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THE JOIN OF GRAPHS AND THE BINDING MINIMALITY

MaARrIA KwaAS$NIK, DANUTA MICHALAK, Zielona Géra
(Received June 10, 1986)

Summary. The important notion of the binding number was introduced by D. R. Woodall
in [5]. The main theorem of Woodall’s paper is a sufficient condition for the existence of
a Hamiltonian circuit given in terms of the binding number. Later, other authors considered the
binding number of some well-known classes of graphs and their products, see for example [3],
[4]. In this paper we establish some general properties of the join of hallian graphs. Further, we
study the binding minimal graphs, restricting our investigations to the join of some special
graphs. . : .

Keywords: binding number, join of graphs.

I. DEFINITIONS, NOTATION AND PRELIMINARIES

We consider only finite, undirected graphs without loops or multiple edges. Most
of the concepts used in this paper can be found in [2].

For a graph G = (V(G), E(G)) and a vertex x € V(G) we denote by I'¢(x) the set
of all vertices of G adjacent to x. If X < V(G), then we writte I'¢(X) = U I'g(x)
or shortly I'(X). xeX

Let F={X:X = V(G), X + 0 and I'¢(X) * V(G)}. The binding number
of G, denoted by bind(G), is defined as

bind(G) = min lrx)l .
XeFg |X |

Woodall calculated the binding number of graphs of some well-known classes.

Let us recall some propositions of [5].

Proposition 1. bind(K,) = n — 1, forn = 1.

Proposition 2. If n = 3, then
1 if nis even

bind(C,) =

if nisodd.

n —
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Proposition 3. If n = 1, then
1 if nis even

bind(P") = n— 1

if nisodd.
n+1

Proposition 4. bind(K,,,) = m/n, m<n, m= 1, n 2 1.

A graph G is said to be binding minimal if for each edge e € E(G), bind(G —e) <
< bind(G).

It is not difficult to show that the following types of graphs are binding minimal:
K,forn z2,C,ifnisodd, P,if nis odd, K, ,if n = 1.

The join of graphs Gy,...,G,, s 22, V(G)nV(G)=0i+j, 1 <i,j<sis
a graph Gy + ... + G, = (V(G,)u...u V(G,), E(G,)u...u E(G,)uU &) where
& ={{u,v}:ueV(G)and ve V(G)), i +j, 1 <i,j<s}.

A graph G is hallian if |[[(X)| 2 |X| holds for any set X < V(G) or equivalently,
if G has a (1,2)-factor. Bya (1,2)-factor of G we mean a set of independent edges or
vertex disjoint cycles which cover all vertices of G.

A graph G is k-hallian if for any set A of vertices of order at most k the subgraph
of G induced by the set ¥(G) — A is hallian. The largest k such that G is k-hallian
is called the hallian index of G and is denoted by h(G).

The vertex connectivity k(G) of a graph G is the minimum number of vertices
whose removal results in a disconnected or trivial graph. Clearly h(G) < 6(G) -1
and x(G) < &(G) where 5(G) denotes the minimum degree of a vertex of G.

In our investigations we will use the following propositions of [1].

Proposition 5. [1]. Let G be an l-connected and k-hallian graph on n vertices.
Then |[(X)| = |X| + r for any set X € # where r = min {1, k}.

Proposition 6. [1]. Let G be a graph on n vertices. If any set X € F g satisfies
|F(X)| 2 |X| + k, then G is k-hallian and k-connected.

Proposition 7. [1]. If a graph on n vertices has h(G) = 6(G) — 1 and x(G) = h(G),
then

bind(G) = ;ﬁ_—%(lG—)

Since h(G) < 6(G) — 1, thus the conditions h(G) = §(G) — 1 and x(G) = h(G)
are equivalent to the condition min {h(G), x(G)} = §(G) — 1.

