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114 (1989) ČASOPIS PRO PĚSTOVÁNI MATEMATIKY No. 3, 262—275 

THE JOIN OF GRAPHS AND THE BINDING MINIMALITY 

MARIA KWAŠNIK, DANUTA MICHALAK, Zielona Góra 

(Received June 10, 1986) 

Summary. The important notion of the binding number was introduced by D. R. Woodall 
in [5]. The main theorem of Woodall's paper is a sufficient condition for the existence of 
a Hamiltonian circuit given in terms of the binding number. Later, other authors considered the 
binding number of some well-known classes of graphs and their products, see for example [3], 
[4], In this paper we establish some general properties of the join of hallian graphs. Further, we 
study the binding minimal graphs, restricting our investigations to the join of some special 
graphs. 

Keywords: binding number, join of graphs. 

I. DEFINITIONS, NOTATION AND PRELIMINARIES 

We consider only finite, undirected graphs without loops or multiple edges. Most 
of the concepts used in this paper can be found in [2]. 

For a graph G = (V(G), E(G)) and a vertex x e V(G) we denote by TG(x) the set 
of all vertices of G adjacent to x. If X £ v(G), then we writte TG(X) = \J TG(x) 
or shortly T(X). xeX 

Let FG = {X:X c V(G), X * 0 and TG(X) * V(G)}. The binding number 
of G, denoted by bind(G), is defined as 

bind(G) = m i n l ^ ^ . 
Xe&c |X J 

Woodall calculated the binding number of graphs of some well-known classes. 
Let us recall some propositions of [5], 

Proposition 1. bind(Kn) = n — 1,/br n ^ 1. 

Proposition 2. If n = 3, then 

ЪШ(C„) = 

1 if n is even 

if n is odd . 
n-2 
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Proposition 3. / / n _ 1, then 

1 if n is even 

bind(P„) = L _ ! 

n + 1 
if n is odd . 

Proposition 4. bind(KWjn) = mjn, m :_ n, m = 1, n = 1. 
A graph G is said to be binding minimai if for each edge e e E(G), bind(G — e) < 

< bind(G). 
It is not difficult to show that the following types of graphs are binding minimal: 

Kn for n _ 2, Cn if n is odd, Pn if n is odd, Kinif n = 1. 
77ie join of graphs Gl9..., Gs, s = 2, V(G;) n V(G,) = 0 i * j , 1 = i, j = s is 

a graph Gt + . . . + Gs = (V(GX) u ... u V(GS), £(Gj) u ... u £(G,) u £) where 
S = {{u, i)}:«e V(Gt) and v e V(Gj.), i * j , 1 = *,j = s}. 

A graph G is ha/Z/an if |F(K)| = |X| holds for any set X _ V(G) or equivalently, 
if G has a (l,2)-factor. By a (l,2)-factor of G we mean a set of independent edges or 
vertex disjoint cycles which cover all vertices of G. 

A graph G is k-ha\\ian if for any set A of vertices of order at most fc the subgraph 
of G induced by the set V(G) — A is hallian. The largest k such that G is k-hallian 
is called the haUian index of G and is denoted by h(G). 

The vertex connectivity K(G) of a graph G is the minimum number of vertices 
whose removal results in a disconnected or trivial graph. Clearly h(G) ^ 5(G) — 1 
and K(G) :g d(G) where 5(G) denotes the minimum degree of a vertex of G. 

In our investigations we will use the following propositions of [ l ] . 

Proposition 5. [1]. Let G be an i-connected and k-hallian graph on n vertices. 
Then |F(X)| = |X| + r for any set Xe&G where r = min {/, fc}. 

Proposition 6. [1]. Let G be a graph on n vertices. If any set Xe^G satisfies 
\T(X)\ = |K| + fc, then G is k-hallian and k-connected. 

Proposition 7. [1]. If a graph on n vertices has h(G) = 5(G) — 1 and K(G) = h(G), 
then 

bind(G) = n " l 

n - 5(G) 

Since h(G) = 5(G) - 1, thus the conditions h(G) = 5(G) - 1 and K(G) = h(G) 
are equivalent to the condition min {h(G)9 K(G)} = 5(G) — 1. 

