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Summary. Systems of linear differential equations with measures as coefficients are studied,
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sets for one-dimensional control systems is given.
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1. INTRODUCTION

In this paper we study the system of linear differential equations
(1) x=A(f)x+f(t), xeR", te(a,b), —0=<a<bsg®

where the coefficients of the matrix A(f) are measures and the term f(f) may be
a locally integrable function or a measure. The solution of the equation (1) will be’
a function of locally bounded variation in (a, b).

The study of such equations was initiated by J. Kurzweil who proved in 1958 the
existence and unicity of solutions of a linear integral equation with Perron-Stieltjes
integral ([4]), and next in 1959 the existence and unicity of solutions of the homo-
geneous system

@ x = A(t) x

where A(t) is a measure ([5]). Next, in H. Hildebrand’s [3]-and S. Stallard’s [10]
papers the equation (2) was studied in the class of functions of locally bounded
variation as solutions. Recently, such a generalization of solutions of the system (1)
may be found in the papers and books of §. Schwabik, M. Tvrdy, O. Vejvoda [9],
S. Schwabik [8], S. G. Pandit, S. G. Deo [7], in the papers of J. Ligeza who has used
the sequential theory of distributions, and in the papers by U. Sztaba and the author
who apply the Lebesgue-Stieltjes integral approach. The case of A(t) being an in-
tegrable function and f(t) a measure was studied by A. Halanay and D. Wexler [2].
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2. BASIC DEFINITIONS AND NOTATION

Let (a, b), —o0 £ a < b £ o, be an open interval. Denote by
BV, (a, b) — the space of all right-continuous functions of locally bounded variation

in (a, b),
Lf,(a, b) — the space of all locally integrable with the p-th power functions in (a, b),
C%a, b) — the space of all continuous functions in (a, b).

Let M be the o-field of subsets C < (a, b) of the form

C=

C=U(cd], NS oo,

1

and 4 the o-field of Borel subsets of (a, b).
Every function g(+) € BV,,(a, b) determines a measure y, on IM:

#o((c, d]) := g(d) — g(c)

and if (¢;, d;] n (c;,d;] = O fori * j,i,jeN, then
l‘g(Li}(Cn d]) = ; Lg(d:) — g(c)] -

In particular, p,({e}) := g(e) — g(e—).

Definition 1. Lebesgue’s extension of the measure y, to a o-field #* which con-
tains # will be called the Lebesgue-Stieltjes measure (L — S measure) generated
by the function g. It will be denoted by g’ or by dg and will be called the derivative
of the function g. Conversely, the function g() will be called the primitive function
for the measure dg.

Ofort <0 .

Examples. 1. If H(t) = {1 ] S0 is the Heaviside function then the cor-
ort =

responding measure dH(t) = §(7) is the Dirac measure:

5(t)(B)=1 iff 0eB and &(r)(B) =0 otherwise .

2. If g(2) is absolutely continuous with respect to the Lebesgue measure then g'(1)
is the measure which coincides with the usual derivative of g(f) (for a.e. t € (a, b)):

9'(B) = [pg'(t)dt = [5dg(t).

3. If g(x) = x then g'(x) is the usual Lebesgue measure dx. ®

Definition 1 implies that this differentiation is a linear operation, while the right-
continuity yields that the difference between any two primitives for the same measure
dg is a constant function.

If we have a measure p defined on £ then the function
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g(x) := ((a, x])

is a primitive for the measure gu.

If a function f(t) is g'(+)-measurable (i.e., f is measurable with respect to the o-field
%* such that the triple ((a, b), B*, g’) is a measure space) then we can define the
L — S-integral of f(-) with respect to the measure dg:

(3 [er®)dg(t) := [enf()dg(t), a<c<d<b.

(For f(f) = 1 we have [ 4 1dg(t) = g'((c, d]).)

In particular
) S S(6)dg(t) := 1(e) g'({e}) -
For ¢ € (a, b) the function

k(x) := [Zf(r) dg(r)

is of locally bounded variation. More precisely, k(+) is continuous at all points of
continuity of g(+) and right-continuous at the remaining points. Taking f(f) = 1
we obtain one of the primitives for the measure dg(*).

