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A NOTE ON THE GP-INTEGRAL

SHUSHENG Fu, Fuzhou
(Received November 2, 1986)

Summary. Jiti Jarnik, Jaroslav Kurzweil, Stefan Schwabik in [1] gave an example which showed
that the GP-integral generally failed to depend continuously on the domain of integration.
However, in this note, we show that the GP-integral depends continuously on the domain of
integration except on the boundaries.

Keywords: Generalized Perron integral, continuous dependence on the integration domain.

Let! < [a, b], a, b € R", be a Cartesian product of compact intervals [a;, b;] = R
with a; < b;, i = 1,2, ..., n. A p-partition of the interval I is (cf. [2]) a finite family

m={(x'1"),...,(x", 1)}
where I are intervals such that {I', ..., I"} is a partition of I and
el (j=1,2,....,m).
With Mawhin [2], let us call the irregularity £(IT) of IT the positive number defined'
by
2(11) = [max o(F')]/e(1)
<jsm

where the rate of stretching o(I) of the interval I is defined by
o(I) = [ max (b; — a;)]/[ min (b; — a,)] .
1<isn 15i<n

Theorem. Let f be GP-integrable on [a, b], a,beR", let x€(a, b). Let {I"};*,

be a sequence of intervals with x € I* and lim diag I* = 0; then lim (GP) [ f = 0.
X— 00 k—

Proof. We prove the theorem for n = 2; when n > 2, the proof is similar. Sup-

pose x is in (a, b), and the theorem is false at x. Then there exists a sequence {I*};%

of intervals such that xel*, k = 1,2, ..., lim diagI* = 0, but (GP) [ f+ 0. We

k=
may suppose that f,k f > a > 0; Otherwise, we would consider —f, where [ f <
<a<0. ,
Without loss of generality, we suppose that [;f = 0. Given ¢ > 0, n = 2, let &
be such a gauge on I that
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Is(x. £, 1) — (GP) [ f]| <&

. for every §-fine p-partition IT of I with Z(IT) < #.
We notice that o(I*)/o(I) may be larger than 5. Next, we show that we can always
construct a sequence {J*};%, of intervals such that lim diag J* = 0, o(J)[o(I) < 1

and ”,k f l > af3. Since x € (a, b), we suppose that each I*, 1 £ k, is contained in
a fixed square, centered at x and contained in (a b).

If a(l")/a(l) <n, put J* = I*. Suppose o(I")[a(I) > n, I* = [a}, b}] x [a5, b3]
and suppose b% — a% > b} — a}.Put

I§ = [bY, ] x [aﬁ,'bg] ,
15 = [d*, a%] x [d%, b%],
where c*, d* are chosen such that
o(If v I¥[o(I) < 7,
ol INfe(I) £ 1,
o(If vl uI¥e(l) <1,

and diag (I} U I*), diag (I5 U I*) and diag (I} U I% U I*) are all less than \/2 diag I*.
We claim that one of I¥ U I*, I U I*, I', U I% U I* can be chosen as J*.

Ifj F>%, put JF=IUIk.

I)UI" 3

If.[ f>2 put J=I*UI.
Ikulk 3

Otherwise, J. f<%a ndj £ <2 this implies
I;"UI" 3 Iz"ul" 3

If=j f—‘[\fé—gz and
I Ieur® I* 3
I* Ii*ur* I* 3

o

[ =] g+] 155
Ikulkulk o 1."U11" Ik

Now we put J* = I§ U I} U I*

Since f(x) is GP-integrable on I\ J* given& > 0, n 2 2, let &, be such a gauge
on I\ J* that

so that

w
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S~ J% £, 11,) = (GP) [ f| <&

for every ,-fine p-partition IT, of I \ J* with X(IT,) < n.
Let 8,(x) = min (8(x), 6,(x)) and let IT, be a d,-fine p-partition of I\ J* with
Z(IT;) < n. Then

SIS - (OR) faps] <.

Let IT = (x, J*) U IT,, then IT is a d-fine p-partition with Z(IT) < 7, so
(1) | IS £, m)| <,
but

IS(, £, M| Z |(GP) frr f]| = |£Ce) u¥| = | SUN I~ £, 1T,) = (GP) [ f| 2

' 2 du— o = [l

When k is large enough, we have
) IS(L, 7, M)]| 2 4o — 2¢;

(1) and (2) form a contradiction if we choose & < 3o The proof is complete.
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Souhrn

POZNAMKA KE GP-INTEGRALU

SHUSHENG Fu

J. Jarnik, J. Kurzweil a §. Schwabik podali ptiklad, Ze zobecn&ny Perrontiv integral obecns
nezivisi spojit® na integra®nim oboru. V poznimce je ukazano, Ze nespojita zavislost muZe
nastat pouze v hraniénich bodech integraniho oboru.

Pesome

3AMEYAHHUE O GP-UHTETIPAJIE

SHUSHENG Fu

" M. SApuuak, . Kypuseiur n II. Illsa6pK mokasaid Ha OpHMEDE, YTO OGOGILICHHBIE MHTETPaT
ITeppoHa He3aBHCHT B OGMIEM Clly4ae HENPEPHIBHO OT OGJIACTH HHTErPHPOBaHHA. B 3aMeTKe NOKa-
3aHO, YTO 3TO MOXET CIYYHTHECA TOJLKO B IPAaHMYHBIX TOYKaX 00JIaCTH HMHTEIPHPOBAHHMSA.
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