Proposition 8. [1]. Let G be a graph on n vertices. If X e !FG, then \X\ = 

= n - 5(G). 
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II. THE BINDING NUMBER OF THE JOIN OF GRAPHS 

The main purpose of this section is to calculate the binding number of the join of 
graphs Gl9..., Gs. First we show some general properties of the join of hallian 
graphs. The following convention will be useful in the subsequent considerations. 

If Gl9..., Gs are graphs, then |V(Gj)| = nh J\ nt = N and for any 1 = i = j = s, 
i=j 

n{ = n}. The following lemma will be useful in the subsequent investigations. 

Lemma 1. Let H = Gt + ... + Gs. Then Xe^H if and only if Xe^Gi, for 
some i9 1 = i = s. 

Proof. If X e &Gi, 1 ^ i ^ s, then the lemma is obvious. Suppose X e !FH and 
X $ &Gi for any i, 1 = i <; s. Thus X = 0 or TGi(X) = V(Gr) or X contains vertices 
of at least two graphs Gi9 Gj9 / 4= j , 1 ^ i, j = s. It is clear that X 4 &n in the 
above cases and the lemma is proved. 

Theorem 2.Let H = Gx + ... + Gs. For any /, 1 = / = s let h(Gi) = fc, K(G() = I. 
Then min {h(H)9 K(H)} = N — ns + r, where r = min {fc, J}. 

Proof. Suppose r = k. Putting A = V(Gj) u . . . u V(Gs.j)u5 where B = 
= V(GS) is such that <V(GS)\£> is non hallian and \B\ = r + 1, we obtain that 
<V(H)\A> is non halliaii. Hence h(H)=N — ns + r. Now, suppose r = I. 
Putting C = V(Gt) u .. . u V(GS_1) u D where D = V(GS) is such that <V(GS)\ D} 
is not a connected graph and |D | = r, we obtain that <V(H) \ C> is not connected. 
Hence K(H) = N - ns + r. 

Consequently 

(1) min {h(H)9 K(H)} = N - ns + r . 

Let Xe^H. By Lemma 1, Xe&r
Gl for an arbitrary i, 1 = i = s and according 

to Proposition 5, |FG.(X)| = |X| + r. 
This implies |r /7(X)| = N - wf + \TGi(X)\ = N - n( + \X\ + r = \X\ + N -

— ns + r. Applying Proposition 6 we obtain that H is (N — ns + r)-hallian and 
(N — ns + reconnected. This implies 

(2) n}in {h(H)9 K(H)} = N - ns + r . 

By (1) and (2) the theorem is proved. • 

Theorem 2 and Proposition 7 imply 

Theorem 3. Let H = Gt + ... + Gs where h(Gi) = fc, K(G ;) = / for any i, 
1 = i = s. Denote r = min {fc, /}. / / 5(H) = N - ns + r + 1, then bind(/J) = 
. (N - 1)/(1V - 5(H)). 
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Corollary 3 .1 . / /G h 1 _ / _ s is an i-regular graph on ntvertices9then bind(H) = 
= {N - !)/(„. - 1). 

Proof. Obviously that ft(Gj) = 0 and K(G) _ 0, so r = min {h(G)9 K(G)} = 0. 
It is easy to observe that 3(H) = N — ns + 1, hence applying Theorem 3, we have 
bind(Jf) = (N - l)/(n5 - 1). D 

Corollary 3.2. / / Gh 1 _ / _ s is an elementary circuit Cn. wftere n4 is odd9 

n, _ 3, then bind(//) = (H - l)/(ns - 2). 

Proof. If nr is odd, then ft(CW|) = 1 and K(CB.) = 2. Observing that 5(H) = 
= N - ns + 2, we conclude from Theorem 3 that bind(H) = (N - l)/(ns - 2). • 

Similarly we show the following: 

Corollary 3.3. / / G( is an elementary path P„i9 nt is even9 n{ _ 2, 1 _ / _ s, 
fften bind(H) = (N - l)/(ns - 1). 

Theorem 4. Let H = G1 + ... + Gs. / / nt = n, Gf is hallian with h(Gt) = ht 

and K(Gi) = fc; for each /, 1 _ / _ s, i>ften min {h(H)9 K(H)} = n(s — 1) + r, 
where r = min {hl9..., fts, fct,..., fcs}. 

