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ON ORTHOGONALITY IN NETS

JAROSLAV LETTRICH, JAN PERENCAI, Zilina

(Received September 25, 1985)

Summary. The orthogonality of (ordinary) lines in the Desargues net satisfying the quadrangle
closure condition is investigated; the order and the degree of the net are infinite cardinals. An
algebraic equivalent of the net with the quadrangle closure condition satisfied is derived.

Orthogonality of lines in a net is understood as that characterized by the so-called trivial
axioms of orthogonality. As a closure condition for the orthogonality of lines, the Reidemeister
theorem on orthologic quadrangles is used.

The main result is an algebraic equivalent of the net in which the quadrangle closure condition
and the orthologic quadrangles theorem hold simultaneously.

Keywords: Desargues net, coordinate algebra, closure condition, orbit of a (nonzero) element,
orthogonality of lines, orthological quandrangles.

Classification AMS: 51A15.

INTRODUCTION

Papers [6] and [7] deal with closure conditions for the orthogonality of lines in
an affine plane and with the corresponding properties of the coordinate algebra of
the affine plane with orthogonal lines. The present paper follows up with [6] and [7].
It deals with the orthogonality of lines in a net — more precisely in a projective net
N = (P, 2, (V,).or) in which all singular points lie on the singular line. The defini-
tion of such a net can be found, e.g., in [2] and therefore it will be not repeated
here. Also, [2] contains the definitions of other notions to be dealt with: ordinary
and singular points of the net, ordinary lines and the singular line of the net, joinable
and non-joinable points of the net, the degree and the order of the net, the frame
of the net, etc. Our notation follows [2].

As the coordinate algebra of A~ (with respect to a given frame) we shall use an
admissible algebra A = (S, 0,(0,)iess (+.)ies). The definition of an admissible
algebra as well as the construction of the coordinate algebra (A") (with respect
to a given frame) for the given net A" and the construction of the net A7(A) for the
given admissible algebra %, can be found in [2] or [3].

By orthogonality of lines in net A" we understand a binary relation “L” in the
set of all ordinary lines. The relation “.L” is required to satisfy only the so-called
trivial axioms of orthogonality. The case when at least one ordinary line of A" is
isotropic (a line g is isotropicif g L g) will be excluded from our considerations.
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When studying the orthogonality of lines in a net we shall employ the Reidemeister
theorem on orthological quadrangles (as a closure condition for the orthogonality -
of lines in the net). The validity of the orthologic quadrangles theorem assumes the
validity of another, the so-called quadrangle closure condition in the net in question.
The nets satisfying the quadrangle closure conditions are studied in [1]. In Section 2
of the present paper we point out the relationship between the validity of the quad-
rangle closure condition in the net and the validity of the minor (affine) and the major
(affine) Desargues conditions in the net. (For these conditions see Section 1.) This
yields an algebraic equivalent of a net satisfying the quadrangle closure condition.

In Section 3 we define the notion of an orbit of a nonzero element of the support §
of the coordirate algebra W(A") of A" Theorem 9 describes the relationship between
an arbitrary orbit (enlarged by the zero element 0 and equipped with two binary
operations “+” and “®”) and the skewfield (J', +, o) of indexes of A(A").

Using the diagonal, the generalized diagonal and the Reidemeister closure con-
dition (see Section 1) in A" with the orthogonality of lines, in Section 4 we derive
some properties of the mapping I - I, x > (x) p, where OV,,,, L OV, and O is an
ordinary point. These properties are then exploited to determine an algebraic equi-
valent of A" in which the quadrangle closure condition and the orthologic quadrangles
theorem hold.

1. CLOSURE CONDITIONS IN A NET

When studying the orthogonality of lines in a net A" we shall often use some known
closure conditions and the corresponding properties of the coordinate algebra (A" )
of this net. We have in mind the minor (affine) Desargues condition, the major (affine)
Desargues condition, the diagonal and the generalized diagonal conditions, and the
Reidemeister condition. These conditions are defined and studied in [2], [4] and [5].

Throughout the paper we shall assume that the net & = (P, 2, (V,),.) satisfies
the following conditions:

1. The degree k of A" is an infinite cardinal number; P
2. A has the following property:
(rs) " possesses a frame (O;«a, f,y) and a coordinate algebra A(AN") =
= (8,0, (6.) s> (+.).cs) With respect to this frame;
3. W& is a Desargues net, i.e., 4" has the following properties:

(mD) " satisfies (universally) the minor (affine) Desargues condition;

(VD) & satisfies the major (affine) Desargues condition.