Proposition 8. [1]. Let G be a graph on n vertices. If X € F¢, then |X| <
< n — §(G).
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II. THE BINDING NUMBER OF THE JOIN OF GRAPHS

The main purpose of this section is to calculate the binding number of the join of
graphs G,, ..., G,. First we show some general properties of the join of hallian
graphs. The following convention will be useful in the subsequent considerations.

If Gy, ..., G, are graphs, then |V(G,)| =n;, Y n,=Nandforany | Si<j<s,
i<

n; < n;. The following lemma will be useful in the subsequent investigations.

Lemma 1. Let H = G, + ... + G,. Then X € F if and only if X e g, for
some i, 1 £i <.

Proof. If X e #¢, 1 £i < s, then the lemma is obvious. Suppose X € #); and
X¢Fg foranyi,1 <i=<s Thus X = 0@ or I'g(X) = V(G;) or X contains vertices
of at least two graphs G;,G;, i +j, | £ i, j <s. It is clear that X ¢ # in the
above cases and the lemma is proved.

Theorem 2. Let H = G1 .+ G, Foranyi,1 £i<sleth(G) = k,k(G) =L
Then min {h(H), x(H)} = N — n, + r, where r = min {k, I}. '

Proof. Suppose r = k. Putting 4 = V(G,)u...u V(G,_y)UB where B <
€ V(G,) is such that {¥(G,)\ B) is non hallian and |B| = r + 1, we obtain that
(V(H)\A) is non hallian. Hence h(H) < N — n, + r. Now, suppose r = I.
Putting C = V(G,)u ... U ¥(G,_,) U D where D = V(G,) is such that {(V(G,)\ D)
is not a connected graph and |D| = r, we obtain that (¥(H)\ C) is not connected.
Hence k(H) < N — n, + r.

Consequently

(1) min {h(H), «(H)} = N — ng+r.

Let X € #,. By Lemma 1, X € #, for an arbitrary i, 1 £i < s and according
to Proposition 5, |I'¢(X)| 2 |X | + r.

This implies |Iy(X)| =N —n, + |Fe(X)| 2N —n, + |X| +r 2 |X] + N -
— n, + r. Applying Proposmon 6 we obtain that H is (N=n,+r)- halhan and
(N = n, + r)-connected. This implies

)] min {h(H), k(H)} 2 N — n, + r.

‘By (1) and (2) the theorem is proved. O
Theorem 2 and Proposition 7 imply

Theorem 3. Let H = G, + ... + G, where h(G) =k, x(G,) = [ for any i,
1 <i<s. Denote r=min{k,I}. If 6(H) =N —n,+r+ 1, then bind(H) =

= (N = D/(N = &(H)).
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Corollary 3.1.If G;,1 < i £ sisan 1-regular graph on n; vertices, then bind(H) =
= (N = 1)/(n, — 1).

Proof. Obviously that h(G;) = 0 and ¥(G;) 2 0, so r = min {h(G,), ¥(G,)} = 0.
It is easy to observe that 5(H) — ng + 1, hence applying Theorem 3, we have
bmd(H) - 1)/(ns — 1) m|

Corollary 3.2. If G;, 1 £ i < s is an elementary circuit C,, where n; is odd,
2 3, then bind(H) = (H — 1)/(n, — 2).

Proof. If n; is odd, then h(C,) =1 and «(C,,) = 2. Observing that 6(H) =
= N — n, + 2, we conclude from Theorem 3 that bind(H) = (N — 1)/(n, — 2). O

Similarly we show the following:

Corollary 3.3. If G; is an elementary path P,, n; is even, n; 22, 1 i <'s,
then bind(H) = (N — 1)/(n, — 1).

Theorem 4. Let H = Gy + ... + G,. If n, = n, G, is hallian with h(G;) = h;
and x(G;) = k; for each i, 1 £i<s, then min{h(H),x(H)} =n(s — 1) +r,
where r = min {hy, ..., hy, ky, ..., k}. .

