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A REMARK ON SCORZA-DRAGONI THEOREM FOR
DIFFERENTIAL INCLUSIONS
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Summary. A new simpler proof of the Scorza-Dragoni theorem for differential inclusions
originally proved by Kurzweil and Jarnik, is given.
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1. INTRODUCTION

Let G = R x R°. Let X be the set of all non-empty closed convex subsets of R,
Let S(x, r) denote the open ball in R? with center at x and radius r > 0. For 4 < R
let p(4) denote the Lebesgue measure of 4.

Let (Y, d) be a metric space. Recall that F: Y — & is called closed (or closed
graph) if the set graph F = {(y, z): ze F(y), ye Y} is closed in Y x R?. F is called
upper semicontinuous (u.s.c.) at a point y, € Y if for every ¢ > O there is 5 > 0
such that d(y, yo) < ¢ implies F(y) = F(y,) + &S (S = S(0,1)). F is called u.s.c.
if it is u.s.c. at each point of Y. Note that each u.s.c. multifunction with closed values
is necessarily closed. The reverse is true if, in addition, the set F(Y) is relatively
compact.

A multifunction F: [a, b] — o is called (Lebesgue) measurable if the set {t | F(z) n
N D =+ 0} is (Lebesgue) measurable for every closed subset D of R?.

For a given multifunction F: G - X consider the differential inclusion

(1 x' € F(t, x).

By a solution of (1) we mean an absolutely continuous function u: [a, b] - R
with graph contained in G and such that u'(t) € F(t, u(f)) for a.a. t € [a, b].

For any function u: J = RYJ < R) and t, € J denote by Cont u(t,) the set of all
z € R* such that z = lim (u(t,) — u(t,))/(t, — to) for some {t,} = J, t, * to, t, > t,.

In [1]J. Jarnik and J. Kurzweil established the following version of Scorza-Dragoni
Theorem [5].

Theorem 1. Let G and X~ be as above. Suppose that F: G - A is such that
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(i) F(t, -) is closed for a.a. t in projg G;

(i1) for every (to,xo)€ G there exist numbers &,,6, > 0 and an integrable
Junction m: [ty — &y, to + 6;] = [0, +0) such that |F(t,x)| £ m(t) for every
(t,x) e [to — 8y, to + 8,] % S(xq, 85).

Then there exists a set Q = R with p(Q) = 0 such that for every solution u:
J = R% of (1) and every te J\ Q we have 9 + Cont u(f) = F(t, u(f)).

The original proof is based on a rather difficult approximation technique. In this
note, we give a simpler and shorter proof, by combining some ideas of Opial [3]
and Jarnik and Kurzweil [1, 2].

Remark 1. Theorem 1 is a slight generalization of Jarnik and Kurzweil result.
In fact, in [1] F is supposed to be (non-empty convex) compact valued. Moreover,
in stead of condition (i) it is supposed that: (i') for every & > O there is a measurable
set A, = R with y(R\4,) < ¢ such that F restricted to G (4, x RY) is us.c.
It is easy to see (using the projection theorem) that each F satisfying (i') is Carathéo-
dory, i.e. F(, x) is (Lebesgue) measurable for each x, and F(t, +) is u.s.c. for a.a. 1.
Thus (i') implies (i), while (i) does not imply (i').

Finally let us remark that the assumption of Theorem 1 does not assure the
existence of solutions of (1).

2. Proof of Theorem 1. Following [1] (owing Lindelof property) it suffices to
prove the following local version of Theorem 1.

Theorem 2. Let U be an open subset of R®. Let I = [a,b]. Let F:1 x U —» X
be such that F(t, *) is closed for a.a. t in I and |F(t, x)| < m(t) for a.a. tel and
all x e U, where m is integrable on I.

Then there is a set I, '< I with p(Is) = 0 such that for every solution u: J — R*
(J =1) of (1) and every te J\I, we have § + Cont u(f) = F(t, u(f)).

Proof. By [4, Theorem 1] there exists a multifunction F:I x U —» 2 u {0}
such that:

(o) F(t,x) = F(t, x) for every (t,x) el x U;

(B) if 4 = I is a measurable set, u,v: D - R? are measurable functions, then
o(t) € F(t, u(t)) a.e. in 4 implies v(t) € F(t, u(t)) a.e. in 4;

(y) for every & > O there is a closed set I, = I with p(I\1,) < & such that F
restricted to I, x U is closed.

By virtue of (o) and (B) it suffices to verify the statement of Theorem 2 for F.

Lete > 0. Let I, be as in ('y) By virtue of Lusin’s Theorem we can assume that m
restricted to I, is continuous. Thus M = sup {m(f): tel} < + 0.