If A" has the properties (rs) and (mD) then the following theorem holds for (A")

(cf. [2])
Theorem 1. Let A" be a net such that (rs) holds. Then for each index v € | we have

+,=+,=:+,(S, +) is an abelian group and ¢, is an automorphism of (S, +)
for each index v ¢ ] provided N has the property (mD).
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Let & = (P, &, (V.).) be a net which possesses the property (rs). Define:

(1) J:=Jo {B};
(2) 6;:5S > S, x> (x) 65 = 0;

(B)E:={e,|cel};

(4) for each two elements o,, 6, € £’ define their sum “{”" by
(x) (o, % 6,) = (x) 0, + (x) 0, Vx€S;
(5) for each two elements x, A € )’ define their sum “+," by
xX+ol=0<w0,{0;,=0,.

In the Desargues net A" which has an infinite degree k and possesses the property
(rs), the diagonal and the generalized diagonal conditions (defined and investigated
in [4]) are special cases of the major (affine) Desargues condition. Hence, by the
results obtained in [4], the following holds:

Theorem 2. Let A& be a Desargues net with an infinite degree k which possesses
the property (rs). Then (£', 1) is an (abelian) group with o, as its neutral element.

Since the mapping £’ - J', 6, £ is an isomorphism of the groupp (Z’, 1) onto
(J's +0), Theorem 2 yields the following

Corollary. Let A" be a Desargues net with an infinite degree k which has the
property (rs). Then (J', +,) is an (abelian) group with B as its neutral element.

Remark 1. a) In (J, +,), the inverse element to ¢ is denoted by —, &.

b) In (X', 1), the inverse element to o, is denoted by —° o, and we have —° o, =
=0_,.

If & = (P, %, (V.).or) has the property (rs) then define:
(6) Z:=X'\{o;};
(7) for each two elements 6,, 6, € £ define their product — composition by

(x) (0,0,) = ((x)0,) 0, VxeS;
(8) for each two elements x, A € J define their product “s” by
Xod=Q<0,0,=0,.

In a Desargues net A4 the degree k of which is an infinite cardinal, the validity
of the so-called major Reidemeister condition (for the definition, see [5]) follows
from (VD). The special case of the major Reidemeister condition from [5] is the
Reidemeister condition defined in [4]. Thus, according to the results of [4], the
following holds:
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Theorem 3. Let A" be a Desargues net with an infinite degree k which possesses
the property (rs). Then the set X together with the operation of the composition of
maps is a group (E, ) with o, as its neutral element.

From the fact that the mapping £ — J, 6, ¢ is an isomorphism of the group
(X, ) onto (J, o) we get the following corollary to Theorem 3.

Corollary. Let A" be a Desargues net with an infinite degree k which possesses
the property (rs). Then (], o) is a group with y as its neutral element.

Remark 2. a) In (], o), the inverse element to & is the element ¢! defined by
Gsro'g—l = 0{-—10‘{ = 6}' .

b) In (X, ), the inverse element to oy is the element ;! = o;-..
The above two Corollaries (of Theorem 2 and Theorem 3) yield

Theorem 4. Let A" be a Desargues net with an infinite degree k which possesses
the property (rs). Then (J', +o, o) is a skewfield.

Proof. For each permutation o,, ¢ € J, of the coordinate algebra A(A"), the zero
element O € S is a fixed point. From this and from (2), (7) and (8) we get fo¢ =
= 1. f = B for each index ¢ € J. Consequently, it suffices to prove the distributivity
laws

}fo(ﬂ. +0ﬂ)=%ol +0%o[l,
(x+od)op=s%op+oldop
for each three indexes %, 4, peJ'.

Let x € S\ {0} be an arbitrary element. According to (4), (5), (7). (8) and to the
above two Corollaries we have

() roctrom = () (0a100) = () 0 (03 1 ) =
— ()(0,5) + (x) (040,) = (x) Guos + (x) 0oy =

= (x) (6401 § 0,0,) = (X) G014 oxon
and also
(%) O onon = (%) (04010,) = ((%) 1 03) 6, =
= ((x) (0. ¥ o) 0, = ((x) 0, + (x) 6,) 0, =
= ((x)0,) 0, + ((x) 02) 0, = (x) (5,0,) + (x) (030,) =
= (x) 6,0, +. (%) 630, = (x) (6,0, + 630,) =

= (X) Uko“ +OA°M s

where we also used the fact that, by Theorem 1, 6, is an automorphism of the group
(sa +)' - ’
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2. QUADRANGLE CLOSURE CONDITION

According to [1], in & = (P, £, (V,).or) the quadrangle closure condition holds
if A" has the property
(Q) For each quadruple of points A;e P\v, ie{l,2,3,4}, no three of which lie
on one line, the following holds: whenever any five of the six lines A;A, joining
the points A; and A, exist (i, k e {1,2, 3, 4}), then the sixth joining line exists,
too.
For instance if “A;AV," A “AAV” A “ATANT A CAAY,T A TAALY,Y
holds, then there exists an index 7 € I such that “A;A,V." also holds if 4" has the
property (Q). The index 7 e I is then uniquely determined by the indexes ¢, %, A, yt, 0 €
el

Theorem 5. Assume that A" has the property (rs). Then in N the quadrangle
closure condition (Q) holds if A" is a Desargues net (with an infinite degree k).