If one of the functions f, g is continuous then the integral (3) can be understood
in the Riemann-Stieltjes sense.

If f,g € BV,,((a, b) and (c,d] < (a, b) then — as follows from the Lebesgue
partition of f — f(+) is L — S-integrable with respect to the measure g'(+) in (¢, d].

Now we give the definition of the product of a function f(-)eBV,oc(a, b) and
a measure g'(*).

Definition 2. Let f, g € BV (a, b). The product fg' is a measure g’ such that
q'(B) = [pf(s)dg(s) forall BeZ.
6t —s)if r<s
0 ifr>s
2. If f(+) € BV,o(a, b) then f(t) 8(t — s) = f(s) 5(t — s). The same is true for
f(:)eC%a,b). =
This product satisfies the jointness principle in the sense that the following gener-

alization of the Radon-Nikodym theorem holds: If f, g, h € BV, (a, b) and ¢’ := fg’
then

Examples. 1. H(t — r)d(t — s) = {

5 h(s) f(s)dg(s) = (5 h(s) dg(s) forevery Be R (see[l1]).

Iff,ge BV,oc(a, b) then the measures g’ and fg’ have the same atomic points.
Now we define when two measures are equal.

Definition 3. Let f, g € BV, (a, b). Two measures are equal in the interval
(c,d] = (a, b) iff the difference f’ — g’ is the zero-measure, ie. if (f' —g’).
-((2, B]) = Ofor any (a, f] < (c, d]. This equality shows that the difference f(*) —
— g() is a constant function in (c, d].
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In the end we define when a function x(+) € BV ,(a, b) may be called a solution
to the equation (1)°in which the derivative, product and equality are understood
as in Definitions 1, 2, 3, respectively.

Definition 4. A function x(*) € BV,oe(a, b) is a solution to the equation (1) iff the
L — S-measures generated by the left- and right-hand sides of (1) coincide.
Applying Definitions 1—3 we obtain an equivalent definition of the solution.

Definition 4'. A function x(+) € BV,,,(a, b) is a solution to the equation (1) with
the initial condition

(4) - X(to) = xo, to€(a,b)
iff x(+) is a solution to the integral equation
®) X(1) = xo + Jio [d(s)] x(s) + [i, dF(s), 1€ (to, b)

where &' = A and ¥’ = f.

Iff the measures A(), f(+) are absolutely continuous with respect to the Lebesgue
measure then the above definitions of solution coincide with the Carathéodory
concept of solution.

3. LINEAR DIFFERENTIAL EQUATIONS WITH MEASURES AS COEFFICIENTS

Our starting point is the existence of solution of the Cauchy problem (2), (4).
In the remaining part of the paper we assume that the following hypothesis H
is fulfilled:

(H,) det(E~C)#0 for k=12,....

Theorem 1. If H, holds then there exists a solution x(-) € BV,(a, b) of the Cauchy
problem (2), (4).

This theorem can be proved as in [1] by using the successive approximation
method (in [1] the integral in (5) is understood in the Riemann-Stieltjes sense but
defined in a special way), or as in [11] by the Euler method.

Now we will construct the fundamental matrix for the equation (2) and obtain
the Cauchy formula for the problem (2), (4). To do this, let us decompose the measure
A(+) into its continuous and atomic parts, which follows from the Lebesgue decom-
position of an arbitrary primitive for this measure. So, the measure A(f) may be
written in the form

(6) Alt) = A1) + kgwlcké(t — 1), te(ab)

where A(+) = '(*), (+)e BV,,(a,b)n C%a,b), and C, are some matrices.
Assume that the following Hypothesis H, is fulfilled:
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(Ho) The points {,} are ordered: a <ty £t;... <t, <...<b, and the unique
accumulation point of the sequence {t,} may be b
By the product C &(s) we understand the matrix whose all elements are equal
to C;jé(s), L <i,j<n
According to (6) the equation (2) may be written as

(7) x=A)x + Y Cex(1)o(t — ).
k=1

The auxiliary equation

(8) x=A(t)x

with the initial condition (4) has a unique solution x(+) which is a continuous function
of locally bounded variation in (a, b) and may be written in the usual Cauchy form

x(f) = &(t) x,
where &(t) € BV, (a, b) n C%a, b) is the fundamental matrix of (8).