Proof. Suppose r = ftiforsome /,1 = / _ s. Putting A = V(Gt) u ... u V^i-jju 
u V(Gi+1) u . . . u V(GS) u B where J3 _ V(Gf), |JB| = r + 1 and <V(Gf) \B> is 
non hallian, we get that <V(//) \ -4> is a non hallian graph. Hence h(H) _ n(s — 1) + 
+ r. Now suppose r = kt for some /, 1 _ / _ s. Putting C = V(GX) u .. . 
. . . u V(Gi_1)uV(Gi + 1 ) u . . . u V ( G s ) u D where Z) £ V(Gf), |Z)| = r and <V(Gi)\ D> 
is not connected we have that <V(H) \ C> is not connected. Hence K(H) _ n(s — 1) + 
+ r. Thus 

(3) min {h(H)9 K(H)} _ n(s - 1) + r . 

Let X e f H . By Lemma 1, Xe^Gi for some /, 1 _ / _ s. Proposition 5 implies 
|rC i(X) | _ jXI + min {fti, ki}. Since |FH(K)| = n(s - 1) + |FGi(X)|, thus \rH(X)\ _ 
_ n(s — 1) + |X| + min {ftj, fcf} _ |K| + n(s — l) + r. According to Proposition 
6 we obtain that H is [n(s — 1) + r]-hallian an [n(s — 1) + r]-connected. This 
implies 

(4) min {h(H)9 K(H)} _ n(s - 1) + r . 

The inequalities (3) and (4) show the theorem. • 

Using Theorem 4 and Proposition 7, we get the following theorem. 

Theorem 5. Let H = G1 + ... + Gs. For any /, 1 _ * _ s, tef n, = n, ft(G,) = ft,, 

K(Gi) = fci. / / 5(H) = n(s - 1) + r + 1, rft̂ n bind(//) = (ns - l)/(n - r - 1), 
wfter^ r = min {ftx,..., fts, kl9..., fcs}. 

265 



Corollary 5.1. Let H = Gt + ... + Gs. If Gf = Pn, n even, n = 4 for 1 = / = 

<; * < s and G,. = Cnfor t + 1 = i 5_ s, then bind(H) == (ns - l)/(n - 1). 

Proof. Since n is even, thus fc(PB) = 0, h(Cn) = 0, *;(Pn) = 1, K(CK) = 2. Applying 
Theorem 5 with S(H) = n(s - 1) + 1, and r = 0 we show the corollary. . • 

Now we shall calculate the binding number of join graphs for which the above 
method cannot be used. Namely, let H = G_ + ... + Gs and G, = C„. where nt 

is even, n{ = 4 for any i, 1 *_ i _ s. Since h(G;) = 0 and K(G() = 2, we have 
min {h(H), K(H)} = N - ns, by Theorem 2. Note, that S(H) = N - ns + 2. Hence 
bind(tf) __ (N - 2)/(n, - 2) (see [1]). 

Theorem'6. If H = Gi + ... + Gs, where G{ = C„,, n,- is even, nf = 4/or each /, 
1 < i < s, r/ien 

bind(tf) = 

2s — 1 // n, = 4 /or each i, 1 __ i __ s 

N- 1 
otherwise. 

Proof. Since G; is a 0-hallian graph, thus |rG.(K)| __ |K| for any l e ^ . , 
Considering all sets X e ^Gt, we distinguish the following possibilities: 

a) X is the largest stable set of vertices of Gh thus |rG.(X)| = |K|, |K| = n̂ /2, 
b) X is any other set of &Gi, thus |FGiVK)| __ |X| + 1. 

Now we estimate |Pff(X)| for X e <FH, i.e., X e !FGi for any i, 1 ^ i = s. In case a), 

\TH(X)\ = N - n, + ^ = N - in, = N - ±ns. 

Hence 

| r ___ > i V - i » . g. J V - 1 » . 

M |*| ~ i». 
It is evident that the equality holds for the largest stable set of Gs. 

In case b), \r„(X)\ - N - n, + \X\ + 1 _ JV - n. + |*| + 1. Hence 

|r_(A)| ^ t A r - « . + i 1 + A r - "• + 1 _ t , , * - » . + - _ * - - ' 
|X| ~ |X| • 11 , -2 - n s - 2 n , - 2 * 

Moreover, putting X = K(G.) — rc(u) for some v e V(G.), we obtain the equality. 
The definition of the binding number implies that 

bind(B) = m i n | 2 - ( ^ i _ ) , ^ i } . 