Proof. a) Let A" satisfy the quadrangle closure condition (Q). By Corollary 1
and Corollary 2 of Theorem 5 in [1], A is a Desargues net.

b) Let A" be a Desargues net with an infinite degree k which possesses the property
(rs). By Theorem 4, (J', +,, o) is a skewfield. Further, let A, A,. A5, A,e P\ v be
arbitrary four points no three of which lie on the same line, and such that “A A,V,” A
A CCATAGYT A CATANT A CAGAY, A CALALY,”. We shall prove that there
exists a uniquely determined index 7 el such that “A;A,V.”. The proof will be
carried out only in the case when the indexes ¢, %, 4, u, 0 € I'\ {oz, [)’} are mutually
distinct. In all other cases the proof can be carried out analogously; in some ca-
ses it might be even simpler.

Assume that the points A, i€{l,2,3,..,4} are A, = (a,,a,), A, = (b, by),
A; = (cy, ¢;), Ay = (dy, d,). From the assumption that “A A,V,” holds and that A"
has the property (mD) it follows that b, — a, = (b; — a;) e,. Similarly,

“A AV, implies ¢, —a, = (¢; — a,)@,,

“AAV,” implies d, —a, = (d; — a,)o,,

“A,AV,” implies ¢; — b, = (¢; — by)o, and

“A,AN,” implies d, — b, =(d; — b,)6,.
Transforming both sides of the fourth equality we have

c; — b, =(Cz —02) "(bz - az)=(01 - a1)0'x _(bl —a;)o,,
or

(¢, — by)o, =[(¢y — ay) — (by — ay)] 6, = (c; — ay)e, — (b, — ay)o,.

The fourth equality now has the form
(Cl - al) Ou—on = (bl - al) O—ous
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we have used Theorem 2, its Corollary, and the relations (4), (5). Since % # g, there
exists (x —, #)”~' € J and hence we have

¢y —ay = (by — a1) O guyoie-oum - -
Analogously, from the fifth equality we get

dy — ay = (by — a1) 6 - gpo3-001-1 -
Now it can be easily shown that we have

dz — €y = (dl - Cl) G, , i.e., “A3A4V¢” .
Indeed, put

T=[(t—00)o (A —00)7  —o(t —om) o (x —om)™] "o
o[t —00)o(A—00) tod—g(t —op)o(x —opu) ox].

Since the indexes ¢, %, 4, i, ¢ € J are mutually distinct and (J', +, o) is a skewfield
the index 7 is uniquely determined. Hence we have

(dy — ¢)) o, =[(dy — a;) — (¢c; — a;)] o, =

= [(bs = 1) O(-oproa-a0r-1 = (b1 = A1) O(=oyox-omy-1] O =

= (by — ay) OL(t=00)° (2 00) =1 = o(t = om)°(x = ou) ~1]°t =

= (by = a1) G- 0091~ 00)~ 104 o(t ~ oW (x—om)~ 10 =

= ((bs = a1) S(—0poi-o0)-1) G2 — (b1 = A1) G- goge=om=1) Ox =

= (dl - al)"x - (Cx - al)"x = (dz — a,) — ("z - az) =d; —C. m

Theorem 5 yields

Corollary. The algebraic equivalent of the net N = (P, %, (V,).) satisfying
the quadrangle closure condition (Q) is the geometry over an admissible algebra
A(AN) = (S,0,(6.)css (+1yees) as the coordinate algebra of N, with respect to
some frame (O; «, B, y). Further, for A(A") the following holds:

(i) For each index ve ] we have +, = +, = : +, (S, +) is an abelian group,
and for each v€ ] o, is an automorphism of the group (S, +).

(i) (J', +o» o) is a skewfield, where ]’ is determined by (1), and the operations
+o” and “.” are determined by (5) and (8), respectively.

[

3. THE ORBITS OF ELEMENTS OF THE SET S

Definition 1. Let A be a net which has the property (rs). Let a € S\ {0} be an
arbitrary element. The set

S, := {xeS|x=(a)c¢, ée)}

is called the orbit of the element a (with respect to the set  of permutations c,)

374



Lemma 6. Let & be a Desargues net with an infinite degree k which possesses
the property (rs). Then for each two elements a, b e S\ {0} we have

bGSaC:’sa=sb.