Proof. Supposer = h;forsome i,1 < i < s.Putting 4 = V(G,)u ... U V(G;_,)u
U V(Gis1)V...0 V(G)U B where B < V(G)), |B| =r + 1 and <V(G)\B) is
non hallian, we get that (V(H) \ A) is a non hallian graph. Hence h(H) < n(s — 1) +
+ r. Now suppose r = k; for some i, 1 < i <s. Putting C =V(G,)u...

WU V(G- )UV(Giry) V... UV(G) U D where D = V(G;),|D| = rand <V(G;)\ D)
is not connected we have that (¥(H) \ C) is not connected. Hence x(H) < n(s —1) +
+ r. Thus

(3) min {h(H), k(H)} S n(s — 1) + r.

Let X e 5. By Lemma 1, X € ¥, for some 1 1 = i £ 5. Proposition 5 implies

|F6(X)| = |X| + min {h;, k;}. Since [Ty(X)| = n(s — 1) + |Fg(X)|, thus |Fp(X)| 2

2 n(s — 1) + |X| + min {h;, k;} 2 |X| + n(s — 1) + r. According to Proposition

6 we obtain that H is [n(s — 1) + r]-hallian an [n(s — 1) + r]-connected. This

implies

4 min {h(H), k(H)} 2 n(s — 1) + r.

The inequalities (3) and (4) show the theorem. O
Using Theorem 4 and Proposition 7, we get the following theorem.

Theorem 5. Let H = Gy + ... + G, Foranyi,1 £ i <5, let n; = n, h(G)) = h,,
k(Gi) = ki. If 6(H)=n(s — 1)+ r + 1, then bind(H) = (ns — 1)/(n — r — 1),
where r = min {hy, ..., hy, ky, ..., k}.
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Corollary 5.1. Let H =G, + ... + G,. If G;=P,, neven,n 24 for 1 £i <
St<sand G;=C,fort+ 1= i<s, then bind(H) = (ns — 1)/(n — 1).

Proof. Since n is even, thus h(P,) = 0, h(C,) = 0, k(P,) = 1, ¥(C,) = 2. Applying
Theorem 5 with §(H) = n(s — 1) + 1, and r = 0 we show the corollary. . 0O

Now we shall calculate the binding number of join graphs for which the above
method cannot be used. Namely, let H = G; + ... + G, and G; = C,, where n;
is even, n; = 4 for any i, 1 £ i < s. Since h(G;) = 0 and x(G;) = 2, we have
min {h(H), x(H)} = N — n,, by Theorem 2. Note, that 6(H) = N — n, + 2. Hence
bind(H) = (N — 2)/(n, — 2) (see [1]).

Theorem6. If H = Gy + ... + G,, where G; = C,,, n; is even, n; 2 4 for each i,
1=Zi<s, then
2s—1 if n,=4 foreachi, 1 <i<s

bind(H ) = _
. N otherwise.

ng— 2

Proof. Since G; is a O-hallian graph, thus |I'¢(X)| 2 |X| for any X e #..
Considering all sets X € #,, we distinguish the following possibilities:

a) X is the largest stable set of vertices of G;, thus |I'¢(X)| = |X|, |X| = n[2,

b) X is any other set of #¢,, thus |I'c(X)| 2 |X| + 1.
Now we estimate |I'y(X)| for X € #,ie., X € Fg foranyi,1 £ i < s. In case a),

IFH(X)|=N"‘ni+%=N—5"1§N‘%"w

Hence

|FH(X)| gN_%ns ZN—%ns.
24 x|~ in,

It is evident that the equality holds for the largest stable set of G,.
In case b), |I(X)| = N — n; + |X| + 1 Z N — n, + |X| + 1. Hence

[rs(X)

ll N—n,+lgl+N—n,+121+N—ns+1___N—1
X —_— —_— =2

>1+ .
x| - n;—2 ng— 2 ng — 2

Moreover, putting X = V(G,) — I'g,(v) for some v € V(G,), we obtain the equality.
The definition of the binding number implies that

bind(H) = min {M ’ N_—_l} .

