € UAC, there is & > 0 such that
sup 0,(E) < ]2 for every set Ee o/, |E| < 6. As |E,| < 1k for every ke N,, we
neN

can find ko € N such that |E,| < 6 for k 2 ko, k € N,. Consequently,

sup 6,(E,) <

¢ forevery k=k,, keN,,
neN 2

which contradicts (4.6). The proof of Lemma 3.2 is complete.

Proof of Lemma 3.3. By Lemma 3.2 it is sufficient to verify

(4.8) UAC < ECA9.
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If {E,} = o, E, \ 0, we have |E| < |2] < oo for every k € N, and consequently
lim |E,| = 0.

k=

This and the condition {s,} € UAC imply

.

limsupo,(E) =0
k- neN

and therefore {o,} € ECAQ.
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Souhrn

NUTNE A POSTACUIJiICi PODMINKY PRO VNOREN{ VAHOVYCH
SOBOLEVOVYCH PROSTORU

BoHuUMIR OPIC

V &lanku jsou zkoumana vnofeni vahovych Sobolevovych prostoru W Lp(Q; S) (S je systém
vahovych funkci) do vahovych Lebesgueovych prostoru LI(£2; w) (w je vahova funkce). Jsou
nalezeny nutné a postadujici podminky pro vySetfovana vnoreni.
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Pe3ome

HEOBXOOUMBIE U NOCTATOYHEIE VCJIOBUA IJIS1 BJIOXEHUI
BECOBBIX ITPOCTPAHCTB COBOJIEBA

BoHuMmir OrIC

B pabote mccnenyroTCs BIOXEHHS BECOBBIX MpccTpaHcTB CoboneBa W 1"’(Q; S) (S — cucrema
BecOBHIX QyHKUMIA) B BecoBrIe npocTpancTsa Jlebera LY(Q; w) (w — Becosas dynkums). YcraHoBNIE-
HbI HeO6XOAMMBbIE M JOCTaTOYHbIE YCIIOBUS MJiA CyIIECTBOBAHUS PAaCCMAaTPUBAaEMBIX BIIOXKCHMIA.

Author’s address: Matematicky ustav CSAV, Zitna 25, 115 67 Praha 1.

355



		webmaster@dml.cz
	2012-05-12T17:20:02+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