Proof. a)If S, = S, then b = (b) 6, €S,. Thus be§,.

b) Let beS,. According to Definition 1 there exists an index x €] such that
b = (a) o,

If y € S, is an arbitrary element then y = (b) o, for some # € J. By Theorem 3 and
the Corollary following Theorem 3 we have

y = (b) s, = ((a) 5,) 5, = (a) (0,0,) = (a) Ouo -
Hence ye S, and S, < S,.
If xe S, is an arbitrary element then x = (a) o, £ € J. According to Theorem 3
and its Corollary we have a = (b) o, !, and hence

x = (a) oy = ((b) 0, ") 6y = (b) (o, '0¢) = (D) O,-1o -
Thus xe€ S, and S, = §,. Consequently, S, = S,. m
It follows from Lemma 6 that the support S of the coordinate algebra A(A") of
a Desargues net A" which has an infinite degree k and possesses the property (rs)
can be partitioned (decomposed) into mutually disjoint orbits of elements of S.
Let S, be the orbit of an element a € S\ {0}. Denote

9) S,=5,0{0} ={xeS|x=(a)o, E€J}.

Lemma 7. Let A~ be a Desargues net with an infinite degree k which possesses
the property (rs). Then for each element a € S\ {0}, (S;, +) is an (abelian) group.

Proof. According to Theorem 1, (S, +) is an abelian group and for each element
a € S\{0} we have S, = S,. By Theorem 2 and its Corollary, for each two elements
x,y€S,, x = (a)o,, y = (a) 6, we have

x +y=(a)o; + (a) o, = (a) (0; } 0,) = (a) 0, €S,

—x = —(a) oy = (a) (="0;) = (a) 6_;€S,.
Hence (S, +) is a subgroup of the group (S, +). The neutral element of (S, +) is
the element (a) 65 = 0.
In the set S;, a € S\ {0} we define another binary operation “®” — product — as
follows:
(10) For each two elements x, y € S,, x = (a) 6, y = (a) 5,, put

and also

x®y = (a)c;® (a) 6, = (a) 6,0,

Lemma 8. Let A~ be a.Desargues net which has an infinite degree k and possesses
the property (rs). Then for each element a e S\{0}, (S,,®) is a group and for
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each three elements x, y, z € S, the distributive laws hold:
(x+y)ez=x0z+yoz,
x0(y+z)=x0y+xe@z.
Proof. According to Theorem 3 and its Corollary, (J, -) is a group and for each
two elements x, y € S,, x = (a) o, y = (a) 6, we have
X0 y = (a) Géo,’.

The mapping S, = J, x = (a) 6, £ is therefore an isomorphism of (S,, ®) onto
(J, o), so (S,, ®) is also a group.

To prove the distributive laws in S, we shall use Theorem 4 and the relation (10).
Let z € S,, z = (a) o,. Then we have

(x + y)@z = ((a) o; + (a) 5,) ® (a) oy = (@) Ocs oppor =
= (a) Ogogs onop = (@) Ogor + (a) 6,0, =
=X0z+y0z

and also

x®(y + z) = (a) o, @ ((a) 0, + (a) &) = (a) Oz 40 =
= (a) 6top+ oz = () Ogoy + (a) 0g0; =
=XxX0y+ x@z.
If either x = 0 or y = O then
x®y=0@y=(a)oy,=(a)e; =0 or
x®y=x00=(a)o,,; = (a)o; =0, respectively.

Theorem 9. Let A" be a Desargues net with an infinite degree k which possesses
the property (rs). Then for each element a € S\{0}, (S,, +,®) is a skewfield. The
skewfiled (S,, +,®) is isomorphic with the skewfiled (J', + o, o).

Proof. The first assertion follows from Lemma 7 and Lemma 8. The elements
0 = (a) o and a = (a) 6, are the zero and the unit element, respectively, in the
skewfield (S., +,®).

To prove the second assertion it suffices to realize that the mapping

¢:S5,~ ), x=(a)oy—>¢

is an isomorphism of the skewfield (S,, +,®) onto the skewfield (J', +,, o). For,
it is a one-to-one mapping and we have

X +y=(a) 0oy & Hor,s
x@y =(a)6p—Eofl. m
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Corollary. The group Aut(S,, +,®) of all automorphisms of each skewfield
(S:, +,@),ae S\{0}, is isomorphic to the group Aut(J', + o, o) of all automorphisms
of the skewfield (J', +, o).