ne ns’-z

Suppose that
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) AN —4n) N -1

ng T ng—2

N(Z - 1);1— L.
ng ng—2 ng— 2

Since N = 4 + ng, thus

©) N(n%_n,1—2)g(4+n')(-r;z;—nsl—Z)'

We easily verify that (4 + n,) (2/n, — 1/(n, — 2)) 2 1 — 1/(n, — 2) is equivalent
to n, 2 6, and by (6) the inequality (5) is true for n, = 6. If n, = 4, then G; = C,
for any i, 1 £ i < 5. So, (5) can also be written as 2s — 1 = 2s — 4, but this is
false which completes the proof. d

.or equivalently

Now we shall investigate the cases when the graphs G; are non-hallian and
E(G,-) =Qforeachi,1 <i <s. Infact, H= G, + ... + G,is a complete s-partite
graph.

Theorem 7. Let be a complete s-partite graph, then

N — ng

bind(H) =
nS
Proof. Let X € # . This implies by Lemma 1 that X € # 5, forsome i,1 < i <s.
We observe that I'c(X) = 0, hence [I'y(X)| =N —n; 2N — n,
Since |X| < n,, we have |Iy(X)|/|X]| =(N —n)/|X|2(N —n )[ Moreover
putting X = V(G) we have I'y(X)/|X| = (N — n,)/n, and the theorem is proved. [J

Now.we shall consider the case when G; is the graph P,,n;isodd, n; = 3forany i,
15iZs.

Theorem 8. Let H =G, + ... + G, and G;=P,, n; odd, n; 23,1 <i<s.

ny

. Then
N -n—1 if ng=3 or ng=5 and N =28
n, + 1
bind(H) =
N .
otherwise.
n,— 1

Proof. Let X € #y, hence X € Fg¢, for any i, 1 < i < s, we have the following
‘possibilities to consider: '
1° X is the largest stable set of vertices of G;. Thus |X| = 4(n; + 1), [Fe(X)| =
= i(n; — 1).
IFH(X)]=N—n,+'}(n,-—1)=2N—n,-—1>2N—n,—1

x| H(n; + 1) m+1 g+ 1
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The equality holds for the largest stable set of G,.
2° For any other set X € #¢,, |[¢(X)| 2 |X| holds. Thus
ITu(X)] _ N —ni+ |[F(X)| N =1 N-1_N-1

+12 2
|X| |X| |X| -1 n—1

and the equality holds if X < V(G,) and X = V(G,) — I'¢,(v) where v is a vertex
of degree 1 in G,.
From 1° and 2° we have

bind(H) = min J2N =% =1 N =11
ng + 1 ng— 1
Suppose that
(7)

2N—n,-—-12N—1
ng+1  n,—1

2 — n,— 2. Since N2n,+ 3, then N(n, —3) >

= (ny + 3)(n, — 3). The inequality n> — 9 = n? — n, — 2 is true for n, > 7.

Now we consider (7) for n, = 3 and n, = 5. We obtain that (7) is false for n, = 3
orn, = 5and N = 8 and (7) s true for n, = 5,N = 9.

This completes the proof. O

or simply N(n, -3) 2 n?

‘III. THE JOIN OF GRAPHS AND THE BINDING MINIMALITY

. In this section we will prove that some graphs which are join of graphs are binding:
minimal while some are not. In all proofs we use the following lemma which is an.
immediate consequence of the definition of the binding number.

