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A REMARK ON SCORZA-DRAGONI THEOREM FOR 
DIFFERENTIAL INCLUSIONS 

JOZEF MYJAK, Trieste 

(Received May 11, 1987) 

Summary. A new simpler proof of the Scorza-Dragoni theorem for differential inclusions 
originally proved by Kurzweil and Jarnik, is given. 
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1. INTRODUCTION 

Let G <z R x Rd. Let X be the set of all non-empty closed convex subsets of Rd. 
Let S(x, r) denote the open ball in Rd with center at x and radius r > 0. For A cz R 
let n(A) denote the Lebesgue measure of A. 

Let (y, d) be a metric space. Recall that F:Y -+ X is called closed (or closed 
graph) if the set graph F = {(y, z): z e F(y), y e Y} is closed in Y x Rd. F is called 
upper semicontinuous (u.s.c.) at a point y0 e y if for every e > 0 there is 5 > 0 
such that d(y, y0) < e implies F(y) c F(y0) + eS (S = S(0,1)). F is called u.s.c. 
if it is u.s.c. at each point of Y. Note that each u.s.c. multifunction with closed values 
is necessarily closed. The reverse is true if, in addition, the set F(y) is relatively 
compact. 

A multifunction F: [a, b] -• X is called (Lebesgue) measurable if the set {t | F(i) n 
n D 4= 0} is (Lebesgue) measurable for every closed subset D of Rd. 

For a given multifunction F: G -> X consider the differential inclusion 

(1) x'eF(t,x). 

By a solution of (1) we mean an absolutely continuous function u: [a, b~\ -> Rd 

with graph contained in G and such that u'(t) e F(t, u(t)) for a.a. t e [a, b]. 
For any function u: J -• Rd(J <=. R) and t0e J denote by Cont u(t0) the set of all 

ZG R* such that z = lim (u(tn) — u(t0))j(tn - t0) for some {tn} a J, tn 4= t0, tn -> t0. 
In [1] J. Jarnik and J. Kurzweil established the following version of Scorza-Dragoni 

Theorem [5]. 

Theorem 1. Let G and X be as above. Suppose that F:G -> X is such that 
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(i) F(t9 •) is closed for a.a. t in projR G; 
(ii) for every (t09x0)eG there exist numbers 5l952>0 and an integrable 

function m: [t0 - 5l9 t0 + <52] -* \P> +00) such that \F(t9x)\ g m(t) for every 
(t9 x) G [t0 - Sl9 t0 + <5j] x S(xa, S2). 

Then there exists a set Q c R with ji(Q) = 0 such that for every solution u: 
J -+ Rd of (1) and every teJ\Qwe have 0 4= Cont u(t) c F(t9 u(t)). 

The original proof is based on a rather difficult approximation technique. In this 
note, we give a simpler and shorter proof, by combining some ideas of Opial [3] 
and Jarnik and Kurzweil [1 ,2] . 

Remark 1. Theorem 1 is a slight generalization of Jarnik and Kurzweil result. 
In fact, in [1] F is supposed to be (non-empty convex) compact valued. Moreover, 
in stead of condition (i) it is supposed that: (i') for every e > 0 there is a measurable 
set Az <=. R with n(R\AB) < e such that F restricted to Gn(AB x Rd) is u.s.c. 
It is easy to see (using the projection theorem) that each F satisfying (i') is Caratheo-
dory, i.e. F(*9 x) is (Lebesgue) measurable for each x9 and F(t9 •) is u.s.c. for a.a. t. 
Thus (i') implies (i), while (i) does not imply (i'). 

Finally let us remark that the assumption of Theorem 1 does not assure the 
existence of solutions of (l). 

2. Proof of Theorem 1. Following [ l ] (owing Lindelof property) it suffices to 
prove the following local version of Theorem 1. 

Theorem 2. Let U be an open subset of Rd. Let I = \a9 &]. Let F: I x U -> X 
be such that F(t9 •) is closed for a.a. t in I and \F(t9x)\ g m(t) for a.a. tel and 
all xeU9 where m is integrable on I. 

Then there is a set I0 c J with fi(I0) = 0 such that for every solution u: J -> Rd 

(J CL I) of (1) and every te J\I0 we have 0 4= Cont u(t) c F(t9 u(t)). 

Proof. By [4, Theorem 1] there exists a multifunction F:I x l / -> J T U { 0 } 

such that: 
(a) F(t9 x) c F(t9 x) for every (t,x)el x U; 
(P) if A cz I is a measurable set, u9v: D -> Rd are measurable functions, then 

v(t) e F(t9 u(t)) a.e. in A implies v(t) e F(t9 u(t)) a.e. in A; 
(y) for every e > 0 there is a closed set It a I with JU(J \ Ie) < e such that F 

restricted to Je x 17 is closed. 
By virtue of (a) and (P) it suffices to verify the statement of Theorem 2 for F. 
Let e > 0. Let IB be as in (y). By virtue of Lusin's Theorem we can assume that m 

restricted to Je is continuous. Thus M = sup {m(t): tele) < +00. 
Denote by % the characteristic function of the set 1\IB. Clearly, for a.a. t e Ie we 

have 

1 Ct+h d F 
(2) lim 7 /(s) m(s) ds = T x(s) m(s) ds = 0 . 

/ .-ofrj , 6tJa 
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Let I* denote the set of all points of (Lebesgue) density of/_ for which (2) is fulfilled. 
Let t* G /*. Let u: J -+ Rd be a solution of (l) (if (1) has no solution there is nothing 

to prove). 