Proof. For each automorphism { of the skewfield (J', +,, o) under the iso-
morphism @ we have the corresponding automorphism @y@~' of the skewfield
(5., +,®). Conversely, for each automorphism @, of the skewfield (S, +,®) under
the isomorphism ¢ we have the corresponding automorphism ¢~ !'@,@ of the
skewfield (J', +¢,0). m

4. THE THEOREM ON ORTHOLOGIC QUADRANGLES IN NETS

By an orthogonality of lines in a net #* = (P, £, (V,),;) we understand a binary
relation “L” in the set £\ {v} of all ordinary lines of A" satisfying the following
axioms:

(o1) For each two lines g, he £ \{v} we have

glh=hlg.
(02) For each three lines g, b, ke £\ {v} we have
gLlha h”k:»g_Lk.

(03) For each line g € £ \ {v} and each point B € g there is one and only one line
he#~\{v,g} suchthat Be hand h L g.

Remark 3. a) If for two lines g, he £\ {v} we have g L h then the two lines
are said to be mutually orthogonal (which is made possible by (o1)). We also say that
g is perpendicular to h and vice versa.

b) The axioms (02) and (03) and the axioms of a net imply that through each
point B € P\ v there goes exactly one line h perpendicular to a given line g € £ \ {v}.

¢) According to the axioms (03) and (02) no line ge £ \{v} of a net A" with
an orthogonality of lines is isotropic (i.e., we never have g L g).

d) In a net A" with an orthogonality of lines, for each three distinct lines g, h, k €
€ £ \{v} we have

glhaglk=h|k.

In the usual Euclidean plane geometry the Reidemeister closure theorem on
rectangles holds true. It deals with two mutually orthogonal rectangles and contains
11 parameters. This theorem serves in [6] as a starting point to build up a rectangle
affine plane geometry. In the present paper we shall use it as a closure condition
for the orthogonality of lines in a net. We shall call it “the theorem on orthologic
quandrangles”; it will be denoted by (OQ). It reads:
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(0Q) Let & = (P, &, (V,).cr) be a net which possesses the property (Q) and has
the set £ \{v} of all ordinary lines equipped with a relation “L”. Let A,
ie{1,2,3,4} and A}, ie{1,2,3,4}, A, Aje P\ v be the vertices of two
nondegenerate quadrangles. If any five of the six relations

AALAAL, i<k, ike(l,2,3,4)

hold true then the remaining sixth relation holds as well.

In our investigations of properties of the coordinate algebra (A") of the net A~
with orthogonality of lines in which the theorem (OQ) on orthologic quadrangles
holds, we shall use the orthogonal frame of this net. Instead of the property (rs)
of & we shall assume that 4" has the following property:

(ors) A~ has an orthogonal frame (O; a, B, y), i.e., OV, L OV, and a coordinate

algebra A(A") with respect to this frame.

The singular (improper) point of the perpendicular to a line g = BV,, where
Be P\v, xel, will be denoted by V,,,. Then

(11) BVip L BY, Vxel, VBeP\v.

Lemma 10. Let A" be a net which possesses the property (ors) and has the set
& \{v} equipped with a relation “1”. Then the mapping | - I, x> (x)p, de-
termined by condition (11), has the following properties:

(a) it is a one-to-one mapping of I onto itself;

(b) it is an involutory mapping, i.e., ((*)p)p = x Vxel;

() @)p =8 (B)p =

Proof. Properties (a), (b) and (c) follow from axioms (o1), (02), (03), property
(ors) and condition (11).

In the sequel we derive some additional nontrivial properties of the mapping
x> (%) p.

Lemma 11. Let A" be a net having the properties (ors), (Q), (OQ) and let the set
&L \{v} be equipped with a relation “L”. Then for each two indexes x, A €] we
have

a) (—o%)p = —o(%) P,

b) (x +o)p=((x)p)"" +o (WD),

) (= p=0r-(CIP) " ()P

& (o Dp = (Dp(O)D) (D

Proof. According to Theorem 5, (ors) and (Q) imply that 4" is a Desargues net

(with an infinite degree k), such that we have OV, L OV,. Now, according to Theo-
rem 4,(J', +,, o) is a skewfield with the unit element y and the zero element B.
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a) Since (J', +,) is a (abelian) group, for each element x € J' \ {#} = J there exists
its (uniquely determined) inverse element —ox € J. It follows from [4] that in A"
the diagonal condition of the type (, f) with the restriction A = O, B + A (cf. [4])
holds true.

Assume that points A, B, C, D € P\ v satisfy this closure condition, i.e., we have
“ABV,” A “CDVy” A “ADV,” A “BCV,” A “ACV,”,
where A = O, B # A (see Fig. 1). Then we have also “BDV,”, where 1 = —ox.