Suppose that 
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(5) - ( * - * « . ) = ______ 
n. n, - 2 

or equivalently 

, ( _ _ _ ! _ _ , _ , _ _ _ . 
\n. n. - 2/ n. -

Since N = 4 + ns, thus 

(«, N ( _ _ _ L _ U ( 4 +„,)(_-___.). 

We easily verify that (4 + ns) (2/ns - l/(ns - 2)) = 1 - l/(ns - 2) is equivalent 
to ns ^ 6, and by (6) the inequality (5) is true for ns = 6. If ns = 4, then Gf = C4 

for any i, 1 ^ i ^ s. So, (5) can also be written as 2s — 1 ^ 2s — i, but this is 
false which completes the proof. • 

Now we shall investigate the cases when the graphs Gt are non-hallian and 
E(Gt) = 0 for each i, 1 ^ i = s. In fact, H = Gt + ... + Gs is a complete s-partite 
.graph. 

Theorem 7. Lef be a complete s-partite graph, then 

bind(H) = ^ - - - ^ . 

Proof. Let X e _^H. This implies by Lemma 1 that X e «_̂ G. for some i, 1 = i = s. 
We observe that rGi(X) = 0, hence |r„(X)| =N - ni = N - ns. 

Since |_X| ^ ns, we have |FH(X)|/|X| = (N - ns)/|X| ^ (N - ns)jns. Moreover 
putting X = V(G) we have r_c_(X)/|X| = (N - ns)/ns and the theorem is proved. • 

Now we shall consider the case when Gt is the graph Pni, nt is odd, nt = 3 for any i, 
1 = i = s. 

Theorem 8. Let H = Gx + ... + Gs and G, = P„,, n, odd, n, _> 3, 1 ^ i = s. 
Then 

'2N - n, - 1 

bind(__) = 
и. + 1 

i/ ns = 3 оr ns = 5 and N = 8 

otherwise. 
n. — 1 

Proof. Let X 6 #"H, hence X e i*5",, for any i, 1 ^ i ^ s, we have the following 
possibilities to consider: 
1° X is the largest stable set of vertices of Gj. Thus \X\ = \{nt + 1), |rG,(^)| = 

- _ ( « i - l ) . 

lr„(X)l ^ N - n, + _{n, - 1) _ 2N - n, - 1 ^ 2N - n. - 1 

|* | _(«,- + 1) «•• + 1 ~~ ns + 1 
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The equality holds for the largest stable set of Gs. 
2° For any other set X e 3?Gr \rGt(X)\ = \X\ holds. Thus 

\rH(X)\_N-ni+\rGl(X)\:iN-ni ^ ^ N - l ^ N - 1 

|"| |"| |"| i i - l » . - l 

and the equality holds if X c V(GS) and X = V(GS) - -TCa(i?) where v is a vertex: 
of degree 1 in Gs. 

From 1° and 2° we have 

u- AÍЖJ\ • Í 2N - n s - 1 N - 1] 

bind(Я) = min «{ , } 
[ ns + 1 ns - lj Suppose that 

(7) 2AT - w. - 1 > N- 1 
ns + 1 ~ ns - 1 

or simply N(ns - 3) ^ n2 - ns - 2. Since N = ns + 3, then N(ns - 3) =-
^ (ns + 3) (ns - 3). The inequality n2 - 9 = n2 - ns - 2 is true for ns = 7.. 
Now we consider (7) for ns = 3 and ns = 5. We obtain that (7) is false for na = 3 
or na = 5 and N = 8 and (7) is true for ns = 5, N = 9. 

This completes the proof. Q 

III. THE JOIN OF GRAPHS AND THE BINDING MINIMALITY 

In this section we will prove that some graphs which are join of graphs are binding: 
minimal while some are not. In all proofs we use the following lemma which is an 
immediate consequence of the definition of the binding number. 

Lemma 9. Let G be a graph and bind(G) = c. If e e E(G), then for any set: 
X E 3*G-e such that X n e = 0 we have 

1IW*)I ^ c 

w 
Theorem 10. Let H = Gx + ... + GM where Gh 1 = i ^ s are 1-regular graphs.. 

H is binding minimal if and only if nt = nsfor each i, 1 = i ^ s. 

