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Summary. Let (X, &, ) be a o-finite measure space, T a contraction on Ly (X), f€ L{(X).
For a given nondecreasing sequence {a,,} of positive reals we study the pointwise convergence
of T" f|a,.If the series T 1/a, is convergent, then T" f/a,— 0, a.e. For a divergent series X 1/a,
we establish a condition which enables us to construct a contraction P on L;({0, 1)) and fe
€ L;(€0, 1)) such that lim sup P" f[a, = o, a.e.
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Let (X, &, ) be a o-finite measure space, L,(X) the Banach space of all classes
of integrable real functions on (X, &, ») with the usual norm Ill A necessary
condition of the pointwise convergence of Cesaro or other general means of a linear
operator T acting on L,(X) is

(&) #(lim sup T"f[a, = o) = 0 for every f € L,(X).

Here T "_f/a,l are the last therms of the means involved (e.g. in the case of Cesaro
means we have a, = n). Of course, in the case T"f[a, — 0, a.e., the condition (&) is
fulfilled.

The nonfulfillment of the condition (&) is usual tool for the construction of
examples in which the pointwise convergence of the means considered does not hold,
see e.g. [2] for the Cesaro means or [3, 4] for more general means. The validity of
the condition (&) for mean bounded operators is studied in [1].

In our paper we take into account only the linear contractions of the space L,(X).
We propose to study the following problem: for a given nondecreasing sequence
{a,} of positive reals, how do the properties of the sequence {a,} determine the
fulfilling of the condition (&) (for every linear contraction)?

Theorem 1. Let = 1/a, < oo, i.e. {1/a,} €l,. Then for every linear contraction T
on L(X) and every f e L,(X) we have

T'fla,—» 0, a.e.
Proof. It suffices to define a linear operator U = £T"[a,. Then |U| < Z||T"|/a, £
£ Z1/a, < o, so that Uf € L,(X), which implies the theorem.
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Chacén in [2] has given an example of a positive contraction P of the space
L,(<0, 1)) and an integrable function f such that

-

liminf M,f =0, a.e.
limsup M, f = o0, a.e.

Here M, = 1/n(I + P + ... + P""') are the Cesaro means. Of course then
lim inf P"f[n = 0, a.e. In Chacén’s example the divergence of M, is caused by the
divergence of the last terms, when
Alim sup P"f[n = o) =1 (A is the Lebesque measure) .

It is easy to see that for any unbounded sequence {a,} we get lim inf T"f/a, = O,
a.e., for any contraction T and f € Ly(X). For convergent series X 1/a, Theorem 1
implies also lim sup I"f[a, = 0, a.e. Let X 1/a, be a dense divergent series, i.e.
inf nja, = B> 0, see e.g. [5]. Then lim sup P’f/a, = B. lim sup P"f/n, so that
Chacén’s example implies the existence of a contraction P on L,(<0,1)) and fe
eLl((O, 1)) such that lim sup P"fJa, = o, a.e. So it is sufficient to study the case
of divergent series X 1/a, with inf n/a, = 0. The next example shows that even in
this case the condition (&) need not hold.

Examplel. Leta, = nlnn,n = 2,3,.... We construct a positive contraction P
on L,(<0, 1)) so that for a convenient integrable function f € L,(<0, 1)) we get
lim sup Py =00, a..
n.lnn

We modify Chacén’s construction, see [2]. P will be induced by an invertible non-
singular transformation ¢ of <0, 1) (with the Lebesque measure 1),

d(Aot™")

P f(x) =f(‘_lx)T

for xe<0,1).
We define the transformation 7 step by step. It always maps the intervals into
intervals. Let e.g. {a, b) - {c, d). Then we define

d

x=c+—(x—a).
b—a

Let y € {c, d). Then

b—a b—a
Pf(y) = fla + (y—2o).
d—c d—c
It is obvious that P is a positive linear contraction of L,(c, d)) into L,(<a, b)).
Denote |} = <0, 1), 13 =<, 1). By induction we construct a disjoint partition

11, 12, ..., I§, of the unit interval <0, 1). The transformation ¢t should map the interval I}
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into the interval |7, ,. Hence in the n-th step ¢ should be well defined on the unit
interval <0, 1) except the last interval I}, . Similarly the inverse transformation should
be well defined except on the first interval I]. Our construction implies I\, A(17) — 0
and similarly Iy, A(I},) = 0, so that both ¢ and ¢~ should be defined on the whole
interval 0, 1) except a set of measure zero.

Let the n-th partition 17, I3, ..., I}, be defined. To get the (n + 1)-st partition we
cut the intervals I} into K, dlsjomt subintervals 17 ; such that

Ka—1
U =1, forwhich xelj;, yeli;;; alwaysimplies x < y.
j=0
We suppose A(I7 ;) = b, ; A(1}) for all ie {1,2,...,N,}, je{0,1,...,K, — 1}. Then

Nn+1 = NnKn .