Yoap P W Y
Vs Vx
\}
\ I
C Vs
D C
|
D : g A
O=AzA' \
Y
Fig. 1

Assume that points A’, B, C’, D’ e P\v satisfy “A'B'V,” A “C'D'V,” A
A “A'D'Vg” A “B'C'V,” A “A'C'V,,,", where A’ = O, B’ % O. Since A" satisfies
the diagonal condition, we have also “B'D'V,”, peJand u = — (%) p.

The quandrangles ABCD and A’B’C’'D’ satisfy the assumptions of Theorem (OQ)
and hence BD L B'D’ holds. This implies 4 = (1) p and hence we have (— %) p =
= —o(¥) P

b) Since (J', +,) is an (abelian) group, for each two elements x, A € J there exists
exactly one element g € J, ¢ = x +, A. According to [4], this means that the net A
satisfies the generalized diagonal condition of the type (oc, B) with the restrictions
A =0, B + A(cf. [4]).

Assume that points A, B, C, D € P \ v satisfy this closure condition, i.e., we have

“ABV,” A “BCV,” A “ADV,” A “ACV,” A “BDV,”,

where A = O, B #+ A (sce Fig. 2). Then we also have “CDV,”, where ¢ = % +, 4.
Assume that points A’ = O, B’ & A’, C’, D’ € P\ vsatisfy “A’B'V,” A A'D'V,” A
A ‘KB,CIVﬂ,! A “A’CIV ” A “B/DIV(A)p,’.

(€3]
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Fig. 2

It follows from (Q) that also “C’D'V,” holds true. We are going to express the
index 7 in terms of the indexes (x) p and (2) p. Since B’ € OV, is arbitrary, put B’ =
= (0, b), where b’e S\{0}. Then C' = ((b") 6y, b’), D' = (—(b") 65,, 0) and
we have

b = ((b') 66np) 0 + g A 0 = (= (b') 055,) 0 + g .
Expressing g from the second equality, substituting it in to the first one and using
Theorem 1 and Theorem 3 we get

(b)) o7 " = (b") 055 + (B) 03y, -
Further, we obtain
(8") 6c-1 = (b) O gyt +oirmr Vb'e S\ {0}
so that t™1 = ((%) p)™" +,((A)p)7", i.e.
t=((C)p)™ +o (Dp)™H) 7.
The quadrangles ABCD and A’B’'C’'D’ satisfy the assumptions of (OQ), and hence
CD L C'D’ holds. Consequently, (¢) p = t and

(e +od)p=((()R)7" +o (B p)™)7".

c) Since (J, o) is a group, for each element x € J there exists exactly one inverse
element A = x~' € J. According to [4] this means that 4" satisfies the Reidemeister
condition of the type (, B, ¥, %, 4, y) with the restriction R = O (cf. [4]).

Assume that points A, B, C, D e P\ v satisfy the assumptions of this closure
condition, i.e., the following holds:

“ABVy” A “CDVy” A “ADV,” A “BCV,” A “OBDV,” A “OAV,”

(see Fig. 3). Then also “OCV,” holds, where 4 = x~ 1.
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Assume that points A’, B, C’,D’e P\v satisfy “A'B'V,” A “C'D'V.” A
A ‘EAIDIVﬁ” A ‘SBICIVﬂ‘\ A 6‘OB’DIV(y)p§’ A “OAIV(*)p§9.

v
YR, (a)p % | vy
N Y Y
Y, D - Ve
C
D Va
Vo o
\ v
: ®
\/ﬂ‘ ) B‘ /
C B A A
Y(/* o 1 Ve
0=R A

Fig. 3

The property (Q) of A" implies that we have also “OC'V,”. Now we express @
in terms of (y) p and (x) p. Since the point A’ € OV, is arbitrary but distinct from O
and Vi, put A’ = (a’,(a’) 6(,,), where a’e S\{0}. Then B’ = (a’,(a’) o)),
D’ = ((a’) S(op “(-;)lp’ (a') G(x)p)’ <= ((a,) Sop G(-;)lp’ (a’) 6()-)p) and we have

(a') o = (@) G(x)pc(—y)lpce Va'e S\ {0} .

- -1
Hence 6(,), = 6(,)p0(,)p%,, and also

G, = G(Y)pc(;)lpc(‘/)p , le, o= (‘)’) Po ((") p)_l ° (7) p.

The quadrangles, ABCD and A’B'C’'D’ satisfy the assumptions of (OQ), andhence
OC 1 OC/, i.e., (1) p = ¢. Substituting into this equality we have

e =@p(C)p) (V) p.

d) Since (J, o) is a group, for each two-indexes x, A€ J there exists exactly one
index ¢ € J such that ¢ = %o A. According to [4] this means that 4" satisfies the
Reidemeister closure condition of the type (x, B,y) with the restriction R = O
(cf. [4]).