Lemma 9. Let G be a graph and bind(G) = c. If e € E(G), then for any'“set:
XeFg-.suchthat X n e = O we have

EG—e(X) Z c
x|

Theorem 10. Let H = G; + ... + G, where G;, 1
H is binding minimal if and only if n; = n, for eac

< i < s are 1-regular graphs..
hi,1 Sigs. ‘
Proof. By Corollary 3.1, bind(H) = (N —'l)l(n, - 1) Assume there exists.
a graph G;, 1 £ i < s such that n; % n,. This implies n; < n, — 2. Let e€ E(G))
and e = {x, y}. According to Lemma 9 we have to consider all sets X &€ #_, such
that X ne =+ 0. By Lemma 1 Xe #5,_,, X ne + 0 and we distinguish two pos-
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sibilities:

a) xeX and yeX, |X| < n, or

b) either xe X or ye X, hence |X| < n; — 1.
In case a) we obtain

Irﬂ-e(x)l _ N-—n; + |F64-¢(X)I _N=-m+ |ch(X)| - 2
|X| x| |X|
|X| ni - 2 1

In case b) we have
|FH-C(X)| — N-n+ IFGI" (X)I = N—n+ |FG‘(X)| -1 >
x| |X] |X|
N—ni+|XJ—1_>_1+N—ni—l=N—2 N

-2 .
= ] le = no— 1 n— 1 = . > blnd(H).

Finally, H is not binding minimal.
Conversely, assume that n; = n for each i, 1 £ i < s. In this case bind(H) =

= (ns — 1)/(n - 1).

Let e € E(G,) for an arbitrary i, 1 < i < s. Putting X = V(G;) we obtain
|Tu-dX)| _ ns —2 -1 bind(H).
|X| n n-—1

Now let ee E(H), e = {x,y} and xe V(G,), ye V(G)), i #j. If we put X =
= (V(G) - {}) U 1), then
[Tu-dX)| _ns—1
Xl on
Thus bind(H — e) < bind(H) for each edge e € E(H), i.e., H is binding minimal and
this completes the proof. d

< bind(H).

Theorem 11. Let H be an s-partite graph, H = Gy + ... + G, where E(G;) = 0,
1 £i £s. His binding minimal lf and only

if s=2,then H=K, y_,,

if s =3, then n; = n, and n, <s foreachi, 2 <i < n,

Proof. By Theorem 7, bind(H) = (N — n,)[n,. Suppose that s =2 and H #
%+ K, y-1- It is not difficult to see that H is not binding minimal. Further, suppose
that s = 3 and either n; + n, for somei,2 < i <sorn;=n,foreachi,2 i <s
and n, = s.

First, let n; < n,, 2 <i<s and e = {x, y}, xe V(G,), ye V(G)). Con51dermg
all sets X € F4_, such that X n e + @ we have the following possibilities.
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LLIfX € V(Gy) or X = V(G)) and |X| 2 2, then I'y_/(X) = I'y(X), i.e.,
\Fu-oX)|/|X| 2 bind(H).

2. If X = {x}, then |Fy_(X)|/|X| =N —n, —1 2N —n,2(N - n)n, =
= bind(H). If X = {y}, then |I'y_/(X)|/|X| = N — n; — 1 2 bind(H).

3. If X = {x, y}, then |[y_/(X)|/|X| = (N — 2)/2 2 bind(H).

4.1f X=X 0{x}, X cV(G), 2= |X'| £n or X=X"0U{y}, X' V(Gy),
2 2 |X'| £ ny, then

|Fu-dX)| _N—-1_N-1 SN-1 N-1 N-n

|x]| |X| “n 41 m+1 n n,

In these cases H is not binding minimal.

Now let 3<s < n, and n; = n, for each i, 2< i <s. Let e ={x,y} and xe

€ V(Gy), ye V(G)) where i # j, i = 2, j 2 2. Taking all sets X € #_, such that

X n e £ 0, we have the following possibilities to consider.

a) If X < V(G,) where k =i or k = j and |X| 2 2, then I'y_/(X) = I'y(X), ie.,
ITa- O] 2 bind(a)

b) If X = V(G,) where k =i or k =j and |X| =1, then |Fz_/(X)|/|X| =N —
— n,— 1. Since N'2 2n, + 1, hence N — n, + 1 = (N — n,)[n, = bind(H).