Proof. By Corollary 3.1, bind(_r7) = (N - l)/(ns - 1). Assume there exists 
a graph Gh 1 ^ i ^ s such that nt + na. This implies nf = ns — 2. Let ee E(Gt) 
and e = {x, y). According to Lemma 9 we have to consider all sets X € &H-C such 
that X n e 4= 0. By Lemma 1 X e ^Gi-e, X n e + 0 and we distinguish two pos-
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sibilities: 
a) x є K and yeX, \X\ t_ nh or 
b) either x є K or yeX, hence |K| __ nř — 1. 

In case a) we obtain 

\Ги.j(X)\ _N-щ + |Гc,-e(X)| _N-щ + \ГGl(X)\ - 2 

\X\ \X\ \X\ 

>! + ______!_> ___il >_-__!> ___i _ bi„d(„). 
\X\ n, n. - 2 n. - 1 

In case b) we have 

\Ги.e(X)\ _N-щ + |Гc,_e(X)l _N-ni + \ГGi(X)\ - 1 ^ 

\X\ \X\ \X\ 

ž -V-» , + И - l ž l + N - я , - l _ , _ _ _ J ž _ _ _ i > Ы | l d ( д ) ł 
|K| nř - 1 n_ — 1 nř 

Ғinally, Я is not binding minimal. 
Conversely, assume that nř = n for each i, 1 = i ^ s. In this case bind(Я) = 

= (ns - í)l(n - 1). 
Let e є _(G,) foг an aгbitгaгy i, 1 _ i _ s. Putting X = V(G,). we obtain 

]£_____ __í___<_i__l_ьind(я). 
|x| n n - 1 v ' 

Now let e є E(H), e = {x, y] and x є V(Gt), y e V(GJ), i Ф j . If we put X = 
= (Г(G,)-{x})u{j;}, then 

lIW*)l_-__i< b i n d ( Я) . 
|K| n 

Thus bind(Я — e) < bind(Я) for each edge e e E(H), i.e., Я is binding minimal and 
this cpmpletes the proof. D 

Theoгem 11. Let H be an s-partite graph, H = G_ 4- ... -f G_ where ..(G.:) = 0, 
1 :g i < s. Я is binding minimal if and only 

if" s = 2, then H = K_,tf-_, 
if s = 3, then nř = n_ and n_ < s /or eűcft i, 2 ^ i ^ n_. 

Proof. By Theorem 7, bind(Я) = (N - ns)/ns. Suppose that s = 2 and Я Ф 
Ф .K^^-!. It is not difficult to see that Я is not binding minimal. Further, suppose 
that s £_ 3 and either nř Ф ns for some i, 2 <_ i < s oг nt = ns foг each i, 2 <; i ^ s 
and Í I , ^ S . 

First, let nt < ns, 2 _š i < s and e = {x, j>}, x є V(G_), y є V(G.:). Considering 
all sets X e $*ц-e such that X n g ф í w e have the following possibilities. 
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1. If X £ V(G.) or X £ v(G,) and |X| = 2, then TH_e(X) - TH(X), i.e., 
|TH_e(X)|/|X| = bind(/_). 

2. If X = {x}, then |rH_e(X)|/|X| = N - nv - 1 = N - n,^(N - ns)jn, = 
= bind(H). If X = {>•}, then |TH_e(X)|/|X| = N - n, - 1 = bind(tf). 

3. If X = {x,y}, then |rH_e(X)|/|X| = (N - 2)/2 = bind("). 
4. If X = X' u {x}, X' £ V(G,), 2 = |X'| = nt or X = X' u {>-}, X' £ v(G,), 

2 ^ |X'| = B „ then 

|rff_e(X)| _ J V - 1 ^ N - l > N-l > N-l > N-ns 

|X| |X| ~ nx + 1 ~ n, + 1 ~ n. ~ n. 

In these cases H is not binding minimal. 
Now let 3 | s ^ ns and n( = n« for each i, 2 _ j _̂  s. Let c = {x, y} and x e 
e v(G,), y e V(Gj) where i * j, j = 2, j = 2. Taking all sets X e i~H_e such that 
X n e =t= 0, we have the following possibilities to consider. 
a) If X £ V(Gk) where fc = i or k = j and |X| = 2, then TH_e(X) = ~H(X), i.e., 

|rH_e(X)|/|X| = bind(tf). 
b) If X £ V(Gk) where fe = J or k = j and |X| _ 1, then |TH_e(X)|/|X| = iV -

- n. - 1. Since N = 2n. + 1, hence N - nt + l^(N - ns)jns = bind("). 
c) If X _ X' u {x} or X - X' u {>>} where |X| = 2 and X' £ V(Gj) or X' £ V(Gf)„ 

respectively, then |rH_e(X)|/|X| = (N - l)/|X| ^ (N - l)/(ns + 1). 
Suppose that 

(8) ^ - l i > *-»• 
nt + 1 ns 

or equivalently N/ns <̂  ns. It is clear that Njns ^ s. From this and the assumption 
that s :g ns we have Njns ^ s ^ ns. This implies that (8) is true. 

Finally, in every case there exists e e E(H) such that |FH_e(K)|/|K| = bhu^H),, 
i.e., H is not binding minimal. 

Conversely, let s = 2 and H = KitN-1.'It is obvious that H is binding minimar. 
Now, let s ^ 3, H = Gx + ... + Gs, and for each i, 2 = f ^ s let n; = n and 

n < s. In this case bind(H) = (N — n)/n. It is obvious that nx = n and we distinguish 
two cases nt < n or nt = n. In the first case we have to calculate bind(ff — e) where 
e = {x, y}9 x e V(Gl), y e V(Gt)9 2 = i = s or e = {x', / } , x' e V(G() and y' e-
e V(Gj), i + I, 2 ^ i, j ^ s. Putting X = V(Gt) u {x} or K = V(Gf) u { / } , respec­
tively, we obtain |rfl_^K)|/|_*| = (N - l)/(n + 1). 

Suppose that 

w _ ^ < b i n < i w » _ _ 
n + 1 n 

or simply n2 < N. 
By the assumption n < s, we obtain n2 < ns. It is clear that ns < N. Thus n2 < N 

is true and (9) is true, too. If nx = ns = n, then for any edge e e .E(H), c = {x, y}x 
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x e V(G(), y e V(Gj), i + j , 1 = i, j = s, we can prove that \rH-e(X)\jX) = 
= (N - l)/(n + 1) < bind(H). Finally for each edge of H there exists X e ^ H . e 

such that |FH_e(X)|/|K| < bind(if), i.e., H is binding minimal. The theorem is 
proved. • 

Theorem 12. Let H = Gt + ... + Gs, s _ 2 and G, = C„, where nf is odd, ni = 3 
for any i, 1 ^ i ^ 5. H is binding minimal if and only if nf = nsfor each i, 1 f_ 
__ * __ s. 

Proof. By Corollary 3.2, bind(H) = (N - l)/(ns - 2). Suppose that there exists 
a graph Gh 1 = i = s such that nt < ns. This implies ni = ns — 2. We choose an 
edge {x, y} e E(G(). According to Lemma 9 we have to consider only the sets 
X e &'n-e such that X n e =f= 0. We observe that G, — e is a path on an odd number 
of vertices. By Lemma 1 it suffices to consider all X e ^ G i -e -

Two possibilities can occur: 
a) X is the largest stable set of G, - e. Then |K| = \(n{ + 1), and |FG|_e(X)| = 

b) For any other set X 6 J ^ , - . vve have |FGi_e(X)| = \X\. 
In a) we have 

l-W-QI _ iV - », + i(n, -1 ) _ AT - jnt - \ 
\X\ K"i + -) i"i + i 

We have to consider the following inequality 

(10) ___i___J>___i. 
i«i + i " «. - 2 

Using the assumption n, ̂  n, — 2 we obtain (N — \n{ — i ) (ns — 2) ^ 
= (!V — in, — 1̂ ) n, and because the inequality (N — in, — i) n, ^ (N — 1) . 
. (in, + i ) is equivalent to N ^ n, + 1, thus (10) is true, too. In case b) we have 

\rH-jX)\ _ \rct.e(X)\ + N-n, > t J V - n , > t AT-n, = 

| „ | |_ | ~ |X| " B | - 1 

_____>___i_b i n d („) . 
n, - 1 ns - 2 

Consequently, H is not binding minimal. 
Conversely, suppose nf = ns = n for each i, 1 S i __ s- - n this case bind(H) = 

= (ns - l)/(n - 2). If e e J_(G,)f 1 = i = s, e = {x, y}, then putting X = K(G,.) -
— rGi-e(x) we obtain 

!______ _ n(s - 1) + n - 1 _ _ _ - _ < n _ - _ _ _ . 
|X| n - 1 n - 1 n - 2 ' 
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If e e E(H)9 e = {x9y}9xe V(Gt) and y e V(Gj)9 i * j9 then putting X = (V(G() -
— {x}) u {y} we obtain 

|r„ (X)\ _ g - l < 

|_ | « - 1 

Hence if is binding minimal and the theorem is proved. • 

Theorem 13. Let H = Gt + ... + GS9 s = 2 and for any i, 1 = i = s. Let Gt = Cni 

where nt = 4, nt even. The graph H is binding minimal if and only if nt = ns 

for any i9 1 ̂  i ^ s. 

Proof. According to Theorem 6, bind(H) = (N — l)j(ns — 2). Suppose that 
there exists a graph G( for some 1 ̂  i < s such that nt # ns i.e., nt ̂  ns — 2. Let 
^e__(Gj). Notice that Gt — e is a path PBi, nt even, hence for any set Xe$FGi9 

|rG._.c(X)| = \X\ (see Proposition 3). 
We have to consider all sets X e ^H-e such that X n _ 4= 0. It is clear that it 

suffices to consider all sets X e ^Gt-e-
Hence 

\r„-e(x)\ = AT - H, + |rG,_ e(x)| j y - n , 

W W " 1*1 
Since |X| g nf — 1 we have 

l__.|_M^^___l>_i__l = bi„d(H). 
\X\ " ii. - 1 n, - 2 

Thus H is not binding minimal. 

Conversely, let nt = n for each i, 1 g i g s. By Theorem 6 we have 

2 s - 1 if n = 4 

bind(fl) = L _ 1 

и - 2 
if и _ 6 

Let {x, ĵ } = e e -E(G() for some i, 1 ̂  i ^ s. Observe that Gx — e = P„. Putting 
X = V(G() - TGi(x)9 we obtain 

|rH.e(X)| = 45^-j. < 2 s _ t = b i n d / H ) i f n = = 4 

and 

l_-___-_ _ - - i < - L - i = bind(ff) if n = 6. 
\X\ n - 1 n - 2 

Let e = {x, y} where x e ¥&), y e K(G,), i * j . Then X = (V(Gi) - {x}) u {y} 
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satisfies 

]£sj_(_)| = _LZJ _ 2s - 1 = bind(tf) if n - 4 

and 

|r, (z)| _ __-_ < __-_t _ b.nd(H .f n ^ 6 

This implies that H is binding minimal and the theorem is proved. • 

Theorem 14. Let H = Gx + ... + Gs, s = 2 and for any i, 1 ^ i ^ s fef G, = P„. 
where nf is even, n̂  _ 2. The graph H is binding minimal if and only if nt = 2 
for any i, 1 __ i ^ s, i.e., H is the complete graph on 2s vertices. 

Proof. If H is the complete graph, then H is binding minimal. Conversely, by 
Corollary 3.3, bind(H) = (N — l)/(ns — 1). Suppose there exists a graph Gf such 
that nt > 2, so ns = 4. 

Let x t , x2,..., x2fc be vertices of Gs and {xh xi + l} e E(GS) for any i, 1 = i ^ 2fe — 
— 1. If e = {x2, x3}, then Gs — e is a hallian graph, hence |FGs_e(K)| = |K| for any 
Ie ,fG j_ e . Moreover |K| _5 ns — 1 (Proposition 8) and we obtain 

IIV*(*)I _ jy - n. + |rCj_e(x)| > __-__ t > __ -_ = b.n 

1*1 1*1 " 1 * 1 - » . - -
It is clear that for any other set X e !FH-.e we have FH_e(K)|/|K| ^ bind(if) (see 
Lemma 9). 

Thus H is not binding minimal and the proof is complete. • 

Theorem 15. Let H = Gx + ... + Gs, s = 2 where G{ = Ptti, n{ is odd, nt = 3, 
1 __i i _g s. Then H is not binding minimal. 

Proof. By Theorem 8, 

*2N - n, - 1 

bind(H) 
ns + 1 

i V - 1 

if n, = 3 or и, = 5 and ІV = 8 

ns - 1 
otherwise . 