Assume that points A, B, C, D e P\ v satisfy the assumptions of this closure
condition, i.e., we have
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“ABV,’” A “CDVﬂ” A “ADva” A “Bcva” A “OAvx” A
A “OBV,” A “OCV,”

(cf. Fig. 4). Then we also have “ODV,”, where ¢ = % o 4.
Assume that points A’, B’, C’, D’ € P \ v satisfy

6&AIB/Vaﬂ7 A ‘6C!Dlv15§ A 66AIDIVB$9 A “BICIVBQQ A
A “oAIV(x)p” A “oBlv(y)p” A “OCIV(l)p” .

Then (Q) applied to the quadrangles OBCA, OB’C’A’ and OA’C’D’ yields the existence
of the joining lines AC, A’C’ and OD’, respectively.

V v V
(Mp Voo Vipp ' * "
A
\ c B' Ve A
v
N.
\ Va
\ D c| ~ '
\ P _ 8
V \
V?: 4 '!)P \ P - Lo
C N\ Al B
D A - v
p B
V’b
W R ’
7 Yuip |
Fig. 4

If we assume “ACV,”, then the property (OQ) of A" implies “A’C’'V,,,,”. Further,
assume “OD'V.”, t € J. We express the index t in terms of () p, (%) p, (1) p. Since
the point A’ e OV,,, is distinct from O and V,,, but otherwise arbitrary, we can
denote A’ = (a’,(a’) 6,,), Where a’e€S\{0}. Then B’ = (a’,(a’)s,), C' =
= ((¢") 0,9Ciyp» (a') G (y3p) and D" = ((a") 6150550 (a”) Gyp)> Where

(al) Ciop = (a') o'(;’)110-(—/1)1110-13 Va'e S~ {0} .
Thus 6, = o(;,pca)lpct, and hence 6, = 6;),0()p)-topop: CONsequently, 1 =

=@)p-((Y)p)" ()P

Since the quadrangles OACD and OA’C’D’ satisfy the assumptions of (OQ),
we have OD L OD’. Thus (¢) p = t and, after substituting,

(o )p=A)po((M)P) 'o(*)P. =
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Using Lemma 10 and Lemma 11, we are going to determine the algebraic equi-
valent of a net A" having the properties (ors), (Q) and (OQ). In doing so, choose an
element e e S\ {0} and put

(0,e)=E, (0,—¢)=D, (6,0 =C, B=OV,MEV,,,
where “CDV,” and EV,,,, L CD (see Fig. 5).

(2]

\

v A
(€lp
v
v
- g
Y
EX-{——--
1 Vr y
0 B c/ /
7 X v
_— )
70

Fig. 5

It is easy to verify that we have B = (—(e) a;,,, 0). Further, put X = OV, [ DV,,

¢e) and Y = OV, M BV,),. Then according to (11) we have BV, L DV,. If
X = (x,0)and Y = (0, y) then a straightforward calculation shows that

x = (e) oy ,y= (e) "(_y)lp“mp .

Under the notation from Section 3 we have x, y € S,. Since the mapping OV, - OV,,
XY is one-to-one (this follows from the axioms (o1), (02) and (03) of the ortho-
gonality in A" and from the axioms of a net), the mapping

(12) @S, S, x=(e)o; >y = (€) 651u0c)p
is also a one-to-one mapping of the set S, onto itself such that
= e=(e) Gv_l = (e) 9. = (¢ G(_v)lpo'(y)p =(e)o, =e,
0= (e)oz—~(0)p, =0.
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The equality ¥ = (e) 6()p%(&» can be transformed into

¥ = () Sidimr-tote -
The mapping @, defined by (12) determines another mapping
(13) v:l=J, eV =(09)p) "' -()p,
which satisfies the equalities
ENe=ED) " Wp=(@r-(OP eGP ()=
=P @O ()P ()P =
=M ' ©)p;

observe that we have used the statement c) in Lemma 11. The mapping  (determined
by (13)) can be extended over J' if we definc

(13) (B)W:=8.

Lemma 12. Let A" be a net satisfying the conditions (ors), (Q) and (OQ). Then
the mapping \y determined by the conditions (13) and (13’) is an automorphism
of the skewfield (J', +o, o).