¢) If X = X' U {x} or X = X’ U {y} where |X| 2 2and X’ < V(G;) or X’ = V(G)),
respectively, then |Iy_(X)|/|X] = (N — D/|X| = (N — 1)/(n, + 1).

Suppose that

(®)

or equivalently N[n, < n,. It is clear that N/n, < s. From this and the assumption

N—I_Z_N—ns
n,+1 n,

that s < n, we have N/n, < s < n,. This implies that (8) is true.

Finally, in every case there exists e € E(H) such that |['y_/(X)|/|X| = bind(H),
i.e., H is not binding minimal. )

Conversely, let s = 2 and H = K, y-. It is obvious that H is binding minimal.

Now, let s =23, H=G; + ... + G,, and for each i, 2 < i < s let n; = n and
n < s.In this case bind(H) = (N — n)[n.Itis obvious that n; £ nand we distinguish
two cases n; < 'nor n, = n. In the first case we have to calculate bind(H — e) where
e={x,y}, xeV(G,), yeV(G), 25i<s or e={x,y}, xeV(G) and y'e:
e V(G)),i *j,2 <1i,j <s. Putting X = V(G))u{x} or X = V(G;) u{y'}, respec~
tively, we obtain |y (X)|/|X| = (N = 1)/(n + 1).

Suppose that

©)

or simply n> < N.
- By the assumption n < s, we obtain n? < ns. It is clear that ns < N. Thusn? < N
is true and (9) is true, too. If n, = n, = n, then for any edge e € E(H), e = {x, y}.

N=1_ bina(e) = N1
n+1 n

270



xeV(G;), yeV(G;), i +j, 1 =i, j<s, we can prove that |Ix_/(X)|/X) =
= (N = 1)/(n + 1) < bind(H). Finally for each edge of H there exists X € F_,
such that |[y_/(X)|/|X| < bind(H), i.c., H is binding minimal. The theorem is
proved. a

Theorem 12. Let H = G, + ... + G,,s = 2 and G; = C,, where n; is odd, n; = 3
Jor any i, 1 < i < s. H is binding minimal if and only if n; = n, for each i, 1 <
<iS<s.

Proof. By Corollary 3.2, bind(H) = (N — 1)/(n, — 2). Suppose that there exists.
a graph G;, 1 < i < s such that n; < n,. This implies n; £ n, — 2. We choose an
edge {x, y} € E(G;). According to Lemma 9 we have to consider only the sets
X e Fy_.suchthat X n e + 0. We observe that G; — e is a path on-an odd number
of vertices. By Lemma 1 it suffices to consider all X € #,_..

Two possibilities can occur:
a) X is the largest stable set of G; — e. Then |X| = §(n; + 1), and |[g,-(X)| =

=i(n; - 1).
b) For any other set X € #,_, we have |I'¢,_ (X)| = |X]|.
In a) we have
[Pa-oX)| _N-ni+3m—-1) _N-in—1}
x| i(ni + 1) ni+3

We have to consider the following inequality

(10) N—in—-3 N-1
%ni'*'% ns—2

Using the assumption n; < n, — 2 we obtain (N — in; — 4) (n, — 2) =
2 (N —4n; — 14)n; and because the inequality (N — in; — ) nm 2 (N —1).
.(4n; + 1) is equivalent to N = n; + 1, thus (10) is true, too. In case b) we have

er—e(X)|=eri—e(X)l+N—nigl+N;nig1+N'-ni=
|X]| x| 24 m—1
=N_1>N"1=bind(H).
np—1 n,—2

Consequently, H is not binding minimal.