Let ns = 3. Then bind(H) = _-s - 2. Further, let e e £(H), e = { x j } , x e V(G,), 
yeV(Gy), i #j , and degG,x = degGyj = 2. Considering ol\X e^H_e such that 
K n e # 0 we have the following possibilties: If X = {x} (or K = {y}), then 
|FH_e(*)|/|*| = 3 s - 2 > f s - 2 = bind(H). If X = {x, y}, then |FH_C(K)|/|K| = 
= f s — 1 > f s — 2 = bind(H). Thus H is not binding minimal. 
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Let n, = 5 and JV = 8, i.e., n, = 3, n2 = 5 and s = 2. If e e E(G.), then for all 
X e ^ H _ e such that X n e =i= 0 we obtain 

liW-t-l ^ _ = bind(H) . 

Let n. ^ 5 and N = 9. Let e = {x, >-} e £(tf) where x G V(G,), y e V(GS), 1 < i < s 
and degGlx = deg^^ = 2. We consider all X e ^H-e where X r\ e # 0, and we 
have the following possibilities: 
a) If X = {>>}, then |rH_e(X)| = JV - n. + 1 ^ (N - l)/(n. - 1) = bind(ff). 

If X = {x}, then |rH_e(X)| = N - nt + 1 > bind(tf). 
b) If X = {x, >>}, then \ra.J(X)\IX = _(* - 2). 

Now suppose that 

(11) ^ = ^ 1 = bind(tf). 
2 ns - 1 

The inequality (11) is equivalent to N(ns — 3) ^ 2ns — 4. By the assumption JV^9, 
which yields N(ns — 3) ^ 9(ns — 3). Solving the inequality 9(ns — 3) ^ 2ns — 4, 
we obtain it is true for ns = 5. Hence (11) is also true for ns ^ 5, and N = 9. 
c) If X = X' u {*}, K' s V(GS), 2 ^ |K'| = ns - 2 and y $ rGs(X) or 

K = X' u {Vj, K' _= V(G,), 2 ^ |K'| = nt - 2 and x * rG\x), 
then estimating |FH_e(K)|/|K| we obtain (N - l)/(ns - 1) or (N - l)/(nf - 1), 
respectively. Clearly |F„_e(X)|/|K| = bind(H). 

Thus H is not binding minimal. • 

Theorem 16. If H = Gx + ... 4- Gs and G, = Pn 1 = i _§ f < s and n is even, 
n = 4, and G, = C„ /0r r 4- 1 _S f _S s, then H is not binding minimal. 

We omitt the proof of this theorem. Let us only notice that for an edge e e E(Pn) 
such that Pn - e is hallian, it is not difficult to show that |Fw_e(X)|/|K| = bind(H) 
for any set X e ^H-e-
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Souhгn 

SPOJENÍ GRAFÚ A VAZEBNÁ MINIMALITA 

MARÍA KWAŚNIK, D A N U T A MICHALAК 

Autorky vyšetřují Zykovovu sumu gгafù a vazebnou minimalitu související s vazebným 
číslem zavedeným Woodallem. S použitím n kteг ch vlastností Hallových gгafů vypočítávají 
toto бíslo pro Zykovovu sumu J grafů dobгe známých tříd (J ^ 2). Dále formulující podmínky, 
za kteгých Zykovova suma je vazebn minimální. 

Peзюмe 

COБДИHБHИБ ГPAФOB И „MИHИMAЛЬHOCTЬ" OTHOCИTEЛЬHO 
CBЯЗЫBAЮЩEГO ЧИCЛA 

MARIA KWAŚNIК, DANUTA MICHALAК 

B cтaтьe изyчaютcя coeдинeниe гpaфoв, ввeдeннoe Зыкoвым, и cвoйeтвo ,,бы ь минимaль-
ным гpaфoм oтнocитeльнo cвязывaющeгo чиcлa", ввeдëннoгo Byдaллoм. Этo чиcлo onpeдeля-
eтcя пpи пoмoщи cвoйcтв гpaфoв Xoллa для coeдинeния s (s ^ 2) гpaфoв paзныx извecтныx 
видoв и пpивoдятcя ycлoвия, пpи қoтopыx coeдинeниe минимaльнo. 
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