Here b, ; are positive constants independent of i, Y b, ; = 1.
J

The divergence of the series ) (1/i . In i) implies for each natural n, N, the existence
=2
of a real positive constant ¢, and a natural K, > 1 such that

1) ¢, <(2".4n.N,.InN,)™?,
Kn—1

20<1-Q"+6¢ ¥ (1fi-ni) <27

Note that the constant 4 in the first inequality may be replaced by an arbitrary
constant A satisfying :

Now, we are able to define the constants b, ;:
b"’o = 2—'l N

Gr)mG+D, °

Kn—2

an"—l_l_ Z b,]
It is obvious that Zb,, =1, b,o > b,; > 0 for j > 0. The (n + 1)-st partition

=1,2,K, — 2,

nj =

should consist of the interval |7 ;. We order them to preserve the transformation ¢,

|n+1 — In

10 |n+1_|n

%05 EtC.

In general IH,‘H G, i=1,..,N, j=0,..,K,_;. We extend the preserved

definition of ¢ on the n-th partition in a natural way, i.e., ¢t should map I"+1 =
= I'llv,.,j—l into l;")-v:.'_l = l';.,j'

Recurrency implies A(17"') 2 A(17*") for all i e {1, ..., N,,}.
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Let f(x)=1 on (0,1) and xel;i;, where N, < k < (K, — 1)N, — 1, ie.
k=rN,+s re{l,2,..,K,—-2},s5€{01,...,N, — 1}. Then

-

k )*(I"H) Pr1£(11x) = _ A(IM1 =k 'I(I"H)
PO = S PN < = e T = ey
so that
Pif(x) _ A17,0) _ 27" A7) N
k.Ink MiBei,) - k.Ink Cn )k Ink
(r+1.In(r+1) i
>(4n N, lnN) (r+1).In(r+1) S
(r+1).N,.In((r +1).N,)
Denote

Unrthou( U K'Y (for xe 4,

k<N k>(Kn=1).Np
we have not introduced the last inequality). Then

MA,) = byoM(<0,1)) + by x.— A0, 1)) <2.27", sothat A(UA4,) <

From the Borel-Cantelli lemma we get that for a.e. x and for infinite number of n
the inequality

k
YO S for ke{Np....,(K, — )N, — 1} holds..

k. lInk
Hence
k
lim sup Ps = o0, ae.
K k.lnk

The construction of Example 1 is a modification of that of Chacon. It can be used
with advantage for sequences {a,}, Y, l/a, = oo, with no “big jumps”, which is
expressed by the condition
(&&) there exists infinite numbers of natural m such that for each m there exists

a positive constant d,, for which

an
B,, = sup — < 0.

a,,a,,,(i;1 1a;)t %

Note that if the condition (&&) is fulfilled, then for all natural k there exists a positive
constant d, for which the supremum B, is finite.
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Theorem 2. Let Y. 1/a, = oo and let {a,} satisfy the condition (&&). Then there
exist a positive linear contraction P on L((<0,1)) and an integrable function
f€Ly(<0, 1)) such that

lim sup Pfla, = o0, ae.

Proof. We repeat the construction of Example 1, only we take such constants
¢, K, for which the following inequalities hold:

Kn—1
1) ¢, < (2"nay( Y 1/a)* "%ay )" By,
i=1

Kp—1

20<1-Q2"+¢ Y la) <27

The existence of c,, K, follows from the divergence of )_ 1/a,

Example 2. Leta, = 1, a, = 2*' for 22" < n <2%¥,i=1,2,.... Then
22! 1
21en _1+2;: 2
Let me{2,3,...}. Then for n = 2%’ — 1 we have
n—-1
Ylla;<i+1.
ji=1

For an arbitrary positive constant d,, we get
Ao 22! 2?

> = .
aan(Y 1a) = 2%a,(i +1) a,(i +1)
j<n

It follows that the sequence {a,} does not satisfy the condition (&&).

Example 2 shows that our problem for general divergent series ). 1/a, remains
open.

A similar problem for mean bounded linear operators is solved in [1]. There
the convergence of the series Y, l/a,l is the best possible condition to ensure the
pointwise convergence of T"f[a, to zero. If the series ) 1/a, is divergent, then we
can construct (on a convenient measure space) a mean bounded linear operator T
and an integrable function f such that m(lim sup T"f/a,, = ) > 0, so that the con-
dition (&) is not fulfilled.
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Sdhrn

O KONTRAKCIACH V L,
RADKO MESIAR
Nech (X, &, #) je a-kone¥ny priestor s mierou 22, T kontrakcia na L,(X) a f integrovatelna
funkcia z L{(X). Pre dand postupnost {a,,} kladnych neklesajicich redlnych &isiel rozoberame
bodovi konvergenciu vyrazov I" f/a,. Ak rad I 1/a, konverguje, potom T"f/a,—> 0, s.v. V pri-

pade divergentnjch radov I 1/a, sme nasli podmienku, ktorej splnenie zaruduje existenciu takej
kontrakcie P na L{({0, 1)) a fe L,(0, 1)), %e lim sup P"f/a, = oo, s.v.

Pe3ome

O CXHUMAIOMUX OIIEPATOPAX B L,
RADKO MESIAR
Iycts (X, &, #72) — IPOCTPAHCTBO C 0 - KOHEYHOH Mepoit, T — cxuMarowtuit onepatop B Ly (X)

H fe L;(X). B cratbe H3yyaeTcs NOTOYEYHAss CXORMMOCTH I T f/a,,, rae {a,,} — HeyObIBa¥O-
1as NOCIe0BATEIbHOCTD IOJIOXKHUTEIbHBIX BEMECTBEHHBIX YHCEIT.
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