Conversely, suppose n; = n, = n for each i, 1 £ i < s. In this case bind(H) =
=(ns — 1)/(n — 2). If e€ E(G,), 1 £ i <5, e = {x, y}, then putting X = V(G,) —
— I'g,-x) we obtain

IFH_e@]=n(s—l)+n—l=ns—l<ns—1=bind(H)
x| n—1 n—1 n-2 '
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If ee E(H), e = {x, y}, xe V(G;) and y e ¥(G,), i * j, then putting X = (V(G,) —
— {x})u {y} we obtain

Iy (X ns — 1 .
' "le I — < bind(H).

Hence H is binding minimal and the theorem is proved. O

Theorem lS.LétH =Gy + ...+ G,s =2andforanyi,1 i <s.LetG; = C,,
where n; = 4, n; even. The graph H is binding minimal if and only if n; = n,
foranyi,1 Si=<s.

Proof. According to Theorem 6, bind(H) = (N — 1)/(n, — 2). Suppose that
there exists a graph G, for some 1 < i < s such that n; % n,ie., n; < n, — 2. Let
eeE(G) Notice that G; — e is a path P,,, n; even, hence for any set X € %,
|Tg,- -dX)| 2 |X| (see Proposition 3).

We have to consider all sets X € #_, such that X ne =+ 0. It is clear that it
suffices to consider all sets X € F¢,_,.

Hence
|Tu-dX)| _ N = n; + |I,-X)| SN-m
]| X ]
Since |X| < n; — 1 we have
IFudX)| N1 N1 bind(H) .
x| - 17 n, — 2

Thus H is not binding minimal.
Conversely, let n; = n for each i, 1 £ i < s. By Theorem 6 we have

12s—1 if n=4
n-2

if n=6.

Let {x, y} = e€ E(G,) for some i, 1 < i <s. Observe that G; — e = P,. Putting
X = V(G)) — I'g(x), we obtain

IFHI;TX)l A . ! 25— 1 =bind(H) if n=4

and L
|- o(X)| _ns—1 M- 1
[X] n—1 n-=2

Let e = {x, y} where x€ V(G), ye ¥(G,), i +J. Then X = (V(G;)) - {x})u [}

=bind(H) if n=6.
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satisfies

[Pu-oX)| _4s =1 50 bind(H) if n =4
X 4
and
FudX)| _ns=1 ms=1_yamy it nzs.
|X| n n—2
This implies that H is binding minimal and the theorem is proved. O

Theorem 14. Let H = G + ... + G,,s = 2 and forany i,1 £i < slet G, = P,,
where n; is even, n; = 2. The graph H is binding minimal if and only if n; = 2
foranyi,1 <i <s,i.e., Histhe complete graph on 2s vertices.

Proof. If H is the complete graph, then H is binding minimal. Conversely, by
Corollary 3.3, bind(H) = (N — 1)/(n, — 1). Suppose there exists a graph G; such
that n; > 2, so n, = 4.

Let x4, X3, ..., X, be vertices of G, and {x;, x;,,} € E(G,) forany i,1 £ i £ 2k —
— 1.If e = {x,, x5}, then G, — e is a hallian graph, hence |I'¢,_ (X)| = |X| for any
X e %, .. Moreover |X| < n, — 1 (Proposition 8) and we obtain

|Ca-dX)| _ N = n, + |[g,-(X)] sN=-n_  N-1_ bind(H) .
x| |X| x| n, = 1
It is clear that for any other set X € #y_, we have I'y_(X)|/|X| = bind(H) (see
Lemma 9).
Thus H is not binding minimal and the proof is complete. Od

Theorem 15. Let H = Gy + ... + Gy, s = 2 where G; = P,,, n; is odd, n; = 3,
1 £i £ 5. Then H is not binding minimal.

Proof. By Theorem 8,

N -n—1 if ng=3 or ny=5 and N =38
ng+ 1
bind(H) =
N - otherwise .
ng—1

Let n, = 3. Then bind(H) = 3s — 2. Further, let ee E(H), e = {x, y}, x € V(G)),
Y€ V(Gj), i #J, and deggx = degg,y = 2. Considering all X € #_, such that
X ne+ 0 we have the following possibilties: If X = {x} (or X = {y}), then
[Ta-dX)|/|X| = 3s = 2 > 35 — 2 = bind(H). If X = {x, }, then |Tx_(X)|/|X| =
=35 — 1 > 35 — 2 = bind(H). Thus H is not binding minimal.
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Let n,=5and N = 8,ie.,n, =3,n, =5and s = 2. If ee E(G,), then for all
X € Fy-.such that X n e + 0 we obtain

|F—dX)] > bind(H) .
x| 3
Let n, > 5and N 2 9. Let e = {x, y} € E(H) where x€ V(G)), ye V(G,),1 S i < s
and deggx = degg,y = 2. We consider all Xe #F,_, where X ne + 0, and we
have the following possibilities:
a) If X = {y}, then |Fy_[(X)| =N — n, + 1 = (N — 1)/(n, — 1) = bind(H).
If X = {x}, then |Fy_(X)| =N — n; + 1 > bind(H).
b) If X = {x, y}, then |Iy_(X)|/X = 4(N - 2).
Now suppose that

(11

N—ZgN—l

2 ng— 1

= bind(H).

The inequality (11) is equivalent to N(n, — 3) = 2n, — 4. By the assumption N = 9,
which yields N(n, — 3) 2 9(n, — 3). Solving the inequality 9(n, — 3) = 2n, — 4,
we obtain it is true for n, = 5. Hence (11) is also true for ng = 5,and N = 9.
gIf X=X 0u{x}, X cV(G,), 25 |X|sn,—2and y¢Ig(X) or
X=X 0u{y}, X cV(G), 2= |X|<n —2and x¢g(X),

then estimating |I'y—(X)|/|X| we obtain (N — 1)/(n, — 1) or (N — 1)[(n; — 1),

respectively. Clearly |I'y-(X)|/|X| = bind(H).

Thus H is not binding minimal. O

Theorem 16. If H = G, + ... + Gy and G; =P, 1 S i <t <s and n is even,
nz4,and G;=C, fort + 1 < i <s, then H is not binding minimal.

We omitt the proof of this theorem. Let us only notice that for an edge e € E(P,)
such that P, — e is hallian, it is not difficult to show that |I'y_(X)|/|X| = bind(H)
for any set X € F ..
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Souhrn

SPOJENI GRAFU A VAZEBNA MINIMALITA
MARIA KWASNIK, DANUTA MICHALAK
Autorky vySetfuji Zykovovu sumu grafi a vazebnou minimalitu souvisejici s vazebnym
Cislem zavedenym Woodallem. S pouZitim n&kterych vlastnosti Hallovych grafu vypo&itavaji

toto &islo pro Zykovovu sumu s grafa dobfe zndmych ttid (s = 2). Dale formulujici podminky,
za kterych Zykovova suma je vazebn& minimélni.

Pesome

COEANHEHUE I'PA®OB U ,, MUHUMAJIBHOCTBH* OTHOCPITEIIBHO
CBSI3BIBAIOIEI'O YUCIIA

MARIA KWASNIK, DANUTA MICHALAK
B craTthe u3yyarorca coeaunenue rpados, BBeIleHHOE 3bIKOBBIM, M CBOACTBO ,,6bITh MHHMMaJlb-
HBIM l"pa(bOM OTHOCHTCJIbHO CBA3BIBAIOILICTO 'mcna“, BBC}I&HHOI‘O Bylla]IHOM. T0 YHCIO0 onpeaens-

€TCA NPH NOMOIIH CBOKCTB rpados Xomna ans coeauHeHus s (s = 2) rpadoB pa3sHBIX H3BECTHBIX
BHJIOB M NPUBOJATCS YCIOBHUSA, IPH KOTOPHIX COEIMHEHHE MUHMMAJIBLHO.
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