Denote by yx the characteristic function of the set I \I,. Clearly, for a.a. tel, we
have

(2 lim —:;j‘iﬂx(s) m(s)ds = %J.:x(s) m(s)ds = 0.
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Let I} denote the set of all points of (Lebesgue) density of I, for which (2) is fulfilled.
Lett*eI}. Letu: J — R* be a solution of (1) (if (1) has no solution there is nothing
to prove). .

Claim 1. Cont u(t*) % 0. _
Indeed, let v: J —» U be a measurable function such that v(s) € F(t, u(s)) for every
seJ and '

t
u(t) = u(ty) + | v(s)ds, tel.
J 1o

We have

* — * t*+h rt*+h t*+h :
w0 =) L= L [0 - ) e ds + L[ ats) ofs) as.
r h . h Je h "

From (2) and the boundedness of m on I, it follows that

u(t* + h) — u(r¥)

] SM+1 for 0<h=hy, hy>0.
)

Consequently, there is a sequence {h;} = (0, hy] with h; = 0 such that the sequence
{(u(t* + h;) — u(t*))/h.} is convergent. Thus Cont u(r*) + 0.

Claim 2. Cont u(t*) = F(t, u(t*)).
Indeed, let z € Cont u(t*). Let {t* + h;} = J, h; — 0 be such that

w(tr + b)) —u(t*)
h; o

Suppose that h; >0, i =1,2,... (in the case h; < 0 the arguments is similar).
Set 4} = [t*, t* + h;] n1,. As above, we have

) u(t* + hy) — u(t*) _ LJ‘"M‘(I — x(s)) v(s) ds + ;ll‘jqqu(s) v(s)ds =

h; hiJ i

_HE) L a2 ) os) ds
= h W), 0 +hJ H) ok as-

By (2) the last term in (3) tends to zero as i — + 0. Moreover, m(4%)[h; - 1 as
i - + 00, because t* is a point of density of I,.

Since F(+, u(*)) is closed and uniformly bounded on J NI, it is us.c. on J N ,.
Thus, for given n > 0 there is iy such that F(t, u(t)) = F(t*, u(r*)) + 1S for every
te 45, i = iy. This and the mean value theorem imply

1

1
—_ s)dse F(t*, u(t*)) + nS, i=i,.
) s R ) 0, iz e
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Since # is arbitrary, we have

fim —— [ ofs)dse F(r*, u(t¥)).
i=+ o0 [J.(A!i) Ae
Consequently, z € F(t*, u(t*)). Since z is arbitrary in Cont u(t*), Claim 2 is proved.
Let ¢, 0. Set I* = UI,,. Since u(I*) = u(I) — &,, we have p(I*) = p(I). Clearly,
for every solution u:J — R? of (1) and every t*eJnI* 0+ Contu(t*) =
< F(t*, u(t*)). This completes the proof.

Remark 2 Theorem 2 fails if we drop the assumption that F is convex valued.
Indeed, let v: [0, 1] —» R be such that o(t) = 1 if te(1/3%2[3"), o(f) = -1 if te
e(2/3%3[3"), k = 1,2, ... and, v(f) = 0 otherwise. Obviously the function

t
u(t) = J v(s)ds
0
is a solution of the differential inclusion

(4) - x'e{-1,1}, te[0,1]

and Count u(0) = [0, 1/2]. A slight modification of the above construction furnishes
a solution of (4) such that for given t, € [0, 1], Cont u(t,) = [0, 1/2].

Remark 3. Adopting the argument of [1] one can extend immediately the above
result to the case of functional differential inclusions

x' € F(t, x,)
where x(0) = x(t + 0), e [—a,0] and F:I x C([—a, 0], RY) » .
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Souhrn

POZNAMKA KE SCORZA-DRAGONIOVE VETE
‘ PRO DIFERENCIALN{ INKLUZE

J6zEF MYJAK

Je podan novy a jednodu3$i dukaz Scorza-Dragoniovy vty pro diferencilni inkluze, pivodng
dokéazané J. Kurzweilem a J. Jarnikem.

Pe3ome

3AMEYAHME ITO TEOPEME CKOPLIA-APATOHH /I TU®OEPEHIIUAJIBHOI'O
. BKJIFOYEHN A

J6zEF MYJAK

Jano HOBOe H GoJlee NPOCTOe J0Ka3aTeNnbCTBO TeopeMbl Ckopua-Adparonn ans guddepenunanb-
HOTO BKITIOYEHHS, IepBOHAYaNBHO Ooka3anoi SI. Kypuseitnem n U. Spuukom.
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