Claim 1. Contu(f*) * 0. 
Indeed, let v: J -> U be a measurable function such that v(s) e F(t, u(s)) for every 

se J and 

u(ř) = u(t0) + ф ) ds , te J 
J lo 

We have 

u(t* + /i) - u(r*) i p M . i r+* M W x , _ _ i r + , ' M M ^ 
-- £ *-- = - i>(s) ds = 7 (1 - x(s)) v(s) ds + - x(s) v(s) ds . 

h h]t* / i j f * / i j f * 
From (2) and the boundedness of m on Ie it follows that 

u(t* + A) - __•) < M + 1 for 0 < f c ^ h t f t fto>0 

/l 

Consequently, there is a sequence {/if} c (0, /i0] with ht-* 0 such that the sequence 
{(u(f* + /i,) - u(r*))//i,} is convergent. Thus Cont u(t*) * 0. 

Claim 2. Cont u(f*) c f(f, u(t*)). 
Indeed, let z G Cont u(t*). Let {f* + / i j c J, /j. -> 0 be such that 

u(r* + hi) - u(f*) 
„ _ 

Suppose that A,- > 0, i — 1,2, . . . (in the case A, < 0 the arguments is similar). 
Set A* = [(*, f* + A,] n /.. As above, we have 

„ . u(.* + A,) - «(«*) 1 r + A V , , vv / x . , 1 f"+*' t\ (\A (3) _v iL i__ = (i _ z(s)) v{s) ds + - x(s) Ks) d s = 
A{ AJ,. AJ,. 

_ _(__ i r ^ d i r+*' (s) ̂  ds 

By (2) the last term in (3) tends to zero as / -> +co. Moreover, m(A,\)lhi -» 1 as 
i -* +00, because t* is a point of density of/_. 

Since ^(*, u(-)) is closed and uniformly bounded on J n /_, it is u.s.c. on J n /e. 
Thus, for given r\ > 0 there is i0 such that F(t9 u(t)) cz F(t*9 u(t*)) + t]S for every 
r G A\9 i __ /0. This and the mean value theorem imply 

- _ - f vis)dseF(t*,u(t*)) + r,S, i _ 
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Since r\ is arbitrary, we have 

IІm - \\ Ф)d^f(t*5«И) .- + ».u(/. ,).!„,. 

Consequently, z e F(t*, u(t*)). Since z is arbitrary in Cont u(t*), Claim 2 is proved. 
Let en I 0. Set I* = (J-V Since //(/*) ^ ^(7) - e„, we have n(I*) = JU(7). Clearly, 

for every solution u: J-+Rd of (l) and every t*eJnI*, 0 4= Cont u(f*) cz 
c F(r*, u(t*)). This completes the proof. 

Remark 2. Theorem 2 fails if we drop the assumption that F is convex valued. 
Indeed, let v: [0,1] -» R be such that v(t) = 1 if t e (l/3\ 2/3*), r(t) = - 1 if t e 
e (2/3\ 3/3*), k = 1, 2,... and, v(t) = 0 otherwise. Obviously the function 

u(ř) = j ф) ds 

is a solution of the differential inclusion 

(4) x ' e { - l , l } , re [0,1] 

and Count u(0) = [0,1/2]. A slight modification of the above construction furnishes 
a solution of (4) such that for given t0 e [0, l ] , Cont u(t0) = [0,1/2]. 

Remark 3. Adopting the argument of [ l] one can extend immediately the above 
result to the case of functional differential inclusions 

x' e F(f, xt) 

where xt(0) = x(t + 0), 9 e [-a, 0] and F: J x C([-a, 0], Rd) -+ X. 
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Souhrn 

POZNÁMKA KE SCORZA-DRAGONIOVĚ VĚTĚ 
PRO DIFERENCIÁLNÍ INKLUZE 

JÓZEF MYJAK 

Je podán nový a jednodušší důkaz Scorza-Dragoniovy věty pro diferenciální inkluze, původně 
dokázané J. Kurzweilem a J. Jarníkem. 

Резюме 

ЗАМЕЧАНИЕ ПО ТЕОРЕМЕ СКОРЦА-ДРАГОНИ ДЛЯ ДИФФЕРЕНЦИАЛЬНОГО 
ВКЛЮЧЕНИЯ 

^62ЕР М ™ А К 

Дано новое и более простое доказательство теоремы Скорца-Драгони для дифференциаль­
ного включения, первоначально доказаной Я. Курцвейлем и И. Ярником. 

Ашког'з аДйгеаа: РасоИа 1п§е8пепа, Ш^егзпа йе1Р А^и^1а, 67100 ^• А^и^1а, Иа1у. 
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