Proof. Observe that Y is a one-to-one mapping of J' onto itself. Indeed, if
((©)p)"to(y)p = n, ne] then according to Lemma 10 and Lemma 11 we have

©p=@)pon" and
E=(©OPp=pen)p=01")p(()P) ()PP =
=(@p-(Mp)" @) (()p) v =0)r-(() )"

For each two elements &, n € J' we have

E+omb=(E+omP)  eMP=0()p)" +o(()p) ()P =
=P teMp+o(@p)  eMP=(©)V +o(n) ¥

and also
Eem¥=(E-mp) ' ec@p=((P-(MP) ' -OP) ' c()p=
=((©p) e po(mp)™Hor)p =
=P " e mP (NP o)) = (O We(n) .

However, according to (13") we have (8) W = B and according to (13) we have (y) ¢ =

=P '-(M)p=7 =
Summing up the above results we get

Theorem 13. The algebraic equivalent of a net ¥ = (P, %L, (V,).) equipped

with an orthogonality for ordinary lines and having the properties (Q) and (OQ)
is the geometry over the admissible algebra W(N") = (8, 0, (6,).c;) as the coordinate
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algebra of the net N with respect to some orthogonal frame (O; a, B,v). The
algebra (N") satisfies the following conditions:

(i} For each index te ] we have +, = +,=: +, (S, +) is an abelian group
and e, is an automorphism of the group (S, +).
(ii) (J', + 0, o) is a skewfield, where J' is determined by (1) and the operations
+o” and “5” are determined by (5) and (8), respectively.
Tke line y = (x)o; + g, g€S, £€] of N is orthogonal to each line y =
= (x) Sy + 4’5 9 €S, where

X3

@p=0pr(¢7) V.

The mapping & +— (£) p is defined by (11) and s is an automorphism of the skewfield
(J's +o0» ) satisfying the relations (13) and (13").

Proof. The assertion follows from Theorem 5 and its Corollary, Lemma 11 and
Lenmima 12. g
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Suhrn

O KOLMOSTI V SIETIACH

JAROSLAV LETTRICH, JAN PERENCAJ

V ¢&lanku je skimana kolmosf oby&ajnych priamok v desarguessovskej sieti, ktord spliia
§tvoruholnikovi uzdverovii podmienku. Pritom rad aj stupei tejto siete st nekone&né kardinalne
¢isla. Odvodeny je algebraicky ekvivalent siete, v ktorej je splnend $tvoruholnikovd uziverova
podmienka.

Pre kolmost priamok v sieti sa pozaduju len ,,trividlne axidémy kolmosti‘. Ako uziverova
podmienka kolmosti je pouZivanid Reidemeisterova veta o ortolégovych $tvoruholnikoch.

Hlavnym vysledkom je odvodenie algebraického ekvivalentu siete, v ktorej plati $tvoruholni-
kova uziverova veta a sidasne veta o ortoldgovych $tvoruholnikoch.
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Pe3rome

OB OPTOI'OHAJIBHOCTH B CETAX

JAROSLAV LETTRICH, JAN PERENCAJ

B craThe paccMaTpMBAaeTCs OPTOrOHAJNLHOCTh OOBIKHOBEHHBIX IPAMBIX B A€3aproBOil CETH,
B KOTOPOH BBINOJIHAETCA YCIOBHE 3aMBIKAHMA YETBIPEXYTOJIbHHKA, NIPUYEM IOPAAOK M CTENCHL
3TOM ceTH — OeCKOHEYHBIE KapAMHA/IbHLIE YHCTa. BbiBefieH anreOpaMyeckuii KBHBAJIEHT CETH,
YAOBPETBOPAIOLICH YCIIOBHIO 3aMBIKaHHSA YETHIPEXYT OJIbHUKA.

st OpTOroHaNbHOCTH NPSAMBIX B CETH TPeOYeTCs BBINOJHEHHE TOJBKO ,, TPMBHAJIBHbIX aKCHOM
OPTOroHaJLHOCTH . B xauecTBe YCIOBHA 3aMbIKAHMS OPTOTOHAJIBHOCTH 3[ECh MCNONB3Y €Tln Teope-
Ma Peiinemeiictepa 06 OPTONOrOBBIX YETHIPEXYTObHUKAX.

InaBHBIM pe3ynsTaToM paboTHI ABISAETCSA YCTAHOBJIEHME anrebpamyeckoro 3KBHBATEHTa CETH,
B KOTOPOii CIIpaBeAMBa TEOpEMa 3aMBIKAHMSl YETHIPEXYIOJIbHUKA OAHOBPEMEHHO C TCOPEMOH 06
OPTOJIOTOBBIX YETBIPEXYTIOJIbHHKAX.

Authors’ address: Katedra matematiky fak. PEDaS Vysokej §koly dopravy a spojov, Marxa-
Engelsa 15, 010 01 Zilina.
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