Returning to the equation (2) we see that in every interval (t,, t,4,) it reduces to
the equation (8). Therefore we are looking for the solution of (2) in the form

(9) x(t) = @(t) @—l(tk) Sk 3 te [’k’ tk+ 1) s k = 0, 1, oo

where s, = x(tk). Obviously, s, = x,. The sequence {sk} must be constructed in
such a way that the piecewise continuous function x(t) is a solution to the equation
(2) in (t,, b). Differentiating (9) we obtain

(10) & = A()x + ¥ [s(6+) = x(=)] 81 = 1) =
=men§m-@@mﬂm4%ﬂp@—@=

=A®x+éﬁW—q)

where g, := s, — x(t,—) is the jump of the solution x(-) at the instant t,. Comparing
(10) with the right-hand side of (7) we conclude that x(+) is a solution of (2) iff

(Il) S — @(tk) é—l(tk_l) Sk—l = Cksk N k = 1, 2, cee o

Therefore the sequence {s,} satisfies the following reccurence equation of the first
order:

(12) (E - Ck) S = @(tk) @_l(tk_l) Sk—1 k = 1, 2, ceey 8o = Xg

(E denotes the unit matrix).

Consequently, knowing s, (and thus also x(f) in the interval (te-1> 1)) we can
compute s, from (12) in a unique manner by the hypothesis H,, then we can extend
this solution to the next interval (¢, t;+,), and so on.

Thus we obtain
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Theorem 2. Under the hypothesis H, the problem (2), (4) has a unique solution
x(*) € BV,oe(a, b). This solution may be written in the form

(13) x(t) = &(t) D7 *(to) xo +k_z< B(t) D7 (1) e H(t — 1)

If the hypothesis H, is not fulfilled then the problem (2), (4) may have more than
one solution as is shown in the following

Example, The equation
x=060t)x, x(-=1)=0, xeR'

has a continuum of solutions: every function x(t) = H(t) ¢, ¢ an arbitrary number
is a solution of this equation. N
The formula (12) under the hypothesis H; may be rewritten as

(14) se=(E = C) ' d(t) D '(tiey) si-y = (E = C) "1 x(t,—) .

By (14) we have that if x, = 0 then s, = 0 for all ke N, thus the problem (2), (4)
with x, = 0 has only the null-solution. Hence the problem (2), (4) has a unique solu-
tion for an arbitrary x,.

Now we deduce some interrelations between the sequences {s,} and {¢,}. If we
compare the last term of (10) with (7) we obtain the equality

& = Cox(ty) = Cusy = C[B(t) B (ti-) Se-t + 8], k=12, ....
Therefore, if the hypothesis H, is fulfilled then ‘
(15) & =(E = C)~* Cu 3(t) &~ (ti-1) Su-y = (E — C)™' Cux(ty—)..
Under an additional hypothesis
(H,) detC, +0 for k=1,2,...
we prove that the sequence {ak} satisfies the reccurence equation
(16) &4y = (E - C,‘H)"’ Civy B(tis1) B71(0) Ciler, k=1,2,...

where & = (E — C,)™" C, &(t;) ~'(to) X, is calculated from (15). Indeed, from
(15) we have

(17) x(tk—) =C (E-C)e,s
and (14) implies the equality
(18) Cht1 = Spyq — (E - Ck+l) Sk+1 =

= Ck+l{8k+1 + ‘5(‘“1) ‘f'-l(tk) [X(tk_) + ak]} :
Multiplying (18) by Cy}'y we obtain
(Ck—+11 - E) Ex+1 = ‘ﬁ(tk+l) @—l(tk) [x(tk_) + 8"] ’
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)
ter = (Cit — E)™' Bty 1) D71(0) [x(6—) + &] -
If we substitute (17) into the last equality then after simple calculations we obtain
(16). =
From (14) and (16) we deduce by induction that all elements of the sequences {s,}
and {ak} depend only on x,, and these dependences are linear and continuous:

S = Tyxo, & = QuXo

where T, Q, are some matrices. Therefore, substituting these relations into (13) and
eliminating x, outside the brackets we obtain the usual Cauchy form of the solution
to the equation (2):

x(t) = ®(t) x,, te(to, b)

where the matrix ¢(t), normed at t,, has all elements belonging to BV,,.(a, b). This
matrix has the following properties (analogous to those occurring in the classical
case; the proofs are identical and follow from the construction):

P.1 o(t,) = E;
P.2 §;<p(z) = A1) o();

P.3 o(t,) o(t,) = o(t; + 1,);
P.4 &(t) is non-singular for all t and ®~!(+) € BV,,((a, b).

The last property is not quite obvious, but can be proved by using (14) and the
hypothesis H,. We have

sc=x(t=) + e =(E— C) ' x(t,—) for k=1,2,...,
and consequently, H, implies
Sk 4: 0 lﬂ‘ x(tk'_) 4: 0

which follows by induction from P. 1. Thus df'(t) % 0 on every interval t € [#, tes1)s
and so on. Therefore the inverse matrix @~ *(t) exists for every t € (a, b). The second
part of P. 4 follows from the construction of the inverse matrix and from the pro-
perties of functions of bounded variation. =

The above properties enable us to solve the equation (1) by applying the variation-
of-constants method. We are looking for the solution to (1) in the form

(19) x(t) = (1) z(t)

where z(+) € BV ,(a, b), so x(+) € BV,,(a, b) as well. Substituting (19) into (1) we

obtain
x = (1) z(1) + o(1) 2(t) = A() (1) z(r) + o(t) 2(1) =
= A(t) x(t) + o(t) (1) = A(t) x(t) + f(2) .
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.Then (19) is a solution to (1) iff
()= '(0)f(1).
Therefore z(+) must be a primitive function for the measure &~ (t) f(1):
z(t)=c+ [;, @ (s)f(s)ds if feLj(a,h)
or
2ty =c+ f;, @7 (s)dF(s) if f=F' isa measure.

We conclude that the solution to the problem (1), (4) may be written by the following
Cauchy formula:

x(1) = &(t) xo + (t) Ji, @7 '(s) f(s)ds, feLi(a,b)
x(f) = ®(t) xo + ®(t) [i, @~ '(s)dF(s), f=F  isa measure.

4. ATTAINABLE SETS AND THE TIME-OPTIMAL CONTROL PROBLEM

In this part we introduce the concept of the attainable set for the control system
(20) x=A)x + f(t,u), x(to) =%, x€R", ueR™, tye(a,b)
(u is called the control). The time-optimal control problem will be also studied. The
following assumptions will be made:
Z.1 All elements of the matrix A(*) are measures fulfilling the hypotheses Hy, H;.
Z.2 f(t, +) is continuous and f(°, x) is a measurable function.

Z. 3 The set of admissible controls is
# = {u(+): (a, b) 3t - U(t); u(+) is measurable}

where for every te(a, b), U(f) is a non-empty, compact set and the multi-
function ¢ — U(t) is measurable in the sense that for every closed D < R™ the
set {te(a, b): U() n D + 0} is measurable.

Z.4 There is a function u(+) € Lj,.(a, b) such that for arbitrary u(+) € %,
|fi(t, u(®)| = pt) ae. te(a,b), i=1,..,n.

These assumptions guarantee that for every u(+)e % the composition f(*, u(*))
belongs to L. (a, b), therefore for every admissible control u(+) there exists a unique
solution to the problem (20) which may be written by the Cauchy formula

(21) x(t) = &(t) xo + (1) [i, () f(s, u(s)) ds .

Fix an arbitrary T, Te (t,, b) and consider the set o(T, U) = {x(T): x(+) is given
by (21), u(*)e %} = R".

20



Definition 5. The set (T, U) is called the attainable set for the system (20)
at the instant T.
This set may be written in the form

H(T.U) = oT) {xo + 1 07(5)/(s, U(s) s}

where the last integral is understood in the sense of Aumann. In the author’s paper
[13] the following properties of the attainable set were proved:

Theorem 3. The set (T, U) is non-empty, compact and convex, und the fol-
lowing bang-bang principle holds:

A (T, U) = &(T) {x, + [}, extr [conv @~ '(s)f(s, U(s))] ds

where extr (Z) denotes the set of all extremal points of the set Z and conv Z is the
convex hull of the set Z. The attainability multifunction

h: (to, b) > T — (T, U)

is right-continuous in the Hausdorff metric; more precisely, if T+ t,(k = 1,2,...)
then h is continuous at the instant T.

Now we formulate the time-optimal control problem. Fix an arbitrary final state
X, € R" called the target of control. The problem reads as follows: A

Find the control @#(+) € % and the instant 7 such that the corresponding trajectory
%(+) of the system (20) satisfies the condition %(7) = x, with the smallest 7 possible.

First we formulate the existence theorem.

Theorem 4. If x, € A (t;, U) for some t; > 1, then there exists i€ (ty, t,] such
that x, € #' (i, U) and x, ¢ #(t,U) for t < 1. :

Proof. The set
S:={te(te. b): x, € A(1,U)}

is a sum of at most countable number of intervals and every summand of S is closed
from the left (this follows from Theorem 3). Moreover, S is bounded from below
by t,. Consequently, in the set S there exists an infimum ¢ which is the left end of
a summand of S and — by the definition of the attainable set — there exists a time-
optimal control. N

In the classical situation (i.e., in the case of a non-atomic measure A(-)) the optimal
control is an extremal one in the sense that x, is a boundary point of the set (i, U).
This property plays an important part in the proof and makes it possible to obtain
a necessary condition of optimality in the form of the Pontryagin maximum principle.
If the set of atomic points of the measure A(+) is non-empty then the target x, may
be a boundary or an interior point of the set #(7, U) as is illustrated by the following
example.
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Example. Let us consider a one-dimensional system
x=[1+%@-1)]x+u, x(0)=1, -1=2u=0.
The emission zone of the initial point is bounded from below by the curve
1 if ¢
x(t) = {1 + 3t if 1

and from above by the curve
e if t<1 _
x(i) = {38, TSl eru)=0)

Since &, = 2e, we have &(f) = x,(t). If x; € (1 + 3¢,3¢) then = 1 and x, €
eint X (1,U). o

(for u(r) = —1)

v A

5. COMPLETE CLASSIFICATION OF THE BEHAVIOUR
OF THE ATTAINABILITY MULTIFUNCTION FOR ONE-DIMENSIONAL
CONTROL SYSTEMS

In this part we present the complete classification of the behaviour of multi-
function h introduced in the previous part for one — dimensional control systems.
As will be shown, there is 16 different situations (possibilities) of such behaviour.
In higher dimensions such a classification is — in my opinion — impossible. This
classification will be demonstrated by a very simple example.

Example. Let us consider the system
= At —-1)+u, x(0)=e=20, 120, xueR', BSus<C
where
Af+1, B<C.
Now
A 1 A

dt)y=E=1, gy =——, s, =——, O(t)=1+——H(t - 1).
“ oA Tioa a0

The emission zone of the point (0, e) is bounded by the curves

e+ Bt ‘ if r<1

xs(1) = IIA[e+B+B(1—A)(t—1)] if 121 (for u(t) = B)
e + Ct if t<1

xlr) = IIA[e+c+c(1—A)(t;1)] it 1z (foru=0).

Obviously, x4(f) < x(1) for 1€(0, 1).
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For arbitrary A + 1 and B < C we have 35 possible situations (22 of which are
*‘qualitatively” different) which we describe below. We arrange these situations in
some groups.

0. If A = 0then we have the classical situation, i.e., the multifunction h is continuous
in the Hausdorff metric:

h(t)=[e + Bt, e + Ct] forall t>0
1. C>B> —e.
1. A<0.

a) If 0> 4> B%;; then xc(1—) > x¢(1) > xp(1=) > x5(1) > 0.
e

B) If A = B-¢ then xc(1—) > xc(1) = xp(1—) > x4(1) > 0.
e+ B
¥) If 4 <— ¢ then xc(1—) > xp(1—) > xc(1) > x5(1) > 0.
e+ B
2. 4€(0,1).
C-B
@) f0<4< — then x¢(1) > xc(1-) > x5(1) > x5(1-) > 0.
e .
C-B
B) If 4 = c then xc(1) > xc(1=) = x5(1) > x5(1=) > 0.
e
C-B
v) If 4> then xc(1) > x5(1) > xc(1=) > x5(1=) > 0.
e+ C
3.A>1.

Then 0 > x(1—) > xp(1—=) > x5(1) > x(1).
IL.C>B=—e

In this case xg(*) is continuous and x4(1) = 0.
1. If 4 <0 then x¢(1=) > xc(1) > xp(1).

2. If A€(0,1) then x(1) > xc(1=) > xp(1).
3. If A > 1 then xc(1-) > x5(1) > x(1).

III. C > —e > B.
1. If A <0 then xc(1=) > xg(1) > x5(1) > x5(1—).

2. If A€(0,1) then xc(1) > xc(1—=) > 0 > x5(1—) > x5(1).
3. If A > 1 then

@) B+ C> —2e
B-C

e +

o) Ifl<d< then xz(1) > xc(1=) > 0 > x5(1—) > x(1).
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B-C

o) If A= 5 then xc(1—) > x5(1) > 0 > x(1 =) = x(1).
. p
B-C C-8B
a,) If < A < ——— then x¢(1—=) > xx(1) > 0 > x5(1—) > x(1).
3) e+ B e+ C n x¢(1-) 1) s(1-) 1)
C—-B
o) If 4 = then x(1—) = x5(1) > 0 > x5(1—) > x(1).
e+ C
C-B
os) If 4 > c then xc(1—) > x5(1) > 0 > xc(1) > x4(1—).
e

B) B+C=—2e.

By) If 1 < A <2 then xc(1—) > x5{1) > 0 > x¢(1) > x5(1—).
B,) If A4 =2 then xc(1—=) = x5(1) > 0 > x5(1—) = xc(1).

Bs) If A > 2 then x5(1) > xc(1—) > 0 > x5(1=) > xc(1).

Y) B+ C < —2e.

Y Ifl <4< then x5(1) > xc(1=) > 0 > x5(1=) > x¢(1).

e+ B

B-C
If A=
72) e+ B

then x5(1) > xc(1—) > 0 > x(1) = x5(1—).

B-C C—-B
e+ B

¥3) If <A< c then xp(1) > xc(1—=) > 0 > x(1) > x5(1-).

C—-B
If A=
74) e+ C

then xc(1—=) = x5(1) > 0 > x¢(1) > x5(1-).

C — g then XC(I—) > XB(I) > 0 > Xc(l) > XB(I"').

ys)IfA>
e +

IV. —e = C > B. ’

In this case x¢(+) is continuous and x¢(1) = 0.
1. If A <0 then xc(1) > xg(1) > x5(1-).

2. If A€(0,1) then xc(1) > xp(1—) > x4(1).
3. If A > 1 then xg(1) > x¢(1) > x5(1—).
V. —e>C>B.

1. A<0O.

o) IfF0>A4>

o then 0 > x¢(1) > xc(1=) > x5(1) > x5(1-).

B)IfA=B_
e +

g then 0 > xo(1) > x(1=) = x5(1) > xp(1—).

y) If 4 < B; g then 0 > x¢(1) > xp(1) > xc(1=) > x,(1=).
e
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2. A€(0,1).

a) If0< A< €= 5 then 0> xc(1=) > xc(1) > xp(1=) > x5(1).
e+ C
C-B
B) If 4 = then 0 > xc(1—) > xc(1) = x5(1 =) > x(1).
e+ C
C-B
y) If 4 > = then 0 > xc(1—) > x5(1—) > xc(1) > x5(1).
e+

3. If A > 1 then xc(1) > x5(1) > 0 > xc(1=) > x5(1-).

Some of these situations may be “‘qualitatively” identified, namely: I. 1 with V.2,
1.2 with V. 1, o, with B, and with ys; o, With 7,4, a3 with v;, o, with y,, o5 with B3
and with y,.

Inl. 1, L2, I 1, I1.2, IIL. 1, TIL. 2, IV. 1, IV. 2, V. 1, V. 2 we have xB(t) < xc(t)
for all t > 0, therefore in these cases the attainable set is h(T) = [x5(T), x¢(T)]
while in the remaining situations we have the following inequalities: xz(f) > xc(t)
for te(1,7), xp(t) < xc(t) for te(i, 1) and x4(f) = x(i) = e/(1 — A) where =
= Al(4 - 1).

In these last cases we have

[xs(T), x(T)] if 0ST<1 or T>1i
[xc(T), xT)] if 1S T<i

{e if T=1.
1—4

The multifunction h has a closed graph in the following situations (apart from the
classical situation 0): II. 2, 1I1. 2, 111. 3, oy, 05, By, ¥4 Y2, IV. 2, One of these situations
is of special interest, namely, III. 3, B, because in this situation 4 is also continuous
in the Hausdorff metric.

WT) =

From some of the situations described we deduce that the following proposition
is not generally true (contrary to the classical case of a non-atomic measure A(*)):

If u(t) < u(r) for ae. te(ty, ty) then x,(f) £ x,(t) for te(to,,). For example,
if we put 4 =%, e=1, u(t)=1, v(r) = 2 then x,(t) < x,(t) for te(0, 1) while
x,(t) > x,(1) for te (1, 3).

In the conclusion we solve the time-optimal control problem for the system

x=3(tr—)x+u, x(0)=1, -25ucxl

with the target x, = 2 (cf. IIL 3. at,). .

For any ¢ > 0 there exists an e-suboptimal control, namely, 7#(t) = 1 which
transfers our system from the initial state to the final state ,x(l —¢) =2 — eso that
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[x(1 = &) = x,| =&,
but the optimal control for this problem is
ﬁ(l) = -2

because for this control ¥(1) = 2 and x(t) < 2 for every t and every admissible control
different from @(¢).
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Souhrn

LINEARN{ DIFERENCIALN{ ROVNICE, JEJICHZ KOEFICIENTY
JSOU MIRY, A TEORIE RIZENI

ZDzistAW WYDERKA

V &lanku se studuji soustavy linedrnich diferencidlnich rovnic, jejichz koeficienty jsou miry,
a jejich aplikace v teorii fizeni. Je poddna tplnd klasifikace dosaZitelnych mnoZin pro jedno-
dimenzionalni soustavu optimalni regulace.

-
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Pesiome

JIMHENHBIE JUPOEPEHIIVAJILHEIE VPABHEHUS, KOOOOULIUEHTAMU
KOTOPBIX ABJIAIOTCA MEPHI, 1 TEOPUSA VIIPABJIEHUA

ZDZISLAW WYDERKA
B c1aThe HM3y4arOTCA CHCTEMBI JHHEHHBIX AH(dEpPEeHIHANBHBIX yPaBHEHHH, K0ddbHImEeHTaMU

KOTOPBIX ABJIAXOTCA MEPBI, 1 X IIPHJIOXKCHUSA B TCOPMH YIIPABJIICHHA. HpHBO}IIHTCS{ IOJTHaA KJ1aCcCu-
(bKKaIIHX JOCTHXKMMBIX MHOXECTB AJIE OJHOMEPHOM CHCTEMBI ONITEMAIbHOTO YNpPaBJICHHSA.

Author’s address: Institut Matematyki, Uniwersytet Slaski, Bankova 14, 4007 Katowice,
Poland.

27



		webmaster@dml.cz
	2012-05-12T16